Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3050
標題: 以相間轉移觸媒及離子液體在固-液相系統合成4-胺基苯甲酸丁酯之研究
Synthesis of 4-Aminobenzoic Acid Butyl Ester by Phase-Transfer Catalyst and Ionic Liquid in Solid-Liquid System
作者: 江沅庭
Jiang, Yuan-Ting
關鍵字: 相間轉移催化反應;Phase transfer catalyst;固-液相;離子液體;4-胺基苯甲酸丁酯;Solid-liquid;Ionic liquid;4-aminozenzoic acid butyl ester
出版社: 化學工程學系所
引用: 1.C. M. Starks, C. L. Liotta, M. Halpern, Phase-Transfer Catalysis:Fundamentals(1994). 2.S. Naik, L. K. Doraiswamy, “Phase Transfer Catalysis”:Chemistry and Engineering, AICHE, 44 (1998) 612-646. 3.J. Jarrouse, “The influence of Quaternary Chloride on the Reaction of Labike Hydrogen Compound and Chlorine-Substituted Chlorine Derivatives,” C. R. Heabd. Seances Acad. SCI, C232 1424(1951). 4.C. M. Starks“Phase Transfer Catalysis. I . Heterogeneous Reactions Involving Anion Trans by Quaternary Ammonium and Phosphonium Salts,” J. Am. Chem.Soc, 93 (1971) 195-199. 5.A. W. Herriott, D. Picker, “Phase transfer catalysis. An evaluation of catalysts”, J. Am. Chem. Soc, 97 (1975) 2345-2349. 6.A. Brandstrom, “Preparative Ion Pair Extraction, An Introduction to Theory and Pratice”, Apotekarsocieteten / Hassle, Lakemedel, Sweden (1974) 139-148. 7.C. J. Pedersen. J. Am. Chem., 89 (1967) 7017 8.K. Manabe, “Synthesis of novel chiral quaternary phosphonium salts with amultiple hydrogen-bonding site, and their application to asymmetric phase-transfer alkylation ”, Tetrahedron Letters, 54 (1998) 14465. 9.J. H. Lee, M. S. Yoo, J. H. Jung, S. S. Jew, H. G. Parka, B. S. Jeongb, “Polymeric chiral phase-transfer catalysts derived from cinchona alkaloids for enantioselective synthesis of α-amino acids”, Tetrahedron 63 (2007) 7906-7915. 10.M. L. Wang, Y. M. Hsieh, “Kinetic study of dichlorocyclopropanation of 4-vinyl-1-cyclohexane by a novel multisite phase fransfer catalyst”, Journal of Molecular Catalysis A:Chemical 210 (2004) 59-68. 11.P. A. Vivekanand, T. Balakrishnan, “Superior catalytic efficiency of a new mulit-sute phase transfer catalyst in the C-alkylation of dimedone – A Kinetic study” Catalysis Communications 10 (2009) 1371-1375. 12.L. J. Mathias, R. A. Vaidya, “Inverse phase transfer catalysis. First report of a new class of interfacial reactions.” J. Am. Chem. Soc. 108 (1986) 1093-1094. 13.L.K. Doraiswamy, S. Desikanl, “Enhanced Activity of Polymer-Supported Phase Transfer Catalysts”, Chemical Engineering Science. 55 (2000) 6119-6127. 14.H. M. Yang, C. C. Huang, “Green Conversion of Phenolic Compound to Benzoate Over Polymer-Supported Phase Transfer Catalysts”, Catalysis Letters. 128 (2009) 235-245. 15.P. Tundo, P. Venturello, “Synthesis Catalytic Activity, and Behavior of Phase-Transfer Catalysts Supported on Silica Gel. Strong Influence of the Immobilized Phosphonium Salts”, J. Am. Chem. Soc., Vol. 101 (1979) 6606-6613. 16.R. Neumann, Y. Sasson, “Mechanism of Base Catalyzed Reaction in Phase-Transfer Systems with Poly(ethylene glycols) as catalysts. The Isomerization of Allylanisole”, Journal of Organic Chemistry, 49 (1984) 3448-3451. 17.H. M. Yang, C. C. Huang, “Kinetics for benzoylation of sodium 4-acetylphenoxide via third-liquid phase in the phase transfer catalysis”, Applied Catalysis A:General 290 (2005) 65-72. 18.邱俊誠, 以超音坡輔助之雙活性基相間轉移觸媒在第三液相催化酯化合成苯甲酸4-乙醯基苯酯之研究, 台中市:國立中興大學化學工程研究所碩士論文, 2009 19.S. Sugden, H. J. Wilkins, Chemical Society, (1929) 1291-1298. 20.F. H. Hurlcy, T. P. Wicr, J. Jr. Electrochemical Society, (1951) 07-212. 21.M.Edward, T Arne, T. Jams, F. Wolf, “An Electrochemical Scrutiny of Qrganometallic Iron Complexes and Hexamethyl benzene in a Room Temperature Molten Salt”, Journal of the American Chemical Society, (1975) 3264-3265. 22.W. Parshall, “Catalysis in Molten Salt Media”, Journal of the American Chemical Society. 94 (1972) 8716-8719. 23.J. Christopher Adams, J. Martyn Earle, Glyn Roberts and Kenneth R. Seddona, “Friedel-Crafts reaction in room temperature ionic liquid”, Chemical Communication. (1998) 2097-2098. 24.Jen-Chuah Hsu, Ya-Hew Yen and Yen-Ho Chu, “Baylis-Hillman reaction in [bdmin][PF6] ionic liquid”, Tetrahedron Letters 45 (2004) 4673-4676. 25.FANG Yanxiong, DENG Yunquan, REN Qinggang, HUANG Jingping, ZHANG Saidan, HUANG Baohua and ZHANG Kun, “Blanc Reaction of Aromatic Compounds Catalyzed by Ionic Liquids”, Chinese Journal of Chemical Engineering. 16 (2008) 357-360. 26.李玲汶, 以雙活性基相間轉移觸媒及離子液體在三液相系統合成鄰-羥基苯甲酸苯甲酯之研究, 台中市:國立中興大學化學工程研究所碩士論文, 2012 27.C. L. Liotta, H. P Harris, “The Chemistry of Naked Anions. I. Reactions of the18-Ceown-6 Complex of Potassium Fluoride with Organic Substrates in Aprotic Organic Solvents”, J. Am. Chem. Soc. 96 (1974) 2250. 28.M. Fedorynski, K. wojciechowski, Z. Matacz, M. Makosza, “Sodium and Potassium Carbonates:Efficient Strong Base in Solid-Liquid Two phase Systems”, J. Org. Chem. Vol. 43, No. 24 (1978) 4682. 29.G. Jannes, F. A. Vaidya, “Inverse phase transfer catalysis. First report of a new class of interface reactions”, J. Am. Chem. Soc. 108 (1986) 1093-1094. 30.H. M. Yang, P. I. Wu, “Kinetics of phase-transfer catalyzed esterification of aliphatic dicarboxylate in solid-liquid system”, Applied Catalysis A: General 209 (2001) 17-26. 31.H. M. Yang, H. C. Liu, “Kinetics for synthesizing benzyl salicylate via solid-liquid phase-transfer catalysis”, Applied Catalysis A: General 258 (2004) 25-31. 32.B. Leska, R. Pankiewicz, G. Schroeder, A. Maia, “A new type of B-podand catalysts for solid-liquid phase transfer reactions”, Tetrahedron Letters 47 (2006) 5673-5676. 33.V. G. Devulapelli, H. S. Weng, “Synthesis of cinnamyl acetate by solid-liquid phase transfer catalysis: Kinetic study with a batch reactor”, Catalysis Communications 10 (2009) 1638-1642. 34.朱韋名, 超音波輔助雙活性基相間轉移觸媒在固-液相系統催化酯化合成對-羥基苯甲酸苯甲酯之研究, 台中市:國立中興大學化學工程研究所碩士論文, 2011. 35.S. D. Naik, L. K. Doraisway, “Mathematical Modeling of Solid-Liquid Phase Transfer Catalysis”, Chem. Eng. Sci. Vol. 52 , No. 24, (1997) 4553-4546. 36.S. S. Yufit, G. V. Kyrshtal, I. A. Esikova, “Adsorption on Interfaces and Solvation in Phase-Transfer Catalysis”, America Chemical Society (1997) 52-67. 37.D. Ganapati Yadva, M. Priyal Bisht, “Novelties of microwave irradiated solid-liquid phase transfer catalysis (MISL-PTC)” in synthesis of 2’-benzyloxyacetophenone”, Journal of Molecular Catalysis A: Chemical 221 (2004) 59-69. 38.H. A. Zahalka, Y. Sasson, “The key Role of Water in Solid-Liquid Phase Transfer- Catalyzed Substitution Reactions”, J. Chem. Soc. Chem. Commun. (1984) 1652-1654. 39.C. L. Liotta, E. N. Burgess, C. Ray, “Mechanism of Phase-Transfer Catalysis: the omega phase, in ACS Synposium Series, Phase-Transfer Catalysis (ed. C. M. Starks)”, Am. Chem. Soc., Wash. DC (1987) 15-23. 40.C. M. Starks, C. L. Loitta, M. Halpern, “Phase transfer catalysis: Fundamentals, Applications, and Industrial Perspectives; Chapman&Hall”, New York (1994). 41.J. B. Melville, J. D. Goddard, “A Solid-Liquid Phae-Transfer Catalysis in Rotating-Disk Flow”, Ind. Eng. Chem. Res. 27 (1998) 511. 42.G. Maerker, J. F. Carmichael, W. S. Port, “Glycidl Ester Method of preparation and study of Some reaction Variables”, J. Org. Chem. 26 (1961) 2681-2688. 43.H. M. Yang, C. C. Huang, “Phase-transfer catalyzed benzoylation of 4-chloro-3-methylphenol sodium salt in liquid-liquid system”, Chemical Engineering Communications. 194 (2007) 1187-1200. 44.H. M. Yang, Y. S. Huang, “Green benzylation of sodium salicylate by phase-transfer catalysis with third-liquid phase in a continuous two-phase-flow reactor”, Journal of the Taiwan Institute of Chemical Engineers. 42 (2011) 265-2710. 45.Uchium, Shinichiro, Hashimoto, Toshiaki, “Product of amomatic-carboxylic ester” Jpn. Kokai Koho(1993)
摘要: 
本研究探討相間轉移觸媒在固-液相系統中催化4-胺基苯甲酸鈉與溴丁烷合成4-胺基苯甲酸丁酯;操作變因包括觸媒種類與添加量、離子液體種類與添加量、攪拌速率、水添加量、KOH添加量、溶劑種類、有機相反應物添加量、鹽類添加、溫度,並探討這些變因對催化反應的影響。

  實驗結果顯示,以溴化四丁基銨觸媒的催化效果最好,這是因為其具有在鹼性環境下穩定性較高的特點;在不添加觸媒及離子液體的情況下幾乎無產物生成,而添加0.3毫莫耳的觸媒及離子液體在反應30分鐘後產率達到94.79%。攪拌速率300rpm時產率達到最大值,再往上提升則因溶液噴濺至瓶壁上而下降。添加少量的水可形成Omega相有效提升產率,添加2.5毫升水時的產率為無水情況下的6.08倍,繼續添加水至15毫升時則因系統轉為液-液相而使產率下降。添加KOH有助於觸媒中間體的生成,在添加27毫莫耳KOH時的產率為無KOH情況下的2.97倍;使用高極性的甲基異丁基酮較低極性的甲苯有較佳的催化效果,顯示溶劑的極性高低亦是影響催化反應進行的因素之一。本實驗以固相反應物為限量試劑,添加過量有機相反應物可使其在有機相的濃度提高,添加過量8倍的溴丁烷時擁有最高效率的催化效果。

  反應機制上,觸媒中間體與有機相反應物主要於中間相與有機相交界處發生本質反應,其實驗結果可用虛擬一階線性方程式-ln(1-Y)=kappt表示,式中kapp為視反應速率常數,經Arrhenius方程式計算可得本反應之活化能為11.79 kcal/mol。

  The thesis was to investgate esterification of 4-amino benzoic acid sodium salt (Ph(NH2)COONa) and 1-bromobutane(RBr) to synthesize 4-minobenzoic acid butyl ester by phase transfer catalyst and ionic liquid in solid-liquid System. The operating parameters included type of catalyst, amount of catalyst, type of ionic liquid, amount of ionic liquid, agitation speed, amount of water, amount of KOH, type of organic solvent, amount of organic reactants, salts effect, and temperature.

  The results indicated tetrabutylammonium bromide(TBAB) had best catalytic effect, because it is with more stable characteristics in alkaline. The reaction can not be conducted without adding any catalysts and ionic liquid, when adding 0.3 mmol catalysts and ionic liquid the yield increases to 94.79%. When the agitation speed was 300rpm, the yield had a maximum, more than 300rpm due to the solution splashed on the sidewall. Adding a little water can compose omega phase to improve the yield. When adding 2.5 ml of water the yield was 6.08 times to that in anhydrous condition, adding water to 15 ml the yield declined due to system becoming liquid-liquid type. When 0.27 mmol of KOH was used, the yield was 2.97 times that without KOH. When using highly polar solvent such as methyl isobutyl keton (MIBK), there would be the best catalytic effect than toluene, which indicated that the level of solvent effect is one of factors in the catalytic reaction. In this experiment, using (Ph(NH2)COONa) as limiting reagent, excess organic reactants could enhance the concentration in organic phase, adding excess 1-bromobutane up to 8 times would have the highest yield.

  In the kinetic part, catalytic intermediate and organic reactants reaction dominated to conduct in the interface between the organic and middle phase. The kinetic results were correlated by us -ln(1-Y)=kappt equation successfully, where kapp was the apparent reaction rate constant, and the activation energy was 11.79 kcal/mol.
URI: http://hdl.handle.net/11455/3050
其他識別: U0005-2806201301471100
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.