Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3055
DC FieldValueLanguage
dc.contributor楊鴻銘zh_TW
dc.contributorHung-Ming Yangen_US
dc.contributor.author蘇瑞恩zh_TW
dc.contributor.authorSu, Juei-Enen_US
dc.contributor.other化學工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T05:30:52Z-
dc.date.available2014-06-06T05:30:52Z-
dc.identifierU0005-3006201317000800en_US
dc.identifier.citation參考文獻 [1] P.Anastas,J.C. Warner, “Pursuing practical elegance in chemical synthesis Ryoji Noyori ’’Chemical Communications, 2005, (14), 1807 - 1811 Abstract [2] J. Jarrouse, “The influence of Quaternary Chloride on the Reaction of Labike Hydrogen Compound and Chlorine-Substituted Chlorine Derivatives,’’ C.R Heabd. Seances Acad. Sci, C232 (1951) 1424 [3] C.M. Starks, “Phase Transfer Catalysis. I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts,” J. Am. Chem. Soc. 93 (1971) 195-199. [4] C.M. Starks, and R.M.,Owens,“Phase Transfer Catalysis. Ⅱ. Kinetic Details of Cyanide Displacement on1-Halooctanes” J. Am. Chem. Soc. 95 (1973) 3613. [5] A.W. Herriott, D. Picker, “Phase transfer catalysis. An evaluation of catalysts”, J. Am. Chem. Soc. 97 (1975) 2345-2349. [6] M. Kitamura, Y. Arimura, S. Shirakawa, K. Maruoka, “Combinatorial approach for the design of new, simplified chiral phase-transfer catalysts with high catalytic performance for practical asymmetric synthesis of a-alkyl-a-amino acids”, Tetrahedron Letters 49 (2008) 2026-2030. [7] J. H. Lee, M. S. Yoo, J. H. Jung, S. S. Jew, H. G. Parka, B. S. Jeongb, “Polymeric chiral phase-transfer catalysts derived from cinchona alkaloids for enantioselective synthesis of α-amino acids”, Tetrahedron 63 (2007) 7906-7915. [8] E. Murugan, A. Sivab, “Preparation of a novel soluble multi-site phase transfer catalyst and the kinetic study for the C-alkylation ofα-pinene”, Journal of Molecular Catalysis A: Chemical 235 (2005) 220-229. [9] P.A. Vivekanand, T. Balakrishnan, “Superior catalytic efficiency of a new multi-site phase transfer catalyst in the C-alkylation of dimedone -A kinetic study”, Catalysis Communications 10, (2009) 1371-1375. [10] M. L. Wang, Y. M. Hsieh, “Kinetic study of dichlorocyclopropanation of 4-vinyl-1-cyclohexene by a novel multisite phase transfer catalyst”, Journal of Molecular Catalysis A: Chemical 210 (2004) 59-68. [11] A. Siva, E. Murugan, “Synthesis and characterization of novel multi-site phase transfer catalyst and its catalytic efficiency for dichlorocarbene addition to citral”, Journal of Molecular Catalysis A: Chemical 241 (2005) 101-110. [12] C.M.,Starks,“Phase Transfer Catalysis.I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts”,J Am Chem Soc,93(1),195-199(1971) [13] M.Makosza, Pure Appl Chem, 43, (1975)439-462 [14] M.Makosza,and Bialecka,E., Tetrahedron Lett, 2, (1977) 183-186 [15] L. J. Mathias, R. A. Vaidya, “Inverse Phase Transfer Catalysis. First report of a new class of interfacial reactions”, J. Am. Chem. Soc. 108, (1986) 1093-1094. [16] P. Tundo, P. Venturello, “Synthesis Catalytic Activity, and Behavior of Phase-Transfer Catalysts Supported on Silica Gel. Strong Influence of Substrate Adsorption on Polar Polymeric Matrix on the Efficiency of the Immobilized Phosphonium Salts” , J. Am. Chem. Soc. , 101 , (1979) 6606-6613. [17] C.M. Starks, C.L. Loitta, M. Halpern, “Phase transfer catalysis: Fundamentals, Applications, and Industrial Perspectives; Chapman&Hall” , New York (1994). [18] S.L. Regen, J.J. Besse, J. Mcliick, “Solid Phase Cosolvent Triphase Catalytic Hydrolysis of 1-Bromoadamantane”, J. Am. Chem. Soc., 101 (1979) 166-120. [19] W. T., &quot;Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis&quot;. Chem.Rev., 99,(1999), 2071-2084. [20] F.H. Hurlcy., Wicr, T. P., J., Jr. Electrochemical Society, (1951) 07-212. [21] F. H. Hurley, T. P. Wier, J. Electrochem. Soc. 98,( 1951) 203. [22] H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryong, J. Am. Chem. Soc., 97, (1975)3264. [23] G.W. Parshall, ” Catalysis in Molten Salt Media”, Journal of the American Chemical Society, 94 (1972) 8716-8719. [24] J. Adams Christopher, J. Earle Martyn, G. Roberts and R. Seddona Kenneth, “Friedel–Crafts reactions in room temperature ionic liquids”, Chemical Communications, (1998) 2097-2098. [25] M. Badri, J. Brunet” Ionic liquids as solvents for the regioselective O-alkylation of C/O ambident nucleophiles.”, Tetrahedron Letters, Volume 33, (1992) 4435–4438. [26] A.Z. Paulo Suarez, Jeane E.L. Dullius, Sandra Einloft, Roberto F. De Souza, Jairton Dupont” The use of new ionic liquids in two-phase catalytic hydrogenation reaction by rhodium complexes”, Polyhedron Volume 15, (1996)1217–1219. [27] J. Carmichael, Martyn J. Earle, John D. Holbrey, Paul B. McCormac, Kenneth R. Seddon, ” The Heck Reaction in Ionic Liquids:A Multiphasic Catalyst System”, Organic Letters , 1,(1999) 997-1000. [28] P. Wasserscheid , H .Waffenschmidt,” Ionic liquids in regioselective platinum-catalysed hydroformylation”, Journal of Molecular Catalysis A: Chemical 164, (2000) 61-67 [29] H. Qian, D. Liu, C. Lv, “Ultrasonically-promoted synthesis of mandelic acid by phase transfer catalysis in an ionic liquid”, Ultrasonics Sonochemistry 18, (2011) 1035–1037 [30] M. Ghiaci, B. Aghabarari , S. Habibollahi , A. Gil “Highly efficient Bronsted acidic ionic liquid-based catalysts for biodiesel synthesis from vegetable oils”, Bioresource Technology 102 (2011) 1200–1204 [31] M. Ghiaci, B. Aghabarari, S. Habibollahi, A. Gil, “Highly efficient Bronsted acidic ionic liquid-based catalysts for biodiesel synthesis from vegetable oils”, Bioresource Technology 102 (2011) 1200–1204 [32] Y. Yang, W. He, C. Jia , Y. Ma, X. Zhang, B. Feng, “Efficient synthesis of phytosteryl esters using the Lewis acidic ionic liquid”, Catalysis Today, (2012) xxx– xxx [33] A. H. Jadhav , H. Kim, I. T, Hwang, “Efficient selective dehydration of fructose and sucrose into 5-hydroxymethylfurfural (HMF) using dicationic room temperature ionic liquids as a catalyst”, Catalysis Communications 21 (2012) 96–103 [34] T. Uragami, J. Kishimoto, T. Miyataa, “Membrane reactor for acceleration of esterification using a special ionic liquid with reaction and separation and microwave heating”, Catalysis Today, (2012) xxx– xxx [35] R. Neumann, Y. Sasson, “Mechanism of Base Catalyzed Reactions in Phase-Transfer Systems with Poly(ethylene glycols) as catalysts. The Isomerization of Allylanisole”, Journal of Organic Chemistry, 49 (1984) 3448-3451. [36] I. T.;Saiki,M.;Goto,S., “Effect of Addition of Methanolon Catalytic Activity of Polyethylene Glycols as Phase Transfer Catalyst”,Kagaku Kogaku Robunshu.,15(2),403(1989) [37] D. Masson, S. Magdasi, Y. Sasson, “Role of a third liquid phase in phase transfer catalysis”, J. Org. Chem., 56, (1991) 7229-7232. [38] D. H. Wang, H. S. Weng, “Phase transfer catalytic reaction between n-butyl bromide and sodiu, phenolate-foemation of the third liquid phase and its effect.”, J. Chin. Inst. Chem. Eng., 26 (1995) 147-156. [39] H. S. Weng, S. M. Kao, H. C. Hsiao, “Synthesis of n-Butyl Phenyl Ether by Tri-Liquid-Phase Catalysis Using Poly ethylene glycols-600 as a catalyst. 1. Analysis of Factor Affecting the Formation of a Third Liquid Phase”, Ind. Eng. Chem. Res., 39 (2000) 2772-2778. [40] G. Jin, T. Ido, S. Goto, “Effect of third-phase properties on benzyl-n-butyl ether synthesis in phase transfer catalytic system”, Catalysis Today, 64 (2001) 279-287. [41] C. C. Huang, H. M. Yang, “Kinetics for benzoylation of sodium 4-acetylphenoxide via third-liquid phase in the phase-transfer catalysis”, Applied Catalysis A:General, 290 (2005) 65-72. [42] H. M. Yang, C. C. Li, “Kinetics for synthesizing benzyl salicylate by third-liquid phase-transfer catalysis”, Journal of Molecular Catalysis a-Chemical, 246 (2006) 255-262. [43] G.D. Yadav, B.G. Motirale, “Selective oxidation of methyl mandelate to methyl phenyl glyoxylate using liquid–liquid–liquid phase transfer catalysis”, Chemical Engineering Journal, 156 (2010) 328-336. [44] S. Baj, A. Siewniak, “Tri-liquid system in the synthesis of dialkyl peroxides using tetraalkylammonium salts as phase-transfer catalysts”, Applied Catalysis A:General, 385 (2010) 208-213. [45] 王昌鈞,<有機化學>,第二版,藝軒圖書出版社 [46] G. Maerker, J.F. Carmichael, W.S. Port, “Glycidl Ester Method of preparation and study of Some reaction Variables” , J. Org. Chem., 26 (1961) 2681-2688. [47] H. E. Hennis, J. P. Easterly, L. R. Collins, L. R. Thompson, “Esters from Reactions of Alkyl Halides and Salts of Carboxylic Acids. Reactions of Primary Alkyl Chlorides and Sodium Salts of Carboxylic Acids”, Ind. Eng. Chem. Prod. Res. Dev.,6(1967) 193-195. [48] J.L. Louis, Synthetic organic sonochemistry, Plenum Press, New York and London [49] CAVITATION SICKNESS, http://www.deafwhale.com/stranded_whale/barotrauma.htm [50] K. S. Suslick, “The Chemical Effects Of Ultrasound”, Scientific American, 260 (1989) 80-86. [51] M.H.Entezari,A.Keshavarzi,A.A.Shameli,Phase-transfer catalysis and ultrasonic wave I.Cannizzaro reaction.Ultrasonics Sonochemistry 7, (2000)169-172 [52] M.H.Entezari,Venugopal Rajendran,Ultrasound assisted Phase-transfer catalysis epoxidation of 1,7-octadiene-A kinetic study.Ultrasonics Sonochemistry 14, (2007)46-54 [53] N. S. Nandurkar, M. J. Bhanushali, S. R. Jagtap, B. M. Bhanage, “Ultrasound promoted regioselective nitration of phenols using dilute nitric acid in the presence of phase transfer catalyst”, Ultrasonics Sonochemistry, 14 (2007) 41-45. [54] X. Z Zheng , Y. Shan, “Studies on the sunthetis methods for octyl and isopropyl Nipagin Ester” Chem. World , 19, (1997) 12–17. [55] H. Yan-bing, Y. Ri-an, H. Cai-huan, D. Han-ying, “Synthesis of long-chian esters of p-hydroxybenzoic acid”Food Science and Science And Technology”, 36 (2011) [56] G. Wang,1 Lu Li,2 C. Xie,1 S. Yu,2. F. Liu,2 and X. Ye1“Synthesis Of Nipagin Esters Using Acid functional Ionic Liquids As Catalysts”, Synthetic Communications1, 41:(2011)945–952en_US
dc.identifier.urihttp://hdl.handle.net/11455/3055-
dc.description.abstract  本論文探討以超音波及離子液體促進第三液相相間轉移催化合成對-羥基苯甲酸正辛酯之動力學研究。 第三液相的形成變數包括溴化四丁基鏻添加量、有機溶劑種類、鹽種類、鹽添加量和不同溫度。實驗結果顯示當觸媒溴化四丁基鏻莫耳數與水相反應物為1:1時,第三液相內所含的觸媒Q+濃度最高;以高極性的甲基異丁基酮和非極性的正庚烷4:1的體積比例混合,正庚烷能將觸媒Q+集中在第三液相中,甲基異丁基酮能提高反應速率;系統無法自行生成第三液相,添加氯化鈉,容易將觸媒中間體析出集中在第三液相,當氯化鈉添加量逐漸上升,會使得水中之觸媒溶解度下降,第三液相體積增加,當添加到0.04莫耳時,有最大的第三液相體積2.2 cm3,所含之觸媒Q+也最多。溫度對本系統之第三液相的組成有很明顯的影響,但溫度為30度時,部分氯化鈉尚未完全溶解,使得第三相成為固體,當溫度上升到60度時,第三液相中觸媒Q+為3.63 mmol。  以對-羥基苯甲酸鈉與溴辛烷進行酯化反應合成對-羥基苯甲酸正辛酯,其有機相反應物與觸媒會在第三液相中進行催化反應,以四級鹽類溴化四丁基鏻(TBPB)有最佳的產率,當溶劑使用正庚烷與甲基異丁基酮4:1之混合比例時,能夠將產率提升到80%以上,此時之動力學機制符合Logistic Growth Model 系統中以水相反應物為限量試劑,過量添加有機相反應物可使反應速率提升,實驗結果經Arrhenius方程式計算可得活化能為Ea= 6.12 kcal/mol。添加微量離子液體0.5毫莫耳可以將反應時間縮短,並溶解第三液相,其作用與高極性溶劑類似。最佳三液相反應條件為: 對-羥基苯甲酸鈉0.005莫耳、去離子水10毫升、溴化四丁基鏻0.005莫耳、氯化鈉0.04莫耳,甲基異丁基酮2毫升、正庚烷8毫升,溴辛烷0.05莫耳,反應四小時後產率為86.3%。zh_TW
dc.description.abstractThe present study was to investgate ultrasound-assisted For Synthesizing Octyl 4-Hydroxybenzoate by Phase Transfer Catalyst and Ionic Liquid in Tri-Liquid System. The operating parameters of forming the third-liquid phase included the amounts of catalyst,salt organic solvent ,temperature and reaction time.The results indicated that the third-liquid phase had higher quantity Q+ under the molar ratio of TBPB to Ph(OH)COONa being 1:1. Heptane can gather Q+ in the third-phase,and few MIBK can improve the reaction rate with the volume ratio of MIBK to heptanes to be 4:1. The system cannot form the third liquid phase byitself,the addition of NaCl , gives the third-liquid were 2.2 cm3. With molar ratio of the low-polarity heptane to high-polarity MIBK being 4:1,Q+ can be accumulated in the third-liquid phase ,and few MIBK can improve the Reaction rate.When the addition of sodium chloride was increased, the solubilitu of catalyst in water will decrease,leading to the increase of third-liquid volume,which is 2.2 cm3 for 0.04ml of NaCl add, when added to 0.04 mole. In the system,the temperature effect influenced the amount of catalytic intermediate and composition of third liquid phase. Parts of NaCl were not dissolved completely with the third phase observed as solid at 30℃;and Q+ in the thied-liquid phase is determined to be 3.63 mmol at 60℃. Esterification of 4- hydroxybenzoate(Ph(OH)COONa) with octyl bromide(RBr) to produce Octyl 4-Hydroxybenzoate was performed, the reaction of organic reactant and catalytic intermediate was conducted in third-liquid, the use of tetrabutyl phosphonium bromide (TBPB) has the best yield with the molar ratio of the solvent heptane to solvent MIBK being 4:1,the product yield was over 80%,and the kinetic results were well correlated by Logistic Growth Model.The apparent activation energy was 6.12 kcal/mol.Adding few ionic liquid can improve the reaction time,and parts of third-liquid phase would be dissolved by using even 0.5 mmole of ionic liquid ,the function of ionic liquid is similar to a hight polarity solvent. The best third- phase reaction conditions : 0.005 mole of 4- hydroxybenzoate,0.005 mole of TBPB,0.04 mole of NaCl,10 cm3 of water,2 cm3 of MIBK, 8 cm3 of heptane,0.05 mole of bromooctane,the product yield was 86.3% after 4 hours.en_US
dc.description.tableofcontents目錄 摘要 I Abstract IV 致謝 VII 目錄 VIII 圖目錄 XI 表目錄 XIV 符號說明 XIV 第一章 緒論 1 1.1前言 1 1.2相間轉移觸媒之簡介 3 1.2.1 相間轉移觸媒的分類 5 1.2.2相間轉移觸媒的反應型態 10 1.3離子液體的簡介 17 1.3.1離子液體的發展與回顧 17 1.3.2離子液體的簡介 20 1.3.3離子液體的種類 21 1.3.4離子液體的特性 23 1.3.4.1離子液體的物性 23 1.3.4.2離子液體價格的影響 25 1.3.4.3 離子液體在催化應用中的技術問題 25 1.4第三液相相間轉移催化反應 26 1.4.1第三液相相間轉移催化反應的發展與回顧 27 1.4.2第三液相相間轉移催化反應原理 29 1.5酯化反應 32 1.5.1一般酯類合成方法 32 1.5.2相間轉移觸媒催化反應合成酯類 35 1.6.1超音波化學原理 37 1.6.2超音波在相間轉移觸媒催化之應用 40 1.7研究目的與方法 41 1.7.1研究目的 41 1.7.2研究方法 43 第二章 實驗設備與實驗方法 45 2.1實驗藥品 45 2.2實驗設備與分析儀器 47 2.3產物之合成 50 2.4觸媒中間體製備 50 2.5校正曲線 51 2.6觸媒正電荷離子(Q+)的含量滴定 52 2.7反應動力學實驗步驟 53 第三章 使用相間轉移觸媒形成第三液相條件之探討 55 3.1前言 55 3.2相間轉移觸媒添加量對形成第三液相之影響 55 3.3有機溶劑的種類對形成第三液相之影響 59 3.3.1有機溶劑的種類對第三液相體積之影響 59 3.3.1混溶劑對第三液相體積以及觸媒陽離子分布之影響 61 3.4鹽類的種類及添加量對形成第三液相之影響 62 3.4.1不同鹽類對形成第三液相之影響 62 3.4.2氯化鈉添加量形成第三液相之影響 65 3.5溫度對形成第三液相的影響 68 3.6反應時間對形成第三液相的影響 71 3.7結論 74 第四章 第三液相催化合成對-羥基苯甲酸正辛酯之酯化反應動力學 77 4.1前言 77 4.2反應機構與動力學模式推導 78 4.2.1反應機構 78 4.2.2反應動力學推導 81 4.3再現性測試 85 4.4.1 單活性基相間轉移觸媒對產率影響 88 4.4.2雙活性基相間轉移觸媒對產率影響 91 4.5觸媒添加量 93 4.6不同溶劑對催化系統的影響 96 4.7鹽類添加對催化系統的影響 103 4.7.1鹽類種類對催化系統的影響 103 4.7.2 氯化鈉添加量對催化系統的影響 106 4.8超音波對催化系統的影響 110 4.8.1不同超音波頻率對催化系統的影響 110 4.8.2 不同超音波功率對催化系統的影響 113 4.9不同攪拌速率對催化系統的影響 117 4.10溫度對催化系統的影響 122 4.10.1 溫度對催化反應的影響 122 4.10.2 視活化能計算 127 4.11離子液體添加對催化系統的影響 129 4.11.1 離子液體種類對催化系統的影響 129 4.11.2離子液體添加量對催化系統的影響 139 4.11.3 溶劑與離子液體的交互作用 144 4.12結論 146 第五章 總結 151 參考文獻 154 附錄 161zh_TW
dc.language.isozh_TWen_US
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3006201317000800en_US
dc.subject相間轉移觸媒zh_TW
dc.subjectphase transfer catalysten_US
dc.subject三液相zh_TW
dc.subject離子液體zh_TW
dc.subjectLogistic Growth Modelzh_TW
dc.subject對-羥基苯甲酸正辛酯zh_TW
dc.subjectThird-liquid phaseen_US
dc.subjectIonic liquiden_US
dc.subjectLogistic Growth Modelen_US
dc.subjectOctyl 4-Hydroxybenzoateen_US
dc.title以超音波及離子液體促進第三液相相間轉移催化合成對-羥基苯甲酸正辛酯之研究zh_TW
dc.titleSynthesis of n-Octyl 4-Hydroxybenzoate by Ultrasound and Ionic Liquid Promoted Third-Liquid Phase-Transfer Catalysisen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1zh_TW-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.