Please use this identifier to cite or link to this item:
標題: 胡瓜嵌紋病毒感染番茄對其病媒桃蚜(半翅目:常蚜科)之影響
Effects of cucumber mosaic virus infested tomato on vector aphid Myzus persicae (Hemiptera: Aphididae)
作者: 陳富翔
Chen, Fu-Hsiang
關鍵字: 胡瓜嵌紋病毒;;桃蚜;番茄;多酚氧化酵素;過氧化酵素
出版社: 昆蟲學系所
引用: 林立。2005。番茄病毒感染及夜蛾取食後對番茄夜蛾生長表現之影響。國立中興大學昆蟲學系碩士論文。60頁。 柯勇。1998。作物病害與防治。藝軒圖書出版社。臺北市。550頁。 陶家駒。1967。中國蚜蟲誌。台灣省立博物館科學年刊。10: 1-28。 郭美華。1990。桃蚜在不同定溫下之生命表,族群變動及其寄主植物含氮量之分析。國立中興大學昆蟲學系碩士論文。89頁。 陳應山、陳慧。1998。茄子、辣椒、番茄栽培關鍵技術問答。中國農業出版社。北京市。131頁。 張成良、張作芳、李尉民、相寧。1996。植物病毒分類。中國農業出版社。北京市。 黃振聲、謝豐國。1983。桃蚜(Myzus persicae (Sulzer))之發育生物學及其棲群增長。植物保護學會會刊。25: 77-86。 彭瑞菊、鄭安秀。2003。台南區番茄病毒病的種類及分佈。台南區農業專訊。44: 15-18。 童蘊慧、陳麗芳、祝樹德。1999。番茄病蟲害防治圖說。江蘇科學技術出版社。江蘇省。76頁。 楊遠波、劉和義、彭鏡毅、施炳霖、呂勝由。2000。台灣維管束植物簡誌(第肆卷)。行政院農業委員會。臺北市。432頁。 費雯綺、王喻其。2004。植物保護手冊。行政院農業委員會農業藥物毒物試驗所。台中縣。835頁。 蕭吉雄、黃維東、周明燕。2002。番茄品種特性與栽培技術全輯。行政院農業委員會種苗改良繁殖場。台中縣。78頁。 Adams, D., and A. E. Douglas. 1997. How symbiotic influence plant utilization by the polyphagous aphid, Aphis fabae. Oecologia 110: 528-532. Agrawal, A. A. 2000. Mechanism, ecological consequences and agricultural implications of tri-trophic interactions. Curr. Opin. Plant Biol. 3: 329-335. Agrawal, A. A., and M.F. Sherriffs. 2001. Induced plant resistance and susceptibility to late-season herbivores of wild radish. Ann. Entomol. Soc. Am. 94: 71-75. Agrios, G. N. 2004. Plant pathology. 5th ed. Elsevier Academic Press, California. 922pp. Biere, A., J. A. Elzinga, S. C. Honders, and J. A. Harvey. 2002. A plant pathogen reduces the enemy-free space of an insect herbivore on a shared host plant. Proc. R. Soc. Lond. B 269: 2197-2204. Blua, M. J. and T. M. Perring. 1992a. Effects of zucchini yellow mosaic virus on colonization and feeding behavior of Aphis gossypii (Homoptera: Aphididae) alatae. Environ. Entomol. 21: 578-585. Blua, M. J. and T. M. Perring. 1992b. Alatae production and population increase of aphid vectors on virus-infected host plants. Oecolgia 92: 65-70. Bradford, M. M. 1976. A rapid and sensitive method for the quantitaties of microgram quantities of protein utilizing the princiole of protein- dye binding. Anal. Biochem. 72: 284-285. Casaretto, J. A., G. E. Zúñiga, and L. J. Corcuera. 2004. Abscisic acid and jamonic acid affect proteinase inhibitor activities in barley leaves. J. Plant Physiol. 161: 389-396. Castle, S. J., and P. H. Berger. 1993. Rates of growth and increase of Myzus persicae on virus-infected potatos according to type of virus-vector relationship. Entomol. Exp. Appl. 69: 51-60. Chi, H. 1988. Life table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17: 26-34. Chi, H. 1997. Computer program for the age-stage, two-sex life table analysis. National Chung Hsing University, Taiching, Taiwan. Http:// nchu.Ecology/Welcome.html. Chi, H., and H. Liu. 1985. Two new methods for the study of insect population ecology. Acad. Sin., Bull. Inst. Zool. 24: 225-240. Cipolloni Jr., D. F., and A. M. Redman. 1999. Age-dependent effects of jamonic acid treatment and wind exposure of foliar oxidase activity and insect resistance in tomato. J. Chem. Ecol. 25: 271-281. Cooper, W. R., and F. L. Goggin. 2005. Effects of jasmonate-induced defenses in tomato on potato aphid, Macrosiphum euphorbiae. Entomol. Exp. Appl. 115: 107-115. Devoto, A., and J. G. Turner. 2003. Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann. Bot. 92: 329-337. Dickinson, M., and J. Beynon. 2000. Molecular Plant Pathology. 1st ed. Sheffield Academic Press. Sheffield. 293pp. Durrant, W. E., and X. Dong. 2004. Systemic acquired resistance. Ann. Rev. Phytopathol. 42: 185-209. Eleftherianos, I., P. Vamvatsikos, D. Ward, and F. Gravanis. 2006. Changes in the levels of plant total phenols and free amino acids induced by two cereal aphids and effects on aphid fecundity. J. Appl. Entomol. 130: 15-19. Felton, G. W., and K. L. Korth. 2000. Trade-offs between pathogen and herbivore resistance. Curr. Opin. Plant Biol. 3: 309-314. Fereres, A., R. M. Lister, J. E. Araya, and J. E. Foster. 1989. Development and reproduction of English grain aphid (Homoptera: Aphididae) on wheat cultivars infected with barley yellow dwarf virus. Environ. Entomol. 18: 388-393. Fiebig, M., H.-M. Poehling, and C. Borgemeister. 2004. Barley yellow dwarf virus, wheat, and Sitobion acenae: a case of trilateral interactions. Entomol. Exp. Appl. 110: 11-21. Fordyce, J. A., and A. M. Shapiro. 2003. Another perspective on the slow-growth/high-mortality hypothesis: chilling effects on swallowtail larvae. Ecology 84: 263-268. Gildow, F. E. 1980. Increased production of alatae by aphids reared on oats infected with barley yellow dwarf virus. Ann. Entomol. Soc. Am. 73: 343-347. Gozzo, F. 2004. Systemic acquired resistance in crop protection. Outlooks Pest Manag. 15: 20-23. Grilli, M. P., and J. Holt. 2000. Vector feeding period variability in epidemiological models of persistent plant viruses. Ecol. Modell. 126: 49-57. Grüner, R., G. Strompent, A. J. P. Pfitzner, and U. M. Pfitzner. 2003. Salicylic acid and the hypersensitive response initiate distinct signal transduction pathways in tobacco that converge on the as-1-like element of the PR-1a promoter. Eur. J. Biochem. 270: 4876-4886. Harborne, J. B. 1994. Introduction to ecological biochemistry. 4th de. Academic Press. New York. 318pp. Heil, M., and R. M. Bostck. 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plant defense. Ann. Bot. 89: 503-512. Hunter, M. D. 2000. Mixed signals and cross-talk: interactions between plants, insect herbivores and plant pathogens. Agricul. Forest Entomol. 2: 155-160. Jansson, R. K., G. C. Elliott, Z. Smilowitz, and R. H. Cole. 1987. Influence of cultivar maturity time and foliar nitrogen on population growth of Myzus persicae on potato. Entomol. Exp. Appl. 43: 297-300. Jiménez-Martínez, E. S., N. A. Bosque-Pérez, P. H. Berger, and R. S. Zemetra. 2004. Life history of bird cherry-oat aphid, Rhopalosiphum padi (Homoptera: Aphididae), on transgenic and untransformed wheat challenged with barley yellow dwarf virus. J. Econ. Entomol. 97: 203-212 Kluth, S., A. Kruess, and T. Tscharntke. 2002. Insects as vectors of plant pathogens: mutualistic and antagonistic interactions. Oecologia 133: 193-199. Koussevitzky, S., E. Ne’eman, and E. Harel. 2004. Import of polyphenol oxidase by chloroplasts is enhanced by methyl jasmonate. Planta 219: 421-429. Lang, C. A. 1958. Simple microdetermination of Kjedahl nitrogen in biological materials. Anal. Chem. 30: 1692-1694. Liu, S., X. He, G. Park, C. Josefsson, and K. L. Perry. 2002. A conserved capsid protein surface domain of cucumber mosaic virus is essential for efficient aphid vector transmission. J. Virol. 76: 9756-9762. Martinez de Ilaeduya, O., Q. Xie, and I. Kaloshian. 2003. Aphid-induced defense responses in Mi-1-mediated compatible and incompatible tomato interactions. Mol. Plant-Microb. Interact. 16: 699-708. Mayer, R. T., M. Inbar, C. L. Mckenzie, R. Shatters, V. Borowicz, U. Albrecht, C. A. Powell, and H. Doostdar. 2002. Multitrophic interactions of the silverleaf whitefly, host plants, competing herbivores, and phytopathogens. Arch. Insect Biochem. Physiol. 51: 151-169. McIntyre Jr., J. L., J. A. Dodds, and J. D. Hare. 1981. Effect of localized infection of Nicotiana tabacum by a tobacco mosaic virus on systemic resistance against diverse pathogens and an insect. Phytopathology 71: 297-301. Mckenzie, C. L., R. G. Shatters Jr., H. Doostdar, S. D. Lee, M. Inbar, and R. T. Mayer. 2002. Effect of geminivirus infection and Bemisia infection on accumulation of pathogenesis-related proteins in tomato. Arch. Insect Biochem. Physiol. 49: 203-214. Mohase, L., and A. J. van der Westhuizen. 2002. Salicylic acid is involved in resistance responses in the Russian wheat aphid-wheat interaction. J. Plant Physiol. 159: 585-590. Moran, P. J. 1998. Plant-mediated interactions between insects and a fungal plant pathogen and the role of plant chemical responses to infection. Oecologia 115: 523-530. Moran, P. J., and G. A. Thompson. 2001. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathway. Plant Physiol. 125: 1074-1085. Mowry, T. M. 1994. Russian wheat aphid (Homoptera: Aphididae) survival and fecundity on barley yellow dwarf virus-infected wheat resistant and susceptible to the aphid. Environ. Entomol. 23: 326-330. Nevo, E., and M. Coll. 2001. Effects of nitrogen fertilization on Aphis gossypii (Homoptera: Aphididae): variation in size, color, and reproduction. J. Econ. Entomol. 94: 27-32. Ng, J. C. K., S. Liu, and K. L. Perry. 2000. Cucumber mosaic virus mutants with altered physical properties and defective in aphid vector transmission. Virology 276: 395-403. Niimi, Y., D. S. Han, S. Mori, and H. Kobayashi. 2003. Detection of cucumber mosaic virus, lily symptomless virus and lily mottle virus in Lilium species by RT-PCR technique. Sci. Hortic. 97: 57-63. Nykänen, H., and J. Koricheva. 2004. Damaged-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis. Oikos 104: 247-268. Palukaitis, P., M. J. Roossinck, R. G. Dietzgen, and R. I. B. Francki. 1992. Cucumber mosaic virus. Adv. Virus Res. 41: 281-348. Parkinson, J. A., and S. E. Allen. 1975. A wet oxidation procedure suitable for the determination of the nitrogen and mineral nutrients in biological material. Commun. Soil Sci. Plant Anal. 6: 1-11. Paul, N. D., P. E. Hatcher, and J. E. Taylor. 2000. Coping with multiple enemies: an integration of molecular and ecological perspectives. Trends Plant Sci. 5: 220-225. Peng M, and J. Kuc. 1992. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82: 2494–2498. Pieterse, C. M. J., S. C. M. van Wees, J. A. van Pelt, M. Knoester, R. Laan, H. Gerrits, P. J. Weisbeek, and L. C. van Loon. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571-1580. Rahbé, Y., C. Deraison, M. Bonadé-Bottino, C. Girard, C. Nardon, and L. Jouanin. 2003. Effects of the cysteine protease inhibitor oryzacystatin (OC-I) on different aphids and reduced performance of Myzus persicae on OC-I expressing transgenic oilseed rape. Plant Sci. 164: 441-450. Rodriguez-Saona, C., J. A. Chalmers, S. Raj, and J. S. Thaler. 2005. Induced plant responses to multiple damagers: differential effects on an herbivore and its parasitoid. Oecologia 143: 566-577. Rostás, M., R. Bennett, and M. Hilker. 2002. Comparative physiological responses in Chinese cabbage induced by herbivory and fungal infection. J. Chem. Ecol. 28: 2449-2463. Rubinstein, G., and H. Czosnek. 1997. Long-term association of tomato yellow leaf curl virus with its whitefly vector Bemisia tabaci: effect on the insect transmission capacity, longevity, and fecundity. J. General Virol. 78: 2683-2698. Ryals, J. A., U. H. Neuenschwander, M. G. Willits, A. Molina, H. Steiner, and M. D. Hunt. 1996. Systemic acquired resistance. Plant Cell 8: 1809-1819. Ryan, C. A. 2000. The systemin signaling pathway: differential activation of plant defensive genes. Biochim. Biophys. Acta 1477: 112-121. Scheel, D., and C. Wasternack. 2002. Plant signal transduction. Oxford University Press. 324 pp. Scheu, S., A. Theenhaus, and T. H. Jones. 1999. Links between the detritivore and herbivore system: effects of earthworms and Collembola on plant growth and aphid development. Oecologia 119: 541-551. Schilmiller, A. L., and G. A. Howe. 2005. Systemic signaling in the wound response. Curr. Opin. Plant Biol. 8: 1-9. Schoonhoven, L. M., T. Jermy, and J. J. A. van Loon. 1998. Insect-plant biology. Chapman and Hall, New York. 409 pp. Simpson, S. J., J. D. Abisgold, and A. E. Douglas. 1995. Response of pea aphid (Acyrthosiphon pisum) to variation in dietary levels of sugar and amino acids: the significance of amino acid quality. J. Insect Physiol. 41: 71-75. Slansky Jr., F., and G. S. Wheeler. 1992. Caterpillars’ compensatory feeding response to diluted nutrients leads to toxic allelochemical dose. Entomol. Exp. Appl. 65: 171-186. Stotz, H. U., T. Koch, A. Biedermann, K. Weniger, W. Boland, and T. Mitchell-Olds. 2002. Evidence for regulation of resistance in Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta 214: 648-652. Stotz, H. U., B. R. Pittendrigh, J. Kroymann, K. Weniger, J. Fritsch, A. Bauke, and T. Mitchell-Olds. 2000. Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiol. 124: 1007-1017. Stout, M. J., A. L. Fidantsef, and R. M. Bostock. 1999. Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54: 115-130. Stout, M. J., J. S. Thaler, and B. P. H. J. Thomma. 2006. Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Ann. Rev. Entomol. 84: 663-689. Stout, M. J., K. V. Workman, R. M. Bostock, and S. S. Duffey. 1998. Specificity of induced resistance in tomato, Lycopersicon esculentum. Oecologia 113: 74-81. Sutherland, O. R. W. 1969. The role of host plant in the production of winged forms by two strains of the pea aphid, Acyrthosiphon pisum. J. Insect Physiol. 15: 2179-2201. Taylor, J. E., P. E. Hatcher, and N.D. Paul. 2004. Crosstalk between plant responses to pathogens and herbivores: a view from the outside in. J. Exp. Bot. 55: 159-168. Thaler, J. S., A. L. Fidantsef, and R. M. Bostock. 2002a. Antagonism between jasmoate- and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J. Chem. Ecol. 28: 1131-1159. Thaler, J. S., M. J. Stout, R. Karban, and S. S. Duffey. 1996. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 22: 1767-1781. Thaler, J. S., R. Karban, D. E. Ullman, K. Boege, and R. M. Bostock. 2002b. Cross-talk between jamonate and salicylate plant defense pathways: effects on several plant parasites. Oecologia 131: 227-235. Tsumuki, H., H. Nagatsuka, K. Kawada, and K. Kanehisa. 1990. Comparison of nutrient reservation in apterous and alate pea aphid, Acyrthosiphon pisum (Harris) 1. Development time and sugar content. Appl. Entomol. Zool. 25: 215-221. Turner, J. G., C. Ellis, and A. Devoto. 2002. The jasmonate signal pathway. Plant Cell 14: 153-164. Vancanneyt, G., C. Sanz, T. Farmali, M. Paneque, F. Ortego, P, Castañera, and J. Sánchez-Serrano. 2001. Hydroperoxide layase depletion in transgenic potato plants leads to an increase in aphid performance. Proc. Natl. Acad. Sci. U. S. A. 98: 8139- 8144. van Emden, H. F., V. F. Eastop, R. D. Hughes, and M. J. Way. 1969. The ecology of Myzus persicae. Ann. Rev. Entomol. 14: 197-270. van Loon, L. C., and van Strien. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55: 85-97. van Wees, S. C. M., E. A. M. de Swart, J. A. van Pelt, L. C. van Loon, and C. M. J. Pieterse. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 97: 8711-8716. Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19: 195-216. Wang, D., N. D. Weaver, M. Kesarwani, and X. Dong. 2005. Induced of protein secretory pathway is required for systemic acquired resistance. Science 308:1036-1040. Weber, H. 2002. Fatty acid-derived signals in plants. Trends Plant Sci. 7: 217-224. Williams, I. S., A. M. Dewar, and A. F. G. Dixon. 1998. The influence of size and duration of aphid infestation on host plant quality, and its effect on sugar beet yellowing virus epidemiology. Entomol. Exp. Appl. 89: 25-33. Wittstock, U., and J. Gershenzon. 2002. Constitutive plant toxins and their role in defense against herbivore and pathogens. Curr. Opin. Plant Biol. 5: 300-307. Wyckoff, P. H., and J. S. Clark. 2002. The relationship between growth and mortality for seven co-occurring tree species in the southern Appalahchian Mountains. J. Ecol. 90: 604-615. Zhu-Salzman, K., J. L. Bi., and T. X. Liu. 2005. Molecular strategies of plant defense and insect counter-defense. Insect Sci. 12: 3-15.
Many interesting interactions occurred among plants, phytopathogenic virus, and their vectors. In this research, tomatoes were infected with cucumber mosaic virus (CMV); and we assessed the performance of the vector Myzus persicae on control healthy and infected tomatoes. The results indicated that the relative growth rate and longevity of M. persicae were not significantly different between healthy and virus-infected tomatoes. However, the development time was longer and fecundity was reduced when M. persicae fed on CMV-infected tomato. Jackknife method was used to estimate the population parameter of M. persicae, the intrinsic rate of increase, finite increasing rate and net reproduction rate of M. persicae fed on CMV-infected tomato were smaller then those fed on healthy tomato. This phenomenon indicated that the population of M. persicae fed on CMV-infected tomato is smaller than aphid fed on healthy tomato. The chemistry analysis results showed that there was no significant difference on nitrogen and protein contents. However, the activity of the defense-related enzyme, peroxidase (POD), increased in CMV-infected tomato at 7th day after CMV infection. The activity of the other enzyme, polyphenol oxidase (PPO), reduced in tomato at 14th day after CMV infection. Our results show there is a competition relationship between vector insect and plant virus.

作物、植物病毒、以及病媒昆蟲間有著微妙的關係。以番茄植株、胡瓜嵌紋病毒(Cucumber mosaic virus, CMV)、及桃蚜(Myzus persicae)作為研究的材料。比較桃蚜取食健康與感染CMV之番茄植株後,發現其相對生長速率與壽命沒有明顯差異;然取食感染CMV的番茄植株之桃蚜其發育時間較長,且繁殖力下降。以Jackknife方法估算桃蚜的族群介量,亦發現取食感染CMV的番茄植株之桃蚜族群其內在增殖率、終極增殖率與淨繁殖率皆小於取食健康番茄植株者,顯示取食感染CMV的番茄植株之桃蚜族群比取食健康者小。在分析兩種處理的番茄植株其所含之化學物質後,發現含氮量、及蛋白質含量皆無顯著差異;但是番茄植株的防禦物質中,由病毒感染所引起的酵素—過氧化酵素(peroxidase, POD)活性在感染CMV後的第7天之番茄植株中較高;另外一般被認為會被咀嚼式口器昆蟲所引發的多酚氧化酵素(polyphenol oxidase, PPO)卻在第14天有降低的現象。此研究顯示桃蚜取食感染CMV之番茄植株其發育較不好,可能是病毒感染增加防禦酵素POD之活性所致。本試驗的結果顯示CMV與桃蚜的交互作用似乎是屬於競爭(competition)的關係。
其他識別: U0005-1708200611130600
Appears in Collections:昆蟲學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.