Please use this identifier to cite or link to this item:
標題: 昆蟲取食誘導之植物訊息傳遞與植物防禦物質之基因表現
The gene expression of insect-induced plant defense signal and plant defense chemicals
作者: 黃翔瑋
Huang, Hsiang-Wei
關鍵字: 茉莉花酸;;水楊酸;硫氰配醣體;昆蟲與植物交互作用
出版社: 昆蟲學系所
引用: Bennett, R., A. Donald, G. Dawson, A. Hick, and R. Wallsgrove. 1993. Aldoxime-forming microsomal enzyme systems involved in the biosynthesis of glucosinolate in oilseed rape (Brassica napus) leaves. Plant Physiol. 102: 1307-1312. Bennett, R., G. Kiddle, and R. Wallsgrove. 1997. Involvement of cytochrome P450 in glucosinolate biosynthesis in white mustard. Plant Physiol. 114: 1283-1291. Dawson, G. W., A. J. Hick, R. N. Bennett, A. Donald, J. A. Pickett, and R. M. Wallsgrove. 1993. Synthesis of glucosinolate precursor and investigations into the biosynthesis of phenylalkyl- and methylthioalkylglucosinolates. J. Biol. Chem. 268: 27154-27159. Du, L., J. Lykkesfeldt, C. F. Olsen, and B. A. Halkier. 1995. Involvement of cytochrome P450 in oxime production in glucosinolate biosynthesis as demonstrated by an in vitro microsomal enzyme system isolated from jasmonic acid induced seedlings of Sinapis alba L. Proc. Natl. Acad. Sci. U. S. A. 92: 12505-12509. Fahey, J. W., A. T. Zalcmann, and P. Talalay. 2001. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Phytochemistry 56: 5-51. Field, B., G. Cardon, M. Traka, J. Botterman, G. Vancanneyt, and R. Mithen. 2002. Glucosinolate and amino acid biosynthesis in Arabidopsis. Plant Physiol. 135: 828-839. Gan, S., and R. M. Amasino. 1997. Making sense of senescence. Plant Physiol. 113: 313-319. Hansen, C. H., U. Wittstock, C. E. Olsen, A. J. Hick, J. A. Pickett, and B. A. Halkier. 2001. Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J. Biol. Chem. 276: 11078-11085. Haughn, G. W., L. Davin, M. Giblin, and E. W. Underhill. 1991. Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana. The glucosinolates. Plant Physiol. 126: 707-716. He, Y., H. Fukushige, D. F. Hildebrand, and S. Gan. 2002. Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol. 128: 876-884. He, Y., W. Tang, J. D. Swain, A. L. Green, T. P. Jack, and S. Gan. 2001. Networking senescence-regulating pathway by using Arabidopsis enhancer trap lines. Plant Physiol. 126: 707-716. Hopkins, W. G. 1999. Introduction to Plant Physiology , 2nd ed: 467-469. John Wiley and Sons, Inc., U. S. A. Kliebenstein, D. J., J. Kroymann, P. Brown, A. Figuth, D. Pederson, J. Gershenzon, and T. Mitchell-Olds. 2001. Genetic control of natural variation in Arabidopsis glucosinolate accumulation. Plant Physiol. 126: 811-825. Krupinska, K., K. Haussuhl, A. Schafer, T. A. W. van der Kooij, G. Leckband, H. Lorz, and J. Falk. 2002. A novel nucleus-targeted protein is expressed in barley leaves during senescence and pathogen infection. Plant Physiol. 130: 1172-1180. Lamddon, P. W., M. Hassall, R. R. Boar, and R. Mithen. 2003. Asynchrony in the nitrogen and glucosinolate leaf-age profiles of Brassica: is this a defensive strategy against generalist herbivores? Agric. Ecosyst. Environ. 97: 205-214. Li, G., and C. F. Quiros. 2002. Genetic analysis, expression and molecular characterization of BoGSL-ELONG, a major gene involved in the aliphatic glucosinolate pathway of Brassica species. Genetics 162: 1937-1943. Matsushima, R., Y. Hayashi, M. Kondo, T. Shimada, M. Nishimura, and I. Hara- Nishimura. 2002. An endoplasmic reticulum-derived structure that is induced under stress conditions in Arabidopsis. Plant Physiol. 130: 1807-1814. Mikkelsen, M. D., B. L. Petersen, E. Glawischnig, A. B. Jensen, E. Andreasson, and B. A. Halkier. 2003. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol. 131: 298-308. Moran, P. J., and G. A. Thompson. 2001. Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol. 125: 1074-1085. Piotrowski, M., A. Schemenewitz, A. Lopukhina, A. Muller, T. Janowitz, E. W. Weiler, and C. Oecking. 2004. Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J. Biol. Chem. 279: 50717-50725. Ratzka, A., H. Vogel, D. J. Kliebenstein, T. Mitchell-Olds, and J. Kroymann. 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. U. S. A. 99: 11223-11228. Rossato, L., C. Le Dantec, P. Laine, and A. Ourry. 2002a. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: identification, characterization and immunolocalization of a putative taproot storage glycoprotein. J. Exp. Bot. 53: 265-275. Rossato, L., J. H. MacDuff, P. Laine, E. Le Deunff, and A. Ourry. 2002b. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: effects of methyl jasmonate on nitrate uptake, senescence, growth, and VSP accumulation. J. Exp. Bot. 53: 1131-1141. Stotz, H. U., T. Koch, A. Biedermann, K. Weniger, W. Boland, and T. Mitchell-Olds. 2002. Evidence for regulation of resistance in Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta 214: 648-652. Thaler, J. S., and R. M. Bostock. 2004. Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85: 48-58. Turner, J. G., C. Ellis, and A. Devoto. 2002. The jasmonate signal pathway. The Plant Cell: S153-S164. Walling, L. L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19: 195-216. Wittstock, U., N. Agerbirk, E. J. Stauber, M. Hippler, T. Mitchell-Olds, J. Gershenzon, and H. Vogel. 2004. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl. Acad. Sci. U. S. A. 101: 4859-4864.
Plant responses to herbivores are complex. Signaling cross-talk between wound- and pathogen-response pathways influences resistance of plants to insects and diseases. Jasmonic acid (JA) was identified as a component of fragrant oils and was first demonstrated to promote senescence of leaves in 1980's, and were subsequently shown to be a class of plant growth regulator. In late 1990's, new evidences indicate that JA is a key factor between chemical web on plant-insect interaction, and contend for the plant interior resources with salicylic acid (SA) signaling pathway which is induced by plant pathogens. The results of competition between JA and SA signaling pathways may influence the direction of plant defense compound biosynthesis. On the other hand, plants protect themselves against herbivores with diverse array of repellent or toxic secondary metabolites. Taking the cabbage plants as an example, toxic secondary metabolites glucosinolate-myrosinase system is dangerous to the insects which are polyphagous. Although we have already known about these, but still can not find out how to connect these chemical web together? What is the real relationship between insects feeding induce plant defense signal transduction and plant defense chemicals? In this work, we used Pieris rapae for insect model, and Arabidopsis thaliana for plant model, to design a series of biomolecular test. By the RT-PCR assay, we knew that after insect feeding, A. thaliana not only turns on the JA synthesis pathway in a short period of time, but also the glucosinolate synthesis pathway in the short term insect invasion test. If the action of insect feeding was not continuous, all the defense chemical biosynthesis would be stopped, to saving the interior resources. Fascinatingly, when the expression of genes which involve JA and glucosinolate biosynthesis decreased, the report gene of SA biosynthesis would be turned on at the same time. Following, in the long term insect invasion test, when we stopped the insect invasion, the gene involve in JA and glucosinolate biosynthesis would be turned off in a short time. Besides, the report gene of SA biosynthesis would be turned on at the same time, this result is similar to the short term insect invasion test. It suggests that there are some kinds of in vivo control for plant defense chemical biosynthesis, and SA may be the “brake” to stop the biosynthesis of these chemicals.

植物對於草食者的反應往往是多元的。訊息路徑的交互作用對於植物的物理傷害及感病時的防禦反應會有很大的影響。茉莉花酸 (jasmonic acid) 在1980年代被人由植物性芳香油中提煉,被證實與植物老化作用有關,並且被認定為植物生長調節劑的一員。直到1990年代,新的證據才將茉莉花酸定調為昆蟲與植物交互作用網上的關鍵訊息分子,並且被發現與植物抗病時的訊息分子水楊酸(salicylic acid) 有著資源競爭的作用,兩者之間的競爭作用對於植物後續防禦物質的生合成方向有極高的影響。另一方面,植物藉由各式的忌避劑及有毒次級代謝物來保護自身的安全,以甘藍為例,glucosinolate-myrosinase有毒次級代謝物系統對於大多數的廣食性昆蟲具有毒性,然而此一防禦物質的合成會受到上游訊息傳遞物質的表現趨勢而改變。雖然我們對於以上了解甚多,但是我們仍然無法將訊息傳遞以及防禦物質兩者之間的真實關係找出。所以本研究希望能藉由現今生化技術,以阿拉伯芥作為模式植物,以紋白蝶之幼蟲進行取食,設計一連串之實驗。藉由反轉錄聚合酵素連鎖反應得知,短期實驗中幼蟲取食阿拉伯芥之後,阿拉伯芥確實會在短時間之內啟動茉莉花酸合成酵素基因,並且啟動硫氰配醣體 (glucosinolate) 的初期合成酵素基因,若幼蟲取食時間非持續進行,此一合成反應會被停止,減少植物體內資源的消耗。同時我們發現當茉莉花酸及硫氰配醣體合成基因表現終止時,水楊酸合成的報導基因表現有增加。長期餵食實驗之中,當昆蟲取食中止,茉莉花酸及硫氰配醣體三碳骨架的合成基因均會在短時間內停止表現,而該時間與水楊酸合成的報導基因表現的時間大致吻合,結果與短期實驗中昆蟲的反應相似,我們推測植物具有防禦物質合成的內在調控,而水楊酸在此一中斷防禦物質合成的反應中似乎扮演著「煞車」的角色。
其他識別: U0005-1808200614260100
Appears in Collections:昆蟲學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.