Please use this identifier to cite or link to this item:
標題: Setting the Economic Injury Level and Economic Threshold of Spodoptera litura (F.) (Lepidoptera: Noctuidae) on Peanut (Arachis hypogaea) Based on Life Table and Consumption Rate
作者: 李中潔
Lee, Chung-Chieh
關鍵字: Spodoptera litura;斜紋夜蛾;Arachis hypogaea;economic injury level;economic threshold;life table;consumption rate;artificial defoliation;落花生;取食率;經濟為害水準;經濟限界;生命表;人工去葉
出版社: 昆蟲學系所
引用: Atlihan, R., and H. Chi. 2008. Temperature-dependent development and demography of Scymnus subvillosus (Coleoptera: Coccinellidae) reared on Hyalopterus pruni (Homoptera: Aphididae). Journal of Economic Entomology 101: 325-333. Bailey, R., N. T. Chang, P. Y. Lai, and T. C. Hsu. 2010. Life table of cycad scale, Aulacaspis yasumatsui (Hemiptera: Diaspididae), reared on Cycas in Taiwan. Journal of Asia-Pacific Entomology 13: 183-187. Barrigossi, J. A. F., G. L. Hein, and L. G. Higley. 2001. Life tables and larval dispersal of mexican bean beetle (Coleoptera: Coccinellidae) on dry bean in the High Plains. Environmental Entomology 30: 235-243. Barrigossi, J. A. F., G. L. Hein, and L. G. Higley. 2003. Economic injury levels and sequential sampling plans for mexican bean beetle (Coleoptera: Coccinellidae) on dry beans. Journal of Economic Entomology 96: 1160-1167. Barteková, A., and J. Praslička. 2006. The effect of ambient temperature on the development of cotton bollworm (Helicoverpa armigera Hübner, 1808). Plant Protection Science 42 135-138. Belsky, A. J. 1986. Does herbivory benefit plants? A review of the evidence. American Naturalist 127: 870-892. Birch, L. C. 1948. The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology 17: 15-26. Boote, K. J. 1982. Growth stages of peanut (Arachis hypogaea L.). Peanut science 9: 35-40. Chen, C., and M. N. Parajulee. 2010. Development and population growth of Lygus hesperus on selected weed hosts, artificial diet and cotton in the laboratory. Journal of Economic Entomology 103: 2009-2018. Chen, C. N., and W. Y. Su. 1982. Influence of temperature on development and leaf consumption of three caterpillars on cauliflower. Plant Protection Bulletin 24: 131-141. Chen, C. N., and W. F. Hsiao. 1984. Influence of food and temperature on life history traits and population parameters of Spodoptera litura Fabricius. Plant Protection Bulletin 26: 219-229. Cheng, C. H. 1994. The ecology and control of insect pests on soybean. Proceedings of the symposium on up land crop protection: 163-187. (in Chinese) Chi, H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology 17: 26-34. Chi, H. 1990. Timing of control based on the stage structure of pest populations: a simulation approach. Journal of Economic Entomology 83: 1143-1150. Chi, H. 2009a. Timing-MSChart: a computer program for timing of control. National Chung Hsin University, Taichung, Taiwan. Chi, H. 2009b. CONSUME-MSChart: a computer program for the age-stage, two-sex consumption rate analysis. National Chung Hsin University, Taichung, Taiwan. Chi, H. 2009c. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. Natioanl Chung Hsing University, Taichung Taiwan. Chi, H., and H. Liu. 1985. Two new methods for the study of insect population ecology. Bull. Inst. Zool., Academia Sinica 24: 225-240. Chi, H., and T. C. Yang. 2003. Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental Entomology 32: 327-333. COA. 2009. Agricultural statistics yearsbook. pp.36. Damos, P., and M. Savopoulou-Soultani. 2010. Population dynamics of Anarsia lineatella in relation to crop damage and the development of economic injury levels. Journal of Applied Entomology 134: 105-115. de Freitas Bueno, R. C. O., A. de Freitas Bueno, F. Moscardi, J. R. Postali Parra, and C. B. Hoffmann-Campo. 2011. Lepidopteran larva consumption of soybean foliage: basis for developing multiple-species economic thresholds for pest management decisions. Pest Management Science 67: 170-174. Delaney, K. J., F. J. Haile, R. K. D. Peterson, and L. G. Higley. 2008. Impairment of leaf photosynthesis after insect herbivory or mechanical injury on common milkweed, Asclepias syriaca. Environmental Entomology 37: 1332-1343. EPPO. 1997. Data sheets on quarantine pests: Spodoptera littoralis and Spodoptera litura. Fang, Y., L. P. Pedigo, J. P. Colletti, and E. R. Hart. 2002. Economic injury level for second-generation cottonwood leaf beetle (Coleoptera: Chrysomelidae) in two-year-old Populus. Journal of Economic Entomology 95: 313-316. Fei, W. C., H. J. Yu, and C. H. Liao. 2004. Pesticide tests. TACTRI/COA. pp. 9-10. Fei, W. C., H. J. Yu, and C. H. Liao. 2006. Pesticide tests. TACTRI/COA. pp. 8-10. Fei, W. C., Y. C. Wang, F. H. Chen, H. M. Lin, and Y. H. Li. 2010. Plant Protection Manual. TACTRI/COA. pp.109-111. Garad, G., P. Shivpuje, and G. Bilapate. 1984. Life fecundity tables of Spodoptera litura (Fabricius) on different hosts. Proceedings: Animal Sciences 93: 29-33. Garad, G., P. Shivpuje, and G. Bilapate. 1985. Larval and post-larval development of Spodoptera litura(Fabricius) on some host plants. Proceedings: Animal Sciences 94: 49-56. Greenberg, S. M., T. W. Sappington, B. C. Legaspi, T. X. Liu, and M. Sétamou. 2001. Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Annals of the Entomological Society of America 94: 566-575. Greenberg, S. M., T. W. Sappington, J. J. Adamczyk, T. X. Liu, and M. Setamou. 2008. Effects of photoperiod on boll weevil (Coleoptera: Curculionidae) development, survival, and reproduction. Environmental Entomology 37: 1396-1402. Greenberg, S. M., M. SÉTamou, T. W. Sappington, T.-X. Liu, R. J. Coleman, and J. S. Armstrong. 2005. Temperature-dependent development and reproduction of the boll weevil (Coleoptera: Curculionidae). Insect Science 12: 449-459. Guan, B. B., Q. J. Chen, J. H. Chen, Y. Z. Zhang, Z. H. Zhang, and J. Z. Zhang. 1999. Studies on biology and ecology of Prodenia litura (Fabricius). Entomological Journal of East China 8: 57-61. (in Chinese) Harari, A. R., D. Ben-Yakir, M. Chen, and D. Rosen. 2001. Economic injury levels for the scarabaeid Maladera matrida infesting peanut fields in Israel. Entomologia Experimentalis et Applicata 98: 79-84. Hermoso de Mendoza, A., B. Belliure, E. A. Carbonell, and V. Real. 2001. Economic thresholds for Aphis gossypii (Hemiptera: Aphididae) on citrus clementina. Journal of Economic Entomology 94: 439-444. Hermoso de mendoza, A. H., R. Arouni, B. Belliure, E. A. Carbonell, and J. Pérez-Panadés. 2006. Intervention thresholds for Aphis spiraecola (Hemiptera: Aphididae) on citrus clementina. Journal of Economic Entomology 99: 1273-1279. Hines, R. L., and W. D. Hutchison. 2001. Evaluation of action thresholds and spinosad for Lepidopteran pest management in Minnesota cabbage. Journal of Economic Entomology 94: 190-196. Hunt, T. E., L. G. Higley, and F. J. Haile. 2003. Imported longhorned weevil (Coleoptera: Curculionidae) injury to soybean: physiological response and injury guild-level economic injury levels. Journal of Economic Entomology 96: 1168-1173. Hutchins, S. H., L. G. Higley, and L. P. Pedigo. 1988. Injury equivalency as a basis for developing multiple-species economic injury levels. Journal of Economic Entomology 81: 1-8. Kessler, A. and I. T. Baldwin. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annual Review of Plant Biology 53: 299-328. Kovanci, O. B., B. Kovanci, and N. S. Gencer. 2005. Sampling and development of economic injury levels for Anthonomus rubi Herbst adults. Crop Protection 24: 1035-1041. Leslie, P. H. 1945. On the use of matrices in certain population mathematics. Biometrika 33: 183-212. Leslie, P. H. 1948. Some further notes on the use of matrices in population mathematics. Biometrika 35: 213-245. Lewis, E. G. 1942. On the generation and growth of a population. Sankhyā: The Indian Journal of Statistics (1933-1960) 6: 93-96. Liu, Z., D. Li, P. Gong, and K. Wu. 2004. Life table studies of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), on different host plants. Environmental Entomology 33: 1570-1576. Macedo, T. B., R. K. D. Peterson, C. L. Dausz, and D. K. Weaver. 2007. Photosynthetic responses of wheat, Triticum aestivum L., to defoliation patterns on individual leaves. Environmental Entomology 36: 602-608. Mironidis, G. K., and M. Savopoulou-Soultani. 2008. Development, survivorship, and reproduction of Helicoverpa armigera (Lepidoptera: Noctuidae) under constant and alternating temperatures. Environmental Entomology 37: 16-28. Miyashita, K. 1971. Effects of constant and alternating temperatures on the development of Spodoptera litura F.: Lepidoptera: Noctuidae. Applied Entomology and Zoology 6: 105. Mundal, K. D., and G. J. Brewer. 2008. Using banded sunflower moth (Lepidoptera: Tortricidae) egg density to estimate damage and economic distance in oilseed sunflower. Journal of Economic Entomology 101: 969-975. Nakasuji, F., and T. Matsuzaki. 1977. The control threshold density of the tobacco cut worm Spodoptera litura (Lepidoptera: Noctuidae) on eggplants and sweet peppers in vinyl-houses. Applied Entomology and Zoology 12: 184-189. Ou-Yang, S. C. 1994. Life table of the tobacco cutworm (Spodoptera litura (F.)). Chinese Journal of Entomology 14: 183-205. (in Chinese) Ou-Yang, S. C., and Y. I. Chu. 1990. Biology of the tobacco cutworm (Spodoptera litura (F.)) Ⅱ. The longevity and mating ability of adult. Chinese Journal of Entomology 10: 27-36. (in Chinese) Papaj, D. R. 2000. Ovarian dynamics and host use. Annual Review of Entomology 45: 423-448. Pedigo, L. P., and M. E. Rice. 2006. Economic decision levels for pest populations. pp. 253-284. In: L. P. Pedigo, and M. E. Rice (eds). Entomology an pest management. Columbus, Ohio: Pearson/Prentice Hall. Pedigo, L. P., S. H. Hutchins, and L. G. Higley. 1986. Economic injury levels in theory and practice. Annual Review of Entomology 31: 341-368. Peterson, R. K. D., S. D. Danielson, and L. G. Higley. 1992. Photosynthetic responses of alfalfa to actual and simulated alfalfa weevil (Coleoptera: Curculionidae) injury. Environmental Entomology 21: 501-507. Qin, H. G., Z. X. Ye, J. Ding, S. J. Huang, and R. H. Luo. 2002. Effect of temperature on the development, survival and fecundity of Spodoptera litura Fabricius. Chinese Journal of Eco-Agriculture 10: 76-79. (in Chinese) Rao, G. V. R., J. A. Wightman, and D. V. R. Rao. 1989. Threshold temperatures and thermal requirements for the development of Spodoptera litura (Lepidoptera: Noctuidae). Environmental Entomology 18: 548-551. Reichenbacker, R. R., R. C. Schultz, and E. R. Hart. 1996. Artificial defoliation effect on Populus growth, biomass production, and total nonstructural carbohydrate concentration. Environmental Entomology 25: 632-642. Rogers, D. J., and H. B. Brier. 2010a. Pest-damage relationships for Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on vegetative soybean. Crop Protection 29: 39-46. Rogers, D. J., and H. B. Brier. 2010b. Pest-damage relationships for Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) on soybean (Glycine max) and dry bean (Phaseolus vulgaris) during pod-fill. Crop Protection 29: 47-57. Sokal, R. R. and F. J. Rohlf. 1995. Biometry. W. H. Freeman, San Francisco, California, USA. Stejskal, V. 2002. Inversion relationship between action threshold and economic/aesthetic injury level for the control of urban and quarantine pests. Anzeiger für Schädlingskunde 75: 158-160. Stern, V. M., R. F. Smith, R. v. d. Bosch, and K. S. Hagen. 1959. The integrated control concept. Hilgardia 29: 81-101. Talekar, N. S., and H. R. Lee. 1988. Response of soybean to foliage loss in Taiwan. Journal of Economic Entomology 81: 1363-1368. Tang, D. S., and H. Chi. 1991. Life table and consumption of the cabbage looper, Trichoplusia ni Hubner. Chinese Journal of Entomology 11: 282-290. TARI/COA. 2010. The reports of monitoring population density of three kinds noctuidae moths in middle-south areas. Taylor, J. E., and D. G. Riley. 2008. Artificial infestations of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), used to estimate an economic injury level in tomato. Crop Protection 27: 268-274. Trumble, J. T., D. M. Kolodny-Hirsch, and I. P. Ting. 1993. Plant compensation for arthropod herbivory. Annual Review of Entomology 38: 93-119. Tuan, S. J., S. S. Kao, Y. C. Chao, and R. F. Hou. 1997. Investigation of pathogenicity of AcMNPV to nine Lepidopteran pests in Taiwan. Chinese Journal of Entomology 17: 209-225. (in Chinese) Wang, X.-G., M. W. Johnson, K. M. Daane, and H. Nadel. 2009. High summer temperatures affect the survival and reproduction of olive fruit fly (Diptera: Tephritidae). Environmental Entomology 38: 1496-1504. Wegbe, K., C. Cilas, B. Decazy, C. Alauzet, and B. Dufour. 2003. Estimation of production losses caused by the coffee berry borer (Coleoptera: Scolytidae) and calculation of an economic damage threshold in togolese coffee plots. Journal of Economic Entomology 96: 1473-1478. Welter, S. C. 1991. Responses of tomato to simulated and real herbivory by tobacco hornworm (Lepidoptera: Sphingidae). Environmental Entomology 20: 1537-1541. Yang, T. C., and H. Chi. 2006. Life tables and development of Bemisia argentifolii (Homoptera: Aleyrodidae) at different temperatures. Journal of Economic Entomology 99: 691-698. Yang, Y. C., D. J. Lian, C. L. Cai, A. H. Yang, T. R. You, J. Y. Yan, and Y. B. Lee. 1999. An introduction for peanut. Technology Bulletin Tainan DARES 98: 1-6. Yao, W. H. 2005. Biology characteristic of Prodenia litura. Entomological Journal of East China 14: 122-127. (in Chinese) Zhao, W., and Z. H. Wang. 2008. Compensatory growth of plants. Bulletin of Biology 43: 12-13. (in Chinese)
The tobacco cutworm, Spodoptera litura (F.), is one of the major pests of peanut plant (Arachis hypogaea) in Taiwan. With the increasing concern of food safety and environmental protection, scientists pay attention to the integrated pest management (IPM) as well as the related economic injury level (EIL) and economic threshold (ET) in peanut production. To calculate EIL, a quantitative assessment of the injury of S. litura on peanuts is necessary. In this study, artificial defoliation was used to assess the relationship between injury and yield at different plant growth stages. Moreover, the age-stage, two-sex life table and consumption rate of S. litura were collected under different conditions (25oC constant condition, outdoors in spring 23.6oC, and in fall 28.3oC). Results showed that there were significant differences in developmental times, survival rate, fecundity, and hatch rate under different conditions. At 25oC, the intrinsic rate of increase (0.1838 d-1), finite rate of increase (1.2017 d-1), and net reproductive rate (963.2 offspring) were the highest among all treatments. The mean generation time was the shortest in fall (34.5 d). Incorporating the results of artificial defoliation and consumption rate, the yield loss under different conditions ranged from 0.21 to 2.18 g/6th instar/plant. For the pesticide 14.5% indoxacarb (with 64.9% control efficiency), the highest EILs were in fall and they were 0.78, 2.00, 1.80, and 4.55 6th instar/plant at vegetative stage, blooming/pegging stage, pod-set stage, and pod-fill stage, respectively. To derive ET from EIL, the data of stage survival rate and average hatch rate were integrated. The highest values of ETs in fall were 3.55, 9.13, 8.20, and 20.76 eggs/plant at vegetative stage, bloom/pegging stage, pod-set stage, and pod-fill stage, respectively. The higher EILs and ETs in fall might be due to lower consumption rate, survival rate and hatch rate of S. litura, while the higher EILs and ETs at pod-fill stage might be due to the higher tolerance to pest injury. To transform the number of male adults collected by pheromone traps to ETs as eggs per plant, computer simulation was used to project population growth and to estimate the relationship between the number of moths caught by pheromone traps and egg production. Because there are more factors included in the population growth of S. litura and the damage it caused, more researches in its ecology and fields experiment are needed to build an applicable pest management system.

在台灣,斜紋夜蛾(Spodoptera litura (F.))是花生植株的重要害蟲之一,為減少農藥使用、保護環境、提高農產品安全品質,綜合害蟲管理(IPM)為目前安全農業、合理用藥模式發展之主軸,而建立經濟為害水準(economic injury level, EIL)與經濟限界(economic threshold, ET)即為達到此目的之重要條件。在EIL方面,為決定斜紋夜蛾危害與花生產量之間的關係,本研究利用人工去葉模擬害蟲於不同環境下(25oC、春季均溫23.6oC、秋季均溫28.3oC)對花生各生長期之為害與對花生產量影響,實驗結果顯示每隻六齡幼蟲可造成每叢落花生0.21-2.18克的產量損失。此外,本論文研究斜紋夜蛾在春、秋兩季以及室內25oC恆溫環境下之兩性生命表與取食量,結果顯示不同環境下各發育時間、存活率、繁殖率與卵孵化率皆有差異:在室內25oC恆溫環境下,其內在增殖率(0.1838 d-1)、終極增殖率(1.2017d-1)與淨增殖率(963.2 offspring)最高,平均世代時間則以秋季最短為34.5天。結合生命表、取食量與人工去葉之結果,在選擇以14.5%因得克之藥劑防治時(防治率為64.9%),花生不同生長期之EIL以秋季環境下最高:營養生長期、開花期、結莢期與充實期分別為0.78、2.00、1.80及4.55之六齡幼蟲/株。最後,本研究由EIL與生命表中齡期存活率與平均孵化率,估算 ET。結果顯示,秋季環境下之ET值最高:營養生長期、開花期、結莢期與充實期分別為3.55、9.13、8.20及20.76粒卵/株。綜合而言,在秋季環境下,由於斜紋夜蛾取食量小、存活率與卵孵化率都較低,因此其能容忍之害蟲數較高。花生充實期之EIL與ET較高則顯示此時期對於害蟲危害有較高耐受性。最後,為配合目前田間監測之技術,本文利用電腦程式模擬斜紋夜蛾族群生長,結合監測誘集之成蟲數與可能產下之卵粒數,推測監測之成蟲數是否達到ET值。由於EIL與ET隨時變動,所需考量之因子非常多,為使此系統更趨完善,尚有諸多生態與防治相關研究需持續進行。
其他識別: U0005-0308201122023000
Appears in Collections:昆蟲學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.