Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30669
標題: Induced transcription of cecropin B1 and A2 gene in Armigeres subalbatus
白腹叢蚊抗菌胜肽cecropin B1與A2基因誘導轉錄作用探討
作者: 張文綺
Chang, Wen-Chi
關鍵字: Armigeres subalbatus;白腹叢蚊;cecropin;Induced;transcription;天蠶蛾素;誘導;轉錄作用
出版社: 昆蟲學系所
引用: 參考文獻 Aliota, M.T., Fuchs, J.F., Mayhew, G.F., Chen, C.C. and Christensen, B.M. (2007) Mosquito transcriptome changes and filarial worm resistance in Armigeres subalbatus. BMC Genomics 8: 463. Aliota, M.T., Fuchs, J.F., Rocheleau, T.A., Clark, A.K., Hillyer, J.F., Chen, C.C. and Christensen, B.M. (2010) Mosquito transcriptome profiles and filarial worm susceptibility in Armigeres subalbatus. PLoS Negl Trop Dis 4: e666. Andra, J., Berninghausen, O. and Leippe, M. (2001) Cecropins, antibacterial peptides from insects and mammals, are potently fungicidal against Candida albicans. Med Microbiol Immunol 189: 169-173. Antonova, Y., Alvarez, K.S., Kim, Y.J., Kokoza, V. and Raikhel, A.S. (2009) The role of NF-kappaB factor REL2 in the Aedes aegypti immune response. Insect Biochem Mol Biol 39: 303-314. Asling, B., Dushay, M.S. and Hultmark, D. (1995) Identification of early genes in the Drosophila immune response by PCR-based differential display: the Attacin A gene and the evolution of attacin-like proteins. Insect Biochem Mol Biol 25: 511-518. Barigozzi, C. and Sari Gorla, M. (1968) Chromosomal and extrachromosomal transmission of cellular melanization in the Freckled phenotype in Drosophila melanogaster. Genet Res 11: 141-150. Barr, A.R. and Chellappah, W.T. (1964) The colonization and laboratory maintenance of Armigeres subalbatus (Coquillett). Bull World Health Organ 31: 439. Beard, R.L. (1948) Experimental observations on hemolymph coagulation in two species of insects. Anat Rec 101: 736. Beard, R.L. (1950) Experimental observations of coagulation of insect hemolymph. Physiol Zool 23: 47-57. Bechinger, B. (1997) Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr Biol 156: 197-211. Becker, T., Loch, G., Beyer, M., Zinke, I., Aschenbrenner, A.C., Carrera, P., Inhester, T., Schultze, J.L. and Hoch, M. (2010) FOXO-dependent regulation of innate immune homeostasis. Nature 463: 369-373. Beerntsen, B.T., Luckhart, S. and Christensen, B.M. (1989) Brugia malayi and Brugia pahangi: inherent difference in immune activation in the mosquitoes Armigeres subalbatus and Aedes aegypti. J Parasitol 75: 76-81. Bell, A. (2011) Antimalarial peptides: the long and the short of it. Curr Pharm Des 17: 2719-2731. Bidla, G., Hauling, T., Dushay, M.S. and Theopold, U. (2009) Activation of insect phenoloxidase after injury: endogenous versus foreign elicitors. J Innate Immun 1: 301-308. Boman, H.G., Faye, I., Gan, R., Gudmundsson, G.H., Lidholm, D.A., Lee, J.Y. and Xanthopoulos, K.G. (1987) Insect immunity─a gene system for antibacterial proteins. Mem Inst Oswaldo Cruz 82 Suppl 3: 115-124. Boman, H.G., Faye, I., Gudmundsson, G.H., Lee, J.Y. and Lidholm, D.A. (1991) Cell-free immunity in Cecropia. A model system for antibacterial proteins. Eur J Biochem 201: 23-31. Boman, H.G., Faye, I., von Hofsten, P., Kockum, K., Lee, J.Y., Xanthopoulos, K.G., Bennich, H., Engstrom, A., Merrifield, R.B. and Andreu, D. (1985) On the primary structures of lysozyme, cecropins and attacins from Hyalophora cecropia. Dev Comp Immunol 9: 551-558. Boman, H.G. and Hultmark, D. (1987) Cell-free immunity in insects. Annu Rev Microbiol 41: 103-126. Boulanger, N., Brun, R., Ehret-Sabatier, L., Kunz, C. and Bulet, P. (2002) Immunopeptides in the defense reactions of Glossina morsitans to bacterial and Trypanosoma brucei brucei infections. Insect Biochem Mol Biol 32: 369-375. Breathnach, R., Benoist, C., O''Hare, K., Gannon, F. and Chambon, P. (1978) Ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci USA 75: 4853-4857. Bulet, P., Dimarcq, J.L., Hetru, C., Lagueux, M., Charlet, M., Hegy, G., Van Dorsselaer, A. and Hoffmann, J.A. (1993) A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J Biol Chem 268: 14893-14897. Bulet, P., Hetru, C., Dimarcq, J.L. and Hoffmann, D. (1999) Antimicrobial peptides in insects; structure and function. Dev Comp Immunol 23: 329-44. Charlet, M., Lagueux, M., Reichhart, J.M., Hoffmann, D., Braun, A. and Meister, M. (1996) Cloning of the gene encoding the antibacterial peptide drosocin involved in Drosophila immunity. Expression studies during the immune response. Eur J Biochem 241: 699-706. Chen, H.M., Wang, W., Smith, D. and Chan, S.C. (1997) Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim Biophys Acta 1336: 171-179. Chen, W.J., Dong, C.F., Chiou, L.Y. and Chuang, W.L. (2000) Potential role of Armigeres subalbatus (Diptera: Culicidae) in the transmission of Japanese encephalitis virus in the absence of rice culture on Liu-chiu islet, Taiwan. J Med Entomol 37: 108-113. Cheng, H.C. (2005) Infection and transmission of dengue virus in the mosquito, Armigeres subalbatus. Master''s Thesis, Department of Entomology, National Chung Hsing University, Taichung. 61 pp. (in Chinese) Cherbas, L. and Cherbas, P. (1993) The arthropod initiator: the capsite consensus plays an important role in transcription. Insect Biochem Mol Biol 23: 81-90. Costa-Mattioli, M., Svitkin, Y. and Sonenberg, N. (2004) La autoantigen is necessary for optimal function of the poliovirus and hepatitis C virus internal ribosome entry site in vivo and in vitro. Mol Cell Biol 24: 6861-6870. Delaney, J.R., Stoven, S., Uvell, H., Anderson, K.V., Engstrom, Y. and Mlodzik, M. (2006) Cooperative control of Drosophila immune responses by the JNK and NF-kappaB signaling pathways. EMBO J 25: 3068-3077. Dickinson, L., Russell, V. and Dunn, P.E. (1988) A family of bacteria-regulated, cecropin D-like peptides from Manduca sexta. J Biol Chem 263: 19424-19429. Dimarcq, J.L., Hoffmann, D., Meister, M., Bulet, P., Lanot, R., Reichhart, J.M. and Hoffmann, J.A. (1994) Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin. A study in insect immunity. Eur J Biochem 221: 201-209. Dissanaike, A.S., Abeyewickreme, W., Wijesundera, M.D., Weerasooriya, M.V. and Ismail, M.M. (1997) Human dirofilariasis caused by Dirofilaria (Nochtiella) repens in Sri Lanka. Parassitologia 39: 375-382. Dushay, M.S., Asling, B. and Hultmark, D. (1996) Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defense of Drosophila. Proc Natl Acad Sci USA 93: 10343-10347. Eckert, R. (2011) Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 6: 635-651. Eggleston, P., Lu, W. and Zhao, Y. (2000) Genomic organization and immune regulation of the defensin gene from the mosquito, Anopheles gambiae. Insect Mol Biol 9: 481-490. Engstrom, Y., Kadalayil, L., Sun, S.C., Samakovlis, C., Hultmark, D. and Faye, I. (1993) kappa B-like motifs regulate the induction of immune genes in Drosophila. J Mol Biol 232: 327-333. Faye, I. and Wyatt, G.R. (1980) The synthesis of antibacterial proteins in isolated fat body from Cecropia silkmoth pupae. Experientia 36: 1325-1326. Fehlbaum, P., Bulet, P., Michaut, L., Lagueux, M., Broekaert, W.F., Hetru, C. and Hoffmann, J.A. (1994) Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 269: 33159-33163. Ferdig, M.T., Beerntsen, B.T., Spray, F.J., Li, J. and Christensen, B.M. (1993) Reproductive costs associated with resistance in a mosquito-filarial worm system. Am J Trop Med Hyg 49: 756-762. Flatt, T., Heyland, A., Rus, F., Porpiglia, E., Sherlock, C., Yamamoto, R., Garbuzov, A., Palli, S.R., Tatar, M. and Silverman, N. (2008) Hormonal regulation of the humoral innate immune response in Drosophila melanogaster. J Exp Biol 211: 2712-2724. Georgel, P., Kappler, C., Langley, E., Gross, I., Nicolas, E., Reichhart, J.M. and Hoffmann, J.A. (1995) Drosophila immunity. A sequence homologous to mammalian interferon consensus response element enhances the activity of the diptericin promoter. Nucleic Acids Res 23: 1140-1145. Ghattas, I.R., Sanes, J.R. and Majors, J.E. (1991) The encephalomyocarditis virus internal ribosome entry site allows efficient coexpression of two genes from a recombinant provirus in cultured cells and in embryos. Mol Cell Biol 11: 5848-5859. Glass, M.J., Jia, X.Y. and Summers, D.F. (1993) Identification of the hepatitis A virus internal ribosome entry site: in vivo and in vitro analysis of bicistronic RNAs containing the HAV 5'' noncoding region. Virology 193: 842-852. Gottar, M., Gobert, V., Matskevich, A.A., Reichhart, J.M., Wang, C., Butt, T.M., Belvin, M., Hoffmann, J.A. and Ferrandon, D. (2006) Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127: 1425-1437. Hillyer, J.F. (2011) Mosquito immunity. Adv Exp Med Biol 708: 218-238. Hillyer, J.F. and Christensen, B.M. (2002) Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti. Histochem Cell Biol 117: 431-440. Hillyer, J.F., Schmidt, S.L. and Christensen, B.M. (2003) Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria. Cell Tissue Res 313: 117-127. Hillyer, J.F., Schmidt, S.L., Fuchs, J.F., Boyle, J.P. and Christensen, B.M. (2005) Age-associated mortality in immune challenged mosquitoes (Aedes aegypti) correlates with a decrease in haemocyte numbers. Cell Microbiol 7: 39-51. Hoffmann, A., Levchenko, A., Scott, M.L. and Baltimore, D. (2002) The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298: 1241-1245. Hoffmann, J.A. and Hetru, C. (1992) Insect defensins: inducible antibacterial peptides. Immunol Today 13: 411-415. Hoffmann, J.A. and Reichhart, J.M. (2002) Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3: 121-126. Holak, T.A., Engstrom, A., Kraulis, P.J., Lindeberg, G., Bennich, H., Jones, T.A., Gronenborn, A.M. and Clore, G.M. (1988) The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27: 7620-7629. Hultmark, D. (1993) Immune reactions in Drosophila and other insects: a model for innate immunity. Trends Genet 9: 178-183. Hultmark, D. (1994) Drosophila as a model system for antibacterial peptides. Ciba Found Symp 186: 107-122. Hultmark, D., Engstrom, A., Andersson, K., Steiner, H., Bennich, H. and Boman, H.G. (1983) Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia. EMBO J 2: 571-576. Hultmark, D., Engstrom, A., Bennich, H., Kapur, R. and Boman, H.G. (1982) Insect immunity: isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae. Eur J Biochem 127: 207-217. Hultmark, D., Steiner, H., Rasmuson, T. and Boman, H.G. (1980) Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106: 7-16. Ip, Y.T., Reach, M., Engstrom, Y., Kadalayil, L., Cai, H., Gonzalez-Crespo, S., Tatei, K. and Levine, M. (1993) Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75: 753-763. Jin, L.Q. and Li, D. (2008) A recent survey of mosquito fauna in Guangdong Province,southern China, with a review of past records. Med Vet Entomol 22: 359-363. Johannes, G. and Sarnow, P. (1998) Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP, and eIF4G conferred by internal ribosome entry sites. RNA 4: 1500-1513. Junell, A., Uvell, H., Davis, M.M., Edlundh-Rose, E., Antonsson, A., Pick, L. and Engstrom, Y. (2010) The POU transcription factor Drifter/Ventral veinless regulates expression of Drosophila immune defense genes. Mol Cell Biol 30: 3672-3684. Kadalayil, L., Petersen, U.M. and Engstrom, Y. (1997) Adjacent GATA and kappa B-like motifs regulate the expression of a Drosophila immune gene. Nucleic Acids Res 25: 1233-1239. Kappler, C., Meister, M., Lagueux, M., Gateff, E., Hoffmann, J.A. and Reichhart, J.M. (1993) Insect immunity. Two 17 bp repeats nesting a kappa B-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J 12: 1561-1568. Kartman, L. (1956) Notes on the encapsulation of Dirofilaria immitis in the mosquito Aedes aegypti. Am J Vet Res 17: 810-812. Kirkpatrick, G. and Ma, S. (2012) Meiotic segregation and interchromosomal effects in a rare (1:2:10) complex chromosomal rearrangement. J Assist Reprod Genet 29: 77-81. Kreil, G., Haiml, L. and Suchanek, G. (1980) Stepwise cleavage of the pro part of promelittin by dipeptidylpeptidase IV. Evidence for a new type of precursor--product conversion. Eur J Biochem 111: 49-58. Kylsten, P., Samakovlis, C. and Hultmark, D. (1990) The cecropin locus in Drosophila; a compact gene cluster involved in the response to infection. EMBO J 9: 217-224. Labarthe, N. and Guerrero, J. (2005) Epidemiology of heartworm: what is happening in South America and Mexico? Vet Parasitol 133: 149-156. Lambert, J., Keppi, E., Dimarcq, J.L., Wicker, C., Reichhart, J.M., Dunbar, B., Lepage, P., Van Dorsselaer, A., Hoffmann, J., Fothergill, J. and Hoffmann, D. (1989) Insect immunity: isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc Natl Acad Sci USA 86: 262-266. Lee, J.Y., Boman, A., Sun, C.X., Andersson, M., Jornvall, H., Mutt, V. and Boman, H.G. (1989) Antibacterial peptides from pig intestine: isolation of a mammalian cecropin. Proc Natl Acad Sci USA 86: 9159-9162. Lemaitre, B. and Hoffmann, J. (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25: 697-743. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. and Hoffmann, J.A. (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973-983. Levashina, E.A., Ohresser, S., Bulet, P., Reichhart, J.M., Hetru, C. and Hoffmann, J.A. (1995) Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem 233: 694-700. Liu, D. and DeGrado, W.F. (2001) De novo design, synthesis, and characterization of antimicrobial beta-peptides. J Am Chem Soc 123: 7553-7559. Liu, W.T. (2005) Study on the expression of cecropin genes in the mosquito, Armigeres subalbatus. Master''s Thesis, Department of Entomology, National Chung Hsing University, Taichung. 80 pp. (in Chinese) Liu, Y.Z. (1988) Ecological studies of Armigeres subalbatus coquillett (diptera, culicidae). Master''s Thesis, Department of Biology, Tunghai University, Taichung. 92 pp. (in Chinese) Lowenberger, C., Bulet, P., Charlet, M., Hetru, C., Hodgeman, B., Christensen, B.M. and Hoffmann, J.A. (1995) Insect immunity: isolation of three novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti. Insect Biochem Mol Biol 25: 867-873. Lowenberger, C., Charlet, M., Vizioli, J., Kamal, S., Richman, A., Christensen, B.M. and Bulet, P. (1999a) Antimicrobial activity spectrum, cDNA cloning, and mRNA expression of a newly isolated member of the cecropin family from the mosquito vector Aedes aegypti. J Biol Chem 274: 20092-20097. Lowenberger, C.A., Smartt, C.T., Bulet, P., Ferdig, M.T., Severson, D.W., Hoffmann, J.A. and Christensen, B.M. (1999b) Insect immunity: molecular cloning, expression, and characterization of cDNAs and genomic DNA encoding three isoforms of insect defensin in Aedes aegypti. Insect Mol Biol 8: 107-118. Manfruelli, P., Reichhart, J.M., Steward, R., Hoffmann, J.A. and Lemaitre, B. (1999) A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J 18: 3380-3391. Marmaras, V.J. and Lampropoulou, M. (2009) Regulators and signalling in insect haemocyte immunity. Cell Signal 21: 186-195. Matsumoto, N., Okada, M., Takahashi, H., Ming, Q.X., Nakajima, Y., Nakanishi, Y., Komano, H. and Natori, S. (1986) Molecular cloning of a cDNA and assignment of the C-terminal of sarcotoxin IA, a potent antibacterial protein of Sarcophaga peregrina. Biochem J 239: 717-722. Meredith, J.M., Munks, R.J., Grail, W., Hurd, H., Eggleston, P. and Lehane, M.J. (2006) A novel association between clustered NF-kappaB and C/EBP binding sites is required for immune regulation of mosquito Defensin genes. Insect Mol Biol 15: 393-401. Merrifield, R.B., Vizioli, L.D. and Boman, H.G. (1982) Synthesis of the antibacterial peptide cecropin A (1-33). Biochemistry 21: 5020-5031. Michaut, L., Fehlbaum, P., Moniatte, M., Van Dorsselaer, A., Reichhart, J.M. and Bulet, P. (1996) Determination of the disulfide array of the first inducible antifungal peptide from insects: drosomycin from Drosophila melanogaster. FEBS Lett 395: 6-10. Miller, J.S., Nguyen, T. and Stanley-Samuelson, D.W. (1994) Eicosanoids mediate insect nodulation responses to bacterial infections. Proc Natl Acad Sci USA 91: 12418-12422. Mizutani, T., Kobayashi, M., Eshita, Y., Shirato, K., Kimura, T., Ako, Y., Miyoshi, H., Takasaki, T., Kurane, I., Kariwa, H., Umemura, T. and Takashima, I. (2003) Involvement of the JNK-like protein of the Aedes albopictus mosquito cell line, C6/36, in phagocytosis, endocytosis and infection of West Nile virus. Insect Mol Biol 12: 491-499. Moon, A.E., Walker, A.J. and Goodbourn, S. (2011) Regulation of transcription of the Aedes albopictus cecropin A1 gene: A role for p38 mitogen-activated protein kinase. Insect Biochem Mol Biol 41: 628-636. Moore, A.J., Beazley, W.D., Bibby, M.C. and Devine, D.A. (1996) Antimicrobial activity of cecropins. J Antimicrob Chemother 37: 1077-1089. Moore, A.J., Devine, D.A. and Bibby, M.C. (1994) Preliminary experimental anticancer activity of cecropins. Pept Res 7: 265-269. Nappi, A.J. (1973) Hemocytic changes associated with the encapsulation and melanization of some insect parasites. Exp Parasitol 33: 285-302. Nehme, N.T., Quintin, J., Cho, J.H., Lee, J., Lafarge, M.C., Kocks, C. and Ferrandon, D. (2011) Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections. PLoS One 6: e14743. Okada, M. and Natori, S. (1985) Primary structure of sarcotoxin I, an antibacterial protein induced in the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem 260: 7174-7177. Osada, S., Yamamoto, H., Nishihara, T. and Imagawa, M. (1996) DNA binding specificity of the CCAAT/enhancer-binding protein transcription factor family. J Biol Chem 271: 3891-3896. Pandian, R.S. and Chandrashekaran, M.K. (1980) Rhythms in the biting behaviour of a mosquito Armigeres subalbatus. Oecologia 47: 89-95. Petersen, U.M., Kadalayil, L., Rehorn, K.P., Hoshizaki, D.K., Reuter, R. and Engstrom, Y. (1999) Serpent regulates Drosophila immunity genes in the larval fat body through an essential GATA motif. EMBO J 18: 4013-4022. Plank, T.D. and Kieft, J.S. (2012) The structures of nonprotein-coding RNAs that drive internal ribosome entry site function. Wiley Interdiscip Rev RNA. Plunkett, R.M., Murray, S.I. and Lowenberger, C.A. (2009) Generation and characterization of the antibacterial activity of a novel hybrid antimicrobial peptide comprising functional domains from different insect cecropins. Can J Microbiol 55: 520-528. Poinar, G.O., Jr. and Leutenegger, R. (1971) Ultrastructural investigation of the melanization process in Culex pipiens (Culicidae) in response to a nematode. J Ultrastruct Res 36: 149-158. Qu, Z., Steiner, H., Engstrom, A., Bennich, H. and Boman, H.G. (1982) Insect immunity: isolation and structure of cecropins B and D from pupae of the Chinese oak silk moth, Antheraea pernyi. Eur J Biochem 127: 219-224. Rajavel, A.R. (1992) Cannibalistic behavior in Armigeres subalbatus (Diptera: Culicidae). Southeast Asian J Trop Med Public Health 23: 453-457. Royet, J. and Dziarski, R. (2007) Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nat Rev Microbiol 5: 264-277. Ryu, J.H., Nam, K.B., Oh, C.T., Nam, H.J., Kim, S.H., Yoon, J.H., Seong, J.K., Yoo, M.A., Jang, I.H., Brey, P.T. and Lee, W.J. (2004) The homeobox gene Caudal regulates constitutive local expression of antimicrobial peptide genes in Drosophila epithelia. Mol Cell Biol 24: 172-185. Samakovlis, C., Kimbrell, D.A., Kylsten, P., Engstrom, A. and Hultmark, D. (1990) The immune response in Drosophila: pattern of cecropin expression and biological activity. EMBO J 9: 2969-2976. Senger, K., Harris, K. and Levine, M. (2006) GATA factors participate in tissue-specific immune responses in Drosophila larvae. Proc Natl Acad Sci USA 103: 15957-15962. Shin, S.W., Kokoza, V., Bian, G., Cheon, H.M., Kim, Y.J. and Raikhel, A.S. (2005) REL1, a homologue of Drosophila dorsal, regulates toll antifungal immune pathway in the female mosquito Aedes aegypti. J Biol Chem 280: 16499-16507. Shin, S.W., Kokoza, V., Lobkov, I. and Raikhel, A.S. (2003) Relish-mediated immune deficiency in the transgenic mosquito Aedes aegypti. Proc Natl Acad Sci USA 100: 2616-2621. Sim, S. and Dimopoulos, G. (2010) Dengue virus inhibits immune responses in Aedes aegypti cells. PLoS One 5: e10678. Sipos, D., Andersson, M. and Ehrenberg, A. (1992) The structure of the mammalian antibacterial peptide cecropin P1 in solution, determined by proton-NMR. Eur J Biochem 209: 163-169. Srinivas, S.D., Pandian, R.S. and Dwarakanath, S.K. (1994) Biting behaviour of Armigeres subalbatus (Coquillett) with reference to host selection and landing. Indian J Exp Biol 32: 348-350. Srisailam, S., Kumar, T.K., Arunkumar, A.I., Leung, K.W., Yu, C. and Chen, H.M. (2001) Crumpled structure of the custom hydrophobic lytic peptide cecropin B3. Eur J Biochem 268: 4278-4284. Stanley, D.W., Hoback, W.W., Bedick, J.C., Tunaz, H., Rana, R.L., Nor Aliza, A.R. and Miller, J.S. (1999) Eicosanoids mediate nodulation reactions to bacterial infections in larvae of the butterfly, Colias eurytheme. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 123: 217-223. Steiner, H. (1982) Secondary structure of the cecropins: antibacterial peptides from the moth Hyalophora cecropia. FEBS Lett 137: 283-287. Steiner, H. (2004) Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunol Rev 198: 83-96. Steiner, H., Hultmark, D., Engstrom, A., Bennich, H. and Boman, H.G. (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246-248. Sun, D., Eccleston, E.D. and Fallon, A.M. (1998) Peptide sequence of an antibiotic cecropin from the vector mosquito, Aedes albopictus. Biochem Biophys Res Commun 249: 410-415. Sun, D. and Fallon, A.M. (2002) Characterization of genomic DNA encoding cecropins from an Aedes albopictus mosquito cell line. Insect Mol Biol 11: 21-30. Suttmann, H., Retz, M., Paulsen, F., Harder, J., Zwergel, U., Kamradt, J., Wullich, B., Unteregger, G., Stockle, M. and Lehmann, J. (2008) Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol 8: 5. Tanji, T., Yun, E.Y. and Ip, Y.T. (2010) Heterodimers of NF-kappaB transcription factors DIF and Relish regulate antimicrobial peptide genes in Drosophila. Proc Natl Acad Sci USA 107: 14715-14720. Tingvall, T.O., Roos, E. and Engstrom, Y. (2001) The GATA factor Serpent is required for the onset of the humoral immune response in Drosophila embryos. Proc Natl Acad Sci USA 98: 3884-3888. Uvell, H. and Engstrom, Y. (2003) Functional characterization of a novel promoter element required for an innate immune response in Drosophila. Mol Cell Biol 23: 8272-8281. Uvell, H. and Engstrom, Y. (2007) A multilayered defense against infection: combinatorial control of insect immune genes. Trends Genet 23: 342-349. van Hofsten, P., Faye, I., Kockum, K., Lee, J.Y., Xanthopoulos, K.G., Boman, I.A., Boman, H.G., Engstrom, A., Andreu, D. and Merrifield, R.B. (1985) Molecular cloning, cDNA sequencing, and chemical synthesis of cecropin B from Hyalophora cecropia. Proc Natl Acad Sci USA 82: 2240-2243. Vizioli, J., Bulet, P., Charlet, M., Lowenberger, C., Blass, C., Muller, H.M., Dimopoulos, G., Hoffmann, J., Kafatos, F.C. and Richman, A. (2000) Cloning and analysis of a cecropin gene from the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol 9: 75-84. Vizioli, J., Bulet, P., Hoffmann, J.A., Kafatos, F.C., Muller, H.M. and Dimopoulos, G. (2001) Gambicin: a novel immune responsive antimicrobial peptide from the malaria vector Anopheles gambiae. Proc Natl Acad Sci USA 98: 12630-12635. Wei, Y., Xiao, Q., Zhang, T., Mou, Z., You, J. and Ma, W.J. (2009) Differential regulation of mRNA stability controls the transient expression of genes encoding Drosophila antimicrobial peptide with distinct immune response characteristics. Nucleic Acids Res 37: 6550-6561. Weng, M.H., Lien, J.C., Wang, Y.M., Lin, C.C., Lin, H.C. and Chin, C. (1999) Isolation of Japanese encephalitis virus from mosquitoes collected in Northern Taiwan between 1995 and 1996. J. Microbiol Immunol Infect 32: 9-13. Wicker, C., Reichhart, J.M., Hoffmann, D., Hultmark, D., Samakovlis, C. and Hoffmann, J.A. (1990) Insect immunity. Characterization of a Drosophila cDNA encoding a novel member of the diptericin family of immune peptides. J Biol Chem 265: 22493-22498. Wu, C.C., Ho, C.M. and Fan, P.C. (1984) Preliminary report on the susceptibility of mosquitoes to Brugia pahangi. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi (中華民國微生物及免疫學雜誌) 17: 156-160. Xanthopoulos, K.G., Lee, J.Y., Gan, R., Kockum, K., Faye, I. and Boman, H.G. (1988) The structure of the gene for cecropin B, an antibacterial immune protein from Hyalophora cecropia. Eur J Biochem 172: 371-376. Yamano, Y., Matsumoto, M., Sasahara, K., Sakamoto, E. and Morishima, I. (1998) Structure of genes for cecropin A and an inducible nuclear protein that binds to the promoter region of the genes from the silkworm, Bombyx mori. Biosci Biotechnol Biochem 62: 237-241. Yang, J., Furukawa, S., Sagisaka, A., Ishibashi, J., Taniai, K., Shono, T. and Yamakawa, M. (1999) cDNA cloning and gene expression of cecropin D, an antibacterial protein in the silkworm, Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 122: 409-414. Ye, Y.H. and McGraw, E.A. (2011) Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes. BMC Res Notes 4: 305. Zhang, Z. and Palli, S.R. (2009) Identification of a cis-regulatory element required for 20-hydroxyecdysone enhancement of antimicrobial peptide gene expression in Drosophila melanogaster. Insect Mol Biol 18: 595-605. Zheng, X.L. and Zheng, A.L. (2002) Genomic organization and regulation of three cecropin genes in Anopheles gambiae. Insect Mol Biol 11: 517-525.
摘要: 
白腹叢蚊(Armigeres subalbatus)是一種廣泛分布於亞洲各地的蚊蟲,且為日本腦炎(Japanese encephalitis)、登革熱(dengue fever)以及絲蟲症(filariasis)的潛在病媒蚊,具有預防醫學方面的重要性。昆蟲體內防禦系統(internal defense system)可抵禦外來微生物的侵染,降低蟲媒病的傳播,其中體液性免疫反應包含抗菌胜肽(antimicrobial peptides,AMPs),其誘發表現及調控機制,是目前昆蟲原發性免疫(innate immunity)研究的重點之一。本論文分析白腹叢蚊cecropin B1與cecropin A2基因結構,確認cecropin B1與cecropin A2兩者皆為2個exon中間含有1個intron的基因結構,這兩個基因方向相反且五端調控區有501 bp重疊。而此二個基因受革蘭氏陰性菌大腸桿菌(Escherichia coli)與革蘭氏陽性菌金黃葡萄球菌(Staphylococcus aureus)免疫誘導後,於10分鐘至120小時間等不同時段之基因表現模式不同,其中cecropin B1表現較cecropin A2早。預測分析其五端調控區域轉錄因子結合位(transcription factor binding sites),結果顯示有5個NF-ĸB、5個GATA、3個R1、1個C/EBPs、16個IRF-1及3個EcRE。為進一步探討其調控機制,由五端調控區域刪除試驗顯示cecropin B1五端調控區在-980bp~-866bp區段中的R1與NF-ĸB可能為細菌免疫誘導表現的重要調控單元;至於cecropin A2受細菌誘發表現的主要調控區域可能不在五端調節區域上游1,184 bp內。

Armigeres subalbatus, potential vector mosquito of Japanese encephalitis, dengue fever and filariasis, is widespread in Asia and is of vital importance in preventive medicine. Insect internal defense system could defend microbial infection and reduce the transmission of insect-borne disease. Antimicrobial peptides (AMPs) are one of major humoral immune responses in insect immunity, which could induce and regulate immune response. In this study, analysis of the gene structures of cecropin B1 and cecropin A2 of Armigeres subalbatus revealed that both cecropin B1 and cecropin A2 contain two exons interrupted by one intron. After challenged by Gram-negative bacteria, Escherichia coli, and Gram-positive bacteria, Staphylococcus aureus, the induced expression pattern of the two genes were different during 10 minutes to 120 hours, which revealed that the cecropin B1 expression was earlier to cecropin A2. Prediction analysis of transcription factor binding sites within the 5'' regulatory region of both cecropin B1 and cecropin A2 revealed that there are 5 NF-κB, 5 GATA, 3 R1, 1 C/EBPs, 16 IRF-1 and 3 EcRE. To further investigate the regulatory mechanism of these genes, 5'' regulatory region deletion assay revealed that R1 and NF-κB in the region of -980 to -866 bp could be important to bacteria-induced transcription of cecropin B1; however, bacteria-induced transcription region of cecropin A2 could not locate in the 1,148 bp upstream of 5'' regulatory region.
URI: http://hdl.handle.net/11455/30669
其他識別: U0005-0502201223450500
Appears in Collections:昆蟲學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.