Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30678
標題: 一氧化氮在昆蟲視覺系統之初探
Nitric oxide in the visual system of insects
作者: Hsieh, Hsiang-Wen
謝祥文
關鍵字: 一氧化氮合成酶光適應;http://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-0102200816554700
出版社: 昆蟲學系所
引用: Ahern, G. P., V. A. Klyachko, and M. B. Jackson. 2002. cGMP and S-nitrosylation: two routes for modulation of neuronal excitability by NO. Trends Neurosci. 25: 510-517. Bacigalupo, J., D. M. Bautista, D. L. Brink, J. F. Hetzer, and P. M. O'Day. 1995. Cyclic-GMP enhances light induced excitation and induces membrane currents in Drosophila retinal photoreceptors. J. Neurosci. 15: 7196-7200. Backhaus, W., and R. Menzel. 1987. Color distance derived from a receptor model of color vision in the honeybee. Biol. Cybernet. 55: 321-331. Baumann, A., S. Frings, M. Godde, R. Seifert, and U. B. Kaupp. 1994. Primary structure and functional expression of a Drosophila cyclic nucleotide-gated channel present in eyes and antennae. EMBO J. 13: 5040-5050. Ben-Shahar, Y. 2005. The foraging gene, behavioral plasticity, and honeybee division of labor. J. Comp. Physiol. A 191: 987-994. Ben-Shahar, Y., A. Robichon, M. B. Sokolowski, and G. E. Robinson. 2002. Behavior influenced by gene action across different time scales. Science 296: 742-744. Ben-Shahar, Y., H. T. Leung, W. L. Pak, M. B. Sokolowski, and G. E. Robinson. 2003. cGMP-dependent changes in phototaxis: A possible role for the foraging gene in honey bee division of labor. J. Exp. Biol. 206: 2507-2515. Bicker, G. 1998. NO news from insect brains. Trends Neurosci. 21: 349-355. Bicker, G. 2001a. Nitric oxide: an unconventional messenger in the nervous system of an Orthopteroid insect. Arch. Insect Biochem. Physiol. 48: 100-110. Bicker, G. 2001b. Sources and targets of nitric oxide signalling in insect nervous systems. Cell Tissue Res. 303: 137-146. Bicker, G., and O. Schmachtenberg. 1997. Cytochemical evidence for nitric oxide/cyclic GMP signal transmission in the visual system of the locust. Eur. J. Neurosci. 9: 189-193. Blaise, G. A., D. Gauvin, M. Gangal, and S. Authier. 2005. Nitric oxide, cell signaling and cell death. Toxicology 208: 177-192. Bredt, D. S., P. M. Hwang, C. E. Glatt, C. Lowenstein, R. R. Reed, and S. H. Snyder. 1991. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351: 714-718. Breer, H., and G. M. Shepherd. 1993. Implications of the NO/cGMP system for olfaction. Trends Neurosci. 16: 5-9. Briscoe, A. D., and L. Chittka. 2001. The evolution of color vision in insects. Annu. Rev. Entomol. 46: 471-510. Brüne, B., S. Dimmeler, L. Molina y Vedia, and E. G. Lapetina. 1994. Nitric oxide: a signal for ADP-ribosylation of proteins. Life Sci. 54: 61-70. Capaldi, E. A., and F. C. Dyer. 1999. The role of orientation flights on homing performance in honeybees. J. Exp. Biol. 202: 1655-1666. Champlin, D. T., and J. W. Truman. 2000. Ecdysteroid coordinates optic lobe neurogenesis via a nitric oxide signaling pathway. Development 127: 3543-3551. Collmann, C. C., M. A. Carlsson, B. S. Hansson, and A. Nighorn. 2004. Odorant-evoked nitric oxide signals in the antennal lobe of Manduca sexta. J. Neurosci. 24: 6070-6077. Condorelli, P., and S. C. George. 2001. In vivo control of soluble guanylate cyclase activation by nitric oxide: a kinetic analysis. Biophys. J. 80: 2110-2119. Cramer, K. S., A. Angelucci, J. O. Hahm, M. B. Bogdanov, and M. Sur. 1996. A role for nitric oxide in the development of the ferret retinogeniculate projection. J. Neurosci. 16: 7995-8004. Cudeiro, J., and C. Rivadulla. 1999. Sight and insight - on the physiological role of nitric oxide in the visual system. Trends Neurosci. 22: 109-116. Davies, S. A. 2000. Nitric oxide signalling in insects. Insect Biochem. Mol. Biol. 30: 1123-1138. Dow, J. A. T., S. H. P. Maddrell, S.-A. Davies, N. J. V. Skaer, and K. Kaiser. 1994. A novel role for the nitric oxide/cGMP signaling pathway: the control of epithelial function in Drosophila. Am. J. Physiol. 266: 1716-1719. Elofsson, R., M. Carlberg, L. Moroz, L. Nezlin, and D. Sakharov. 1993. Is nitric oxide (NO) produced by invertebrate neurons? Neuroreport 4: 279-282. Elphick, M. R., I. C. Green, and M. O'Shea. 1993. Nitric oxide synthesis and action in an invertebrate brain. Brain Res. 619: 344-346. Elphick, M. R., L. Williams, and M. O'Shea. 1996. New features of the locust optic lobe: evidence of a role for nitric oxide in insect vision. J. Exp. Biol. 199: 2395-2407. Frisch, K. V. 1967. The Dance Language and Orientation of Bees. Cambridge, MA: Belknap Press of Harvard University Press. Furchgott, R. F., and J. V. Zawadzki. 1980. The obligatory role of endothelial cells in relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373-376. Gally, J. A., P. R. Montague, G. N. Jr Reeke, and G. M. Edelman. 1990. The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc. Natl. Acad. Sci. U. S. A. 87: 3547-3551. Garthwaite, J., S. L. Charles, and R. Chess-Williams. 1988. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intracellular messengers in the brain. Nature 336: 385-388. Gelperin, A. 1994. Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc. Nature 369: 61-63. Gibbs, S. M., and J. W. Truman. 1998. Nitric oxide and cyclic GMP regulate retinal patterning in the optic lobe in Drosophila. Neuron 20: 83-93. Hanyu, Y., and N. Franceschini. 1993. Pigment granule migration and phototransduction are triggered by separate pathways in fly photoreceptor cells. Neuroreport 4: 215-218. Hevel, J. M., K. A. White, and M. A. Marletta. 1991. Purification of the inducible murine macrophage nitric oxide synthase. Identification as a flavoprotein. J. Biol. Chem. 266: 22789-22791. Homberg, U., S. Hofer, K. Pfeiffer, and S. Gebhardt. 2003. Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. J. Comp. Neurol. 462: 415-430. Horridge, G. A. 1996. Vision of the honeybee Apis mellifera for patterns with two pairs of equal orthogonal bars. J. Insect Physiol. 42: 131-138. Hsu, T. Y. 2005. Cloning and expression of a soluble guanylyl cyclase gene in the brain of honeybee, Apis mellifera. Master thesis from Dept. of Entomology, National Chung Hsing University. 57pp (in Chinese). Hu, J., M. I. Mahmoud, and E. E. el-Fakahany. 1994. Polyamines inhibit nitric oxide synthase in rat cerebellum. Neurosci. Lett. 175: 41-45. Humbert, P., F. Niroomand, G. Fischer, B. Mayer, D. Koesling, K.-D. Hinsch, H. Gausepohl, R. Frank, G. Schultz, and E. Böhme. 1990. Purification of soluble guanylyl cyclase from bovine lung by a new immunoaffinity chromatographic method. Eur. J. Biochem. 190: 273-278. Ignarro, L. J., G. M. Buga, K. S. Wood, E. R. Byrns, and G. Chaudhuri. 1987. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc. Natl. Acad. Sci. U. S. A. 84: 9265-9269. Janssens, S. P., A. Shimouchi, T. Quertermous, D. B. Bloch, and K. D. Bloch. 1992. Cloning and expression of a cDNA encoding human endothelium-derived relaxing factor/nitric oxide synthase. J. Biol. Chem. 267: 14519-14522. Johansson, K. U. I., and F. De Mellon. 1998. Nitric oxide as a putative messenger molecule in the crayfish olfactory midbrain. Brain Res. 807: 237-242. Jones, I. W., and M. R. Elphick. 1999. Dark-dependent soluble guanylyl cyclase activity in locust photoreceptor cells. Proc. R. Soc. Lond. B 266: 413-419. Kalderon, D., and G. M. Rubin. 1989. cGMP-dependent protein kinase genes in Drosophila. J. Biol. Chem. 264: 10738-10748. Kaupp, U. B. 1991. The cyclic nucleotide-gated channels of vertebrate photoreceptors and olfactory epithelium. Trends Neurosci. 14: 150-157. Klatt, P., K. Schmidt, G. Uray, and B. Mayer. 1993. Multiple catalytic functions of brain nitric oxide synthase. J. Biol. Chem. 268: 14781-14787. Kuzin, B., I. Roberts, N. Peunova, and G. Enikolopov. 1996. Nitric oxide regulates cell proliferation during Drosophila development. Cell 87: 639-649. Lee, H. C. 1994. Cyclic ADP-ribose: a new member of a super family of signalling cyclic nucleotides. Cell. Signal. 6: 591-600. Lee, Y., B. K. Oh, and M. E. Meyerhoff. 2004. Improved planar amperometric nitric oxide sensor based on platinized anode. 1. experimental results and theory when applied for monitoring NO release from diazeniumdiolate-doped polymeric films. Anal. Chem. 76: 536-544. Lei, S. Z., Z. H. Pan, S. K. Aggarwal, H. S. V. Chen, J. Hartman, N. J. Sucher, and S. A. Lipton. 1992. Effect on nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 8: 1087-1099. Lyons, C. R., G. J. Orloff, and J. M. Cunningham. 1992. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J. Biol. Chem. 267: 6370-6374. Martínez, A. 1995. Nitric oxide synthase in invertebrates. Histochem. J. 27: 770-776. Martínez, A., V. Riveros-Moreno, J. M. Polak, S. Moncada, and P. Sesma. 1994. Nitric oxide (NO) synthase-immunoreactivity in the starfish Marthasterias glacialis. Cell Tissue Res. 275: 599-603. Moroz, L. L., J. Park, and W. Winlow. 1993a. Nitric oxide activates buccal motor patterns in Lymnaea stagnalis. Neuroreport 4: 643-646. Moroz, L. L., I. Roger, N. I. Syed, A. G. M. Bulloch, and K. Lukowiak. 1993b. Abundance of putative NO-synthesizing cells in the oesophagus of gastropod molluscs. J. Physiol. 473: 247P. Müller, U. 1994. Ca2+ /calmodulin-dependent nitric oxide synthase in Apis mellifera and Drosophila melanogaster. Eur. J. Neurosci. 6: 1362-1370. Müller, U. 1996. Inhibition of nitric oxide synthase impairs a distinct form of long-term memory in the honeybee Apis melifera. Neuron 16: 541-549. Müller, U. 1997. The nitric oxide system in insects. Prog. Neurobiol. 51: 363-381. Müller, U., and G. Bicker. 1994. Calcium-activated release of nitric oxide and cellular distribution of nitric oxide-synthesizing neurons in the nervous system of the locust. J. Neurosci. 14: 7521-7528. Müller, U., and H. Hildebrandt. 1995. The nitric oxide/cGMP system in the antennal lobe of Apis mellifera is implicated in integrative processing of chemosensory stimuli. Eur. J. Neurosci. 7: 2240-2248. Murphy, M. P. 1999. Nitric oxide and cell death. Biochim. Biophysi. Acta 1411: 401-414. Narayanan, K., and O. W. Griffith. 1994. Synthesis of L-thiocitrulline, L-homothiocitrulline and S-methyl-L-thiocitrulline: a new class of potent nitric oxide synthase inhibitors. J. Med. Chem. 37: 885-887. Neal, M., J. Cunningham, and K. Matthews. 1998. Selective release of nitric oxide from retinal amacrine and bipolar cells. Invest. Ophthalmol. Vis. Sci. 39: 850-853. Nicotera, P., E. Bonfoco, and B. Brüne. 1995. Mechanisms for nitric oxide-induced cell death: involvement of apoptosis. Adv. Neuroimmunol. 5: 411-420. Ott, S. R., and M. R. Elphick. 2002. Nitric oxide synthase histochemistry in insect nervous systems: methanol/formalin fixation reveals the neuroarchitecture of formaldehyde-sensitive NADPH diaphorase in the cockroach Periplaneta americana. J. Comp. Neurol. 448: 165-185. Ott, S. R., and M. R. Elphick. 2003. New techniques for whole mount NADPH diaphorase histochemistry demonstrated in insect ganglia. J. Histochem. Cytochem. 51: 523-532. Ott, S. R., M. Burrows, and M. R. Elphick. 2001. The neuroanatomy of nitric oxide-cyclic GMP signaling in the locust: functional implications for sensory systems. Amer. Zool. 41: 321-331. Pfeiffer, K., M. Kinoshita, and U. Homberg. 2005. Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. J. Neurophysiol. 94: 3903-3915. Radomski, M. W., J. F. Martin, and S. Moncada. 1991. Synthesis of nitric oxide by the haemocytes of the american horseshoe crab (Limulus polyphemus). Phil. Trans. R. Soc. Lond., B, Biol. Sci. 334: 129-133. Ribeiro, J. M. C., J. M. H. Hazzard, R. H. Nussenzveig, D. E. Champagne, and F. A. Walker. 1993. Reversible binding of nitric oxide by a salivary heme protein from a bloodsucking insect. Science 260: 539-541. Ribi, W. A. 1974. Neurons in the first synaptic region of the bee, Apis mellifera. Cell Tissue Res. 148: 277-286. Ribi, W. A. 1984. The first optic ganglion of the bee. Ⅴ. Structural and functional characterization of centrifugally arranged interneurones. Cell Tissue Res. 236: 577-584. Ribi, W. A., and M. Scheel. 1981. The second and third optic ganglia of the worker bee. Golgi studies of the neuronal elements in the medulla and lobula. Cell Tissue Res. 221: 17-43. Robinson, G. E. 1992. Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37: 637-665. Salleo, A., G. Musci, P. F. A. Barra, and L. Calabrese. 1996. The discharge mechanism of acontial nematocytes involves the release of nitric oxide. J. Exp. Biol. 199: 1261-1267. Schmachtenberg, O., and G. Bicker. 1999. Nitric oxide and cyclic GMP modulate photoreceptor cell responses in the visual system of the locust. J. Exp. Biol. 202: 13-20. Scholz, N. L., E. S. Chang, K. Graubard, and T. W. Truman. 1998. The NO/cGMP pathway and the development of neural networks in postembryonic lobsters. J. Neurobiol. 34: 208-226. Seeley, T. D. 1982. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11: 287-293. Seidel, C., and G. Bicker. 1997. Colocalization of NADPH-diaphorase and GABA-immunoreactivity in the olfactory and visual system of the locust. Brain Res. 769: 273-280. Seidel, C., and G. Bicker. 2000. Nitric oxide and cyclic GMP influence axonogenesis of antennal pioneer neurons. Development 127: 4541-4549. Sessa, W. C., J. K. Harrison, C. M. Barber, D. Zeng, M. E. Durieux, D. D. D'Angelo, K. R. Lynch, and M. J. Peach. 1992. Molecular cloning and expression of a cDNA encoding endothelial cell nitric oxide synthase. J. Biol. Chem. 267: 15274-15276. Truman, J. W., J. D. Vente, and E. E. Ball. 1996. Nitric oxide-sensitive guanylate cyclase activity is associated with the maturational phase of neuronal development in insects. Development 122: 3949-3958. Visscher, P. K. 1983. The honey bee way of death: Necrophoric behavior in Apis mellifera colonies. Anim. Behav. 31: 1070-1076. Wang, T., Z. Xie, and B. Lu. 1995. Nitric oxide mediates activity-dependent synaptic suppression at developing neuromuscular synapses. Nature 347: 262-266. Wang, S., S. Zhang, K. Sato, and M. V. Srinivasan. 2005. Maturation of odor representation in the honeybee antennal lobe. J. Insect Physiol. 51: 1244-1254. Watanabe, T., M. Kikuchi, D. Hatakeyama, T. Shiga, T. Yamamoto, H. Aonuma, M. Takahata, N. Suzuki, and E. Ito. 2007. Gaseous neuromodulator-related genes expressed in the brain of honeybee Apis mellifera. Dev. Neurobiol. 67: 456-473. Wildemann, B., and G. Bicker. 1999. Nitric oxide and cyclic GMP induce vesicle release at Drosophila neuromuscular junction. J. Neurobiol. 39: 337-346. Wolff, D. J., A. Lubeski, and S. C. Umansky. 1994. The inhibition of the constitutive bovine endothelial nitric oxide synthase by imidazole and indazole agents. Arch. Biochem. Biophys. 314: 360-366. Wu, H. H., C. V. Williams, and S. C. McLoon. 1994. Involvement of nitric oxide in the elimination of a transient retinotectal projection in development. Science 265: 1593-1596. Xie, Q. W., H. J. Cho, J. Calycay, R. A. Mumford, K. M. Swiderek, T. D. Lee, A. Ding, T. Troso, and C. Nathan. 1992. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256: 225-228. Yang, E. C., and T. Maddess. 1997. Orientation-sensitive neurons in the brain of the honeybee (Apis mellifera). J. Insect Physiol. 43: 329-336. Yau, K. W. 1994. Cyclic nucleotide gated channels, an expanding new family of ion channels. Proc. Natl. Acad. Sci. U.S.A. 91: 3481-3483. Zhang, X., L. Cardosa, M. Broderick, H. Fein, and J. Lin. 2000. An integrated nitric oxide sensor based on carbon fiber coated with selective membranes. Electroanalysis 12: 1113-1117. Zhang, X., Y. Kislyak, J. Lin, A. Dickson, L. Cardosa, M. Broderick, and H. Fein. 2002. Nanometer size electrode for nitric oxide and S-nitrosothiols measurement. Electrochem. Commun. 4: 11-16. Zou, H. S., Y. Z. Chang, S. C. Chen, S. M. Yau, Y. L. Shen, and C. Y. Lee. 2002. Localization of NADPH-diaphorase and nitric oxide synthase activity in the eyestalk of the crayfish, Procambarus clarkii. Zool. Stud. 41: 244-250.
摘要: 
Garthwaite等人在1988年證實一氧化氮可當作神經訊息傳遞分子,開啟生物神經訊息傳遞的新觀點。目前已知一氧化氮牽涉到昆蟲的發育及嗅覺與視覺系統的調控,然而未有直接證據證實一氧化氮在視覺系統的生成。為探討一氧化氮在昆蟲視覺系統扮演的角色,本研究從組織學和生理學兩方面進行探討。組織學方面利用NADPH diaphorase的染色方法探討蜜蜂 (Apis mellifera L.)工蜂腦部一氧化氮合成酶的表現。結果發現視葉的lamina、medulla、chiasm與anterior optic tubercle、嗅葉、蕈狀體的α-lobe及其周圍皆具有一氧化氮合成酶,且其表現量隨日齡增加有升降的現象;其中羽化後12至18日齡的工蜂其一氧化氮合成酶在lamina的表現有明顯提升,此結果與工蜂發生出巢行為的時間相符合,推測一氧化氮可能與工蜂行為轉換有關。在生理學方面則是利用一氧化氮感測電極直接在黃斑黑蟋蟀 (Gryllus bimaculatus)的medulla、台灣大蝗 (Chondracris rosea)和蜜蜂的lamina等區域量測到由光刺激後造成的一氧化氮濃度變化。綜合上述結果推測蜜蜂工蜂腦內一氧化氮的生成與行為轉換或與視覺光適應有關。

Since nitric oxide (NO) was discovered to act as a signaling molecule in the nervous system (Garthwaite et al., 1988), NO has opened a new dimension in the signal processing of nervous system. Additionally, NO is involved in the development, olfactory system and visual system of insect. Nevertheless, there is so far no direct evidence to demonstrate the physiological function of NO in the insect visual system. In this study, the role of NO in the insect visual system was investigated in both histology and physiology. In the histology, NADPH-diaphorase was used to detect the expression of nitric oxide synthases (NOS) in the brain of honeybee (Apis mellifera L.). The existence of NOS in the lamina, medulla, chiasm, anterior optic tubercle, antennal lobe, α-lobe and α-lobe around was observed, and the expression of NOS in the brain areas was age-dependent. The expression of NOS in the lamina was significantly aroused from 12-day-old to 18-day-old bee workers. This result matches the timing of worker's leaving beehive. Therefore, it is very likely that NO participates in behavior change of bee workers. In the physiology, NO sensor was used to record the NO responses in medulla of Gryllus bimaculatus, lamina of A. mellifera and Chondracris rosea. The light-evoked NO responses in the three insect species were recorded, indicating that NO is generally involved with the light adaptation of insect vision system.
URI: http://hdl.handle.net/11455/30678
其他識別: U0005-0102200816554700
Appears in Collections:昆蟲學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.