Please use this identifier to cite or link to this item:
標題: 益達胺對蜜蜂取食行為與腦中生物胺之影響
Abnormality of foraging behavior and level changes of biogenic amines in the honeybee brain caused by imidacloprid treatment
作者: Chuang, Yu-Chen
出版社: 昆蟲學系所
引用: 廖龍盛。2005。實用農藥。得力興業股份有限公司。台中縣。1350頁。 Adamo, S. A., C. E. Linn, and R. R. Hoy. 1995. The role of neurohormonal octopamine during ‘fight or flight’ behaviors in the field cricket Gyrllus bimaculatus. J. Exp. Biol. 198: 1691-1700. Avishai-Eliner, S., K. L. Brunson, C. A. Sandman, and T. Z. Baram. 2002. Stressed-out, or in (utero)? Trends Neurosci. 25: 518-524. Bai, D., S. C. R. Lummis, W. Leicht, H. Breer, and D. B. Sattelle. 1991. Actions of imidacloprid and a related nitromethylene on cholinergic receptors of identified insect motor neurone. Pestic. Sci. 33: 197-204. Bailez, O. 1996. Études du comportement de butinage et des capacités de discrimination olfactive dans la relation abeille (Apis mellifera)-colza (Brassica napus L.), Thèse de Doctorat, Univ. Paris XIII, pp. 155. Barron, A. B., and G. E. Robinson. 2005. Selective modulation of task performance by octopamine in honey bee (Apis mellifera) division of labor. J. Comp. Physiol. A 191: 659-668. Barron, A. B., D. J. Schulz, and G. E. Robison. 2002. Octopamine modulates responsiveness to foraging-related stimuli in honey bee (Apis mellifera). J. Comp. Physiol. A 188: 603-610. Barron, A. B., R. Maleszka, R. K. Vander-Meer, and G. E. Robinson. 2006. Octopamine modulates honey bee dance behavior. Proc. Natl. Acad. Sci. USA 104: 1703-1707. Bendahou, N., C. Fleche, and M. Bounias. 1999. Biological and biochemical effects of chronic exposure to very low levels of dietary cypermethrin (Cymbush) on honeybee colonies (Hymenoptera: Apidae). Ecotoxicol. Environ. Saf. 44: 147-153. Bicker, G. 1999. Histochemistry of classical neurotransmitters in antennal lobs and mushroom bodies of the honeybee. Microsc. Res. Tech. 45: 174-183. Bloomquist, J. R. 1996. Ion channels as targets for insecticides. Annu. Rev. Entomol. 1: 163-190. Bonmatin, J. M., P. A. Marchand, R. Charvet, I. Moineau, E. R. Bengsch, and M. E. Colin. 2005. Quantification of imidacloprid uptake in maize crops. J. Agric. Food Chem. 53: 5336-5341. Bonmatin, J. M., I. Moineau, R. Charvet, C. Fleche, M. E. Colin, and E. R. Bengsch. 2003. A LC/APCI-MS/MS method for analysis of imidacloprid in soil, in plants, and in pollens. Anal. Chem. 75: 2027-2033. Bortolotti, L., R. Montanari, J. Marcelino, P. Medrzycki, S. Maini, and C. Porrini. 2003. Effect of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull. Insectology 56: 63-67. Brain, P. F, and M. Haug. 1992. Hormonal and neurochemical correlates of various forms of animal “aggression”. Psychoneuroendocrinology 17: 537-551. Brandes, C., M. Sugawa, and R. Menzel. 1990. High-performance liquid chromatography (HPLC) measurement of catecholamines in single honeybee brains reveal caste-specific differences between worker bees and queens in Apis mellifera. Comp. Biochem. Physiol. C 97: 53-57. Brown, C. S., and C. Nestler. 1985. Catecholamines and indolalkylamines. pp. 436-497. In: G. A. Kerkut, and L. I. Gilbert, eds. Comprehensive Insect Physiolgy: Biochemistry and Pharmacology. Pergamon Press, Oxford. Buckingham, S. D., B. Lapide, H. LE. Corronc, F. Grolleau, and D. B. Sattelle. 1997. Imidacloprid actions on insect neuronal acetylcholine receptors. J. Exp. Biol. 200: 2685-2692. Calderone, N. W., and R. E. Page. 1992. Effects of interactions among genotypically diverse nestmates on task specialization in the honey bee Apis mellifera (Hymenoptera: Apidae). Behav. Ecol. Sociobiol. 30: 219-226. Chen, Y. L. 2004. Dynamics of biogenic amines in the brain of bee under stress conditions. Master thesis from Dept. of Entomology, National Chung Hsing University. 54pp (in Chinese). Chentsova, N. A., N. E. Gruntenki, E.V. Bogomolova, N. V. Adonyeva, E. K. Karpova, and I. Yu. Rauschenbach. 2002. Stress response in Drosophila melanogaster strain inactive with decreased tyramine and octopamine contents. J. Comp. Physiol. B 172: 643-650. Colin, M. E., J. M. Bonmatin, I. Moineau, C. Gaimon, S. Brun, and J. P. Vermandere. 2004. A method to quantify and analyze the foraging activity of honey bees: relevance to the sublethal effects induced by systemic insecticides. Arch. Environ. Contam. Toxicol. 47: 387-395. Corbet, S. A. 2003. Nectar sugar content: estimating standing crop and secretion rate in the field. Apidol. 34: 1-10. Crane, E. 1975. Honey: a comprehensive survey, Heinemann, London. Cure, G., H. W. Schmidt, and R. Schmuck. 2000. Results of a comprehensive field research programme with the systemic insecticide imidacloprid (Gaucho). pp. 49-59. In: L. P. Belzunces, C. Pelissier, and G. B. Lewis, eds. Hazards of Pesticides to Bees. INRA, Avignon, France. Dacks A. M., T. Nickel, and B. K. Mitchell. 2003. An examination of serotonin and feeding in the flesh fly Neobellieria bullata (Sarcophagidae: Diptera). J. Insect Behav. 16: 1-21. Davenport, A. P., and P. D. Evans. 1984. Stress-induced changes in the octopamine levels of insect haemolymph. Insect Biochem. 14: 135-143. Decourtye, A., E. Lacassie, and M. H. Pham-Delègue. 2003. Learning performances of honeybee (Apis mellifera L.) are differentially affected by imidacloprid according to the season. Pest Manag. Sci. 59: 269-278. Decourtye, A., J. Devillers, S. Cluzeau, M. Charreton, and M.-H. Pham-Delègue. 2004a. Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol. Environ. Saf. 57: 410-419. Decourtye, A., C. Armengaud, M. Renou, J. Devillers, S. Cluzeau, M. Gauthier, and M.-H. Pham-Delègue. 2004b. Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic. Biochem. Phys.78: 83-92. Decourtye, A., J. Devillers, E. Genecque, K. L. Menach, H. Budzinski, S. Cluzeau, and M.-H. Pham-Delègue. 2005. Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch. Environ. Contam. Toxicol. 48: 242-250. Déglise, P., B. Grünewald, and M. Gauthier. 2002. The insecticide imidacloprid is a partial agonist of the nicotinic receptor of honeybee Kenyon cells. Neurosci. Lett. 321: 13-16. Desneux, N., A. Decourtye, and J.-M. Delpuech. 2006. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52: 81-106. Elber, A., H. Overbeck, K. Iwaya, and S. Tsuboi. 1990. Imidacloprid, a novel systemic nitromethylene a nalogue insecticide for crop protection. Brighton Crop Prot. Conf. Pests Dis. 2: 21-28. Elbert, A., B. Becker, J. Hartwig, and C. Erdelen. 1991. Imidacloprid-a new systemic insecticide. Pflanzenschutz-Nachr. Bayer 44: 113-136. Erber, J., and P. Kloppenburg. 1995. The modulatory effects of serotonin and octopamine in the visual system of the honey bee (Apis mellifera L.). J. Comp. Physiol. B 176: 111-118. Erber, J., T. Masuhr, and R. Menzel. 1980. Localisation of short-term memory in the brain of the bee, Apis mellifera. Physiol. Entomol. 5: 343-358. Erber, J., P. Kloppenburg, and A. Scheidler. 1993. Neuromdulation by serotonin and octopamine in the honeybee: behaviors, neuroanatomy and electrophysiology. Experientia 49: 1073-1083. Evans, P. D. 1980. Biogenic amine in the insect neurous system. Adv. Insect Physiol. 15: 317-322. Fahrbach, S. E. 2006. Structure of the mushroom bodies of the insect brain. Annu. Rev. Entomol. 51: 209-232. Farina, W. M., and J. A. Núñez. 1991. Trophallaxis in the honeybee, Apis mellifera (L.) as related to the profitability of food sources. Anim. Behav. 42: 389-394. Faucon, J.-P., C. Aurières, P. Drajnudel, L. Mathieu, M. Ribiere, A.-C. Martel, S. Zeggane, M.-P. Chauzat, and M. F. Aubert. 2005. Experimental study on the toxicity of imidacloprid given in syrup to honey bee (Apis mellifera) colonies. Pest Manag. Sci. 61: 111-125. Feenstra, M. G., M. Vogel, M. H. Botterblom, R. N. Joosten, and de J. P. Bruin. 2001. Dopamine and noradrenaline efflux in the rat prefrontal cortex after classical aversive conditioning to an auditory cue. Eur. J. Neurosci. 13: 1051-1054. Free, J. B. 1993. Insect Pollination. Academic, New York, NY, USA. Fried, I., C. L. Wilson, J. W. Morrow, K. A. Cameron, E. D. Behnke, L. C. Ackerson, and N. T. Maidment. 2001. Increased dopamine release in the human amygdale during performance of cognitive tasks. Nat. Neurosci. 4: 201-206. Fuchs, E., J. H. Dustmann, H. Stadler, and F. W. Schürmann. 1989. Neuroactive compounds in the brain of the honeybee during imaginal life. Comp. Biochem. Physiol. C 92: 337-342. Goldberg, F., B. Grünewald, H. Rosenboom, and R. Menzel. 1999. Nicotinic acetylcholine currents of cultured Kenyon cells from the mushroom bodies of the honey bee Apis mellifera. J. Physiol. 514: 759-768. Goosey, M. W., and D.J. Candy. 1980. The D-octopamine of the haemolymph of the locust Schistocerca gregria and its elevation during flight. Insect Biochem. 10: 393-397. Guez, D., L. P. Belzunces, and R. Maleszka. 2003. Effects of imidacloprid metabolites on habituation in honeybees suggest the existence of two subtypes of nicotinic receptors differentially expressed during adult development. Pharmacol. Biochem. Behav. 75: 217-222. Hammer, M., and R. Menzel. 1998. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn. Mem. 5: 146-156. Harris, J. W., and J. Woodring. 1992. Effects of stress, age, season, and source colony on levels of octopamine, dopamine and serotonin in the honey bee (Apis mellifera) brain. J. Insect Physiol. 38:29-35. Harris, J. W., and J. Woodring. 1995. Elevated brain dopamine levels associated with ovary development in queenless worker honeybees (Apis mellifera L.). Comp. Biochem. Physiol. C 111:271-279. Harris, J. W., J. Woodring, and J. R. Harbo. 1996. Effects of carbon dioxide on level of biogenic amines in the brain of queenless worker and virgin queen honey bees (Apis mellifera). J. Apic. Res. 35:69-78. Harvey, J. A. 1996. Serotonergic regulation of associative learning. Behav. Brain Res. 73: 47-50. Hassani, A. K. E., M. Dacher, M. Gauthier, and C. Armengaud. 2005. Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol. biochem. behav. 82: 30-39. Hasselmo, M. E. 1995. Neuromodulation of cortical function: modeling the physiological basis of behavior. Behav. Brain Res. 67: 1-27. Haynes, K. F. 1988. Sublethal effects of neurotoxic insecticides on insect behavior. Annu. Rev. Entomol. 33: 149-168. Heatherington, P. J., and B. J. G. Bolton. 1992. Pest control and crop establishment in sugar beet using an imidacloprid-based seed- treatment. Asp. Appl. Biol. 32: 65-72. Hirashima, A., and M. Eto. 1993. Chemical-induced changes in the biogenic amine levels of Periplaneta Americana L. Pestic. Biochem. Physiol. 46: 131-140. Hirashima, A., M. Jh. Sukhanova, and I. Yu. Rauschenbach. 2000. Biogenic amines in Drosophila virulis under stress conditions. Biosci. Biotechnol. Biochem. 65: 2625-2630. Huber, R., and A. Delago. 1998. Serotonin alter decisions to withdraw in fighting crayfish, Astacus astacus: the motivational concept revisited. J. Comp. Physiol. A 182: 573-583. Huber, R., M. Orzeszyna, N. Pokorny, and E. A. Kravitz. 1997a. Biogenic amines and aggression: experimental approaches in crustaceans. Brain Behav. Evol. 50: 60-68. Huber, R., R. Smith, A. Delago, K. Isajsson, and E. A. Krazitz. 1997b. Serotonin and aggressive motivation in crustaceans: altering the decision toretreat. Proc. Nat. Acad. Sci. 94: 5939-5942. Johansen, C. A. 1977. Pesticides and pollinators. Annu. Rev. Entomol. 22: 177-192. Kagabu, S. 1997. Chloronicotinyl insecticides-discovery, application and future perspective. Rev. Toxicol. 1: 75-129. Kagabu, S., and S. Medej. 1995. Stability comparison of imidacloprid and related compounds unders simulated sunlight, hydrolysis conditions, and to oxygen. Biosci. Biotechnol. Biochem. 59: 980-985. Kagabu, S., and T. Akagi. 1997. Quantum chemical consideration of photostability of imidacloprid and related compounds. J. Pestic. Sci. 22: 84-89. Kevan, P. G. 1999. Pollinators as bioindicators of the state of the environment: species, activity and diversity. Agricul. Ecosys. Environ. 74: 373-393. Kirchner, W. H. 1999. Mad-bee-disease? Sublethal effects of imidacloprid (Gaucho®) on the behaviour of honeybees. Apidol. 30: 422. Kleier, D., I. Holden, J. E. Casida, and L. O. Ruzo. 1985. Novel photoreactions of an insecticidal nitromethylene heterocycle. J. Agric. Food Chem. 33: 998-1000. Kozánek, M., M. Juráni, and E. Somogyiova. 1986. Influence of social stress on monoamine concentration in the central nervous system of the cockroach Nauphoeta cinerea (Blattodea), Acta. Entomol. Bohemslov. 83:171-181. Kravitz, E. A. 2000. Serotonin and aggression: insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. J. Comp. Physiol. A 186: 221-238. Kreissl, S., S. Eichmüller, G. Bicker, J. Rapus, and M. Eckert. 1994. Octopamine-like immunoreactivity in the brain and suboesophageal ganglia of the honeybee. J. Comp. Neurol. 348:583-595. Krohn, J. and E. Hellpointner. 2002. Environmental fate of imidacloprid. Pflanzenschutz-Nachr. Bayer 55: 1-25. Laurent, F. M., and E. Rathahao. 2003. Distribution of〔14C〕imidacloprid in sunflowers (Helianthus annuus L.) following seed treatment. J. Agric. Food Chem. 51: 8005-8010. Leibowitz, S. F., and J. T. Alexander. 1998. Hypothalmic serotonin in control of eating behavior, meal size, and body weight. Biol. Psychiatry 44: 851-865. Lent, C. M. 1985. Serotonergic modulation of the feeding behavior of the medicinal leech. Brain Res. Bull. 14: 643-655. Lin, L. I., C. C. Chiang, H. Y. Gong, C. Y. Cheng, P. P. Hwang, and C. F. Weng. 2003. Cellular distributions of creatine kinase in branchia of euryhaline tilapia (Oreochromis mossambicus). Am. J. Physiol. Cell Physiol. 284: C233-C241. Linn, C. E., and W. L. Roelofs. 1986. Modulatory effects of octopamine and serotonin on male sensitivity and periodicity of response to sex pheromone in the cabbage looper moth, Trichoplusia ni. Arch. Insect Biochem. Physiol. 3: 161-171. Liu, M.-Y., and J. E. Casida. 1993. High affinity binding of [3H]imidacloprid in the insect acetylcholine receptor. Pesticide Biochem. Physiol. 46: 40-46. Long, T. F., and L. L. Murdock. 1983. Stimulation of blowfly feeding behavior by octopaminergic drugs. Proc. Natl. Acad. Sci. USA 80: 4159-4163. Matsuda, K., M. Shimomura, M. Ihara, M. Akamatsu, and D. B. Sattelle. 2005. Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modeling studies. Biosci. Biotechnol. Biochem. 69: 1442-1452. Matsuda, K., S. D. Buckingham, D. Kleier, J. J. Rauh, M. Grauso, and D. B. Sattelle. 2001. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacolo. Sci. 22: 573-580. Medrzycki, P., R. Montanari, L. Bortolotti, A. G. Sabatini, S. Maini, and C. Porrini. 2003. Effects of imidacloprid administered in sub-lethal doses on honey bee behaviour. Laboratory tests. Bull. Insectology 56: 59-62. Menzel, R. 1999. Memory dynamics in the honeybee. J. Comp. Physiol. A 185: 185-340. Menzel, R., and U. Müller. 1996. Learning and memory in honeybees: from behavior to neural substrates. Annu. Rev. Neurosci. 19: 379-404. Menzel, R., J. Erber, and T. Masuhr. 1974. Learning and memory in the honeybee. pp. 195-217. In: L. Barton-Browne, ed. Experimental Analysis of Insect Behaviour. Springer, Berlin. Menzel, R., U. Greggers, and M. Hammer. 1993. Functional organization of appetitive learning and memory in a generalist pollinator, the honey bee. pp. 79-125. In: D. R. Papaj, and A. C. Lewis, eds. Insect Learning. Chapman Hall, New York. Mercer, A. 1987. Biogenic amine and the bee brain. pp. 244-252. In: R. Menzel, and A. Mercer, eds. Neurobiology and Behavior of Honeybee. Springer-Verlag, Berlin. Mercer, A. R., and R. Menzel. 1982. The effects of biogenic amines on conditioned and unconditioned responses ton olfactory stimuli in the honeybee Apis mellifera. J. Comp. Physiol. A 145: 363-368. Mercer, A. R., P. G. Mobbs, A. P. Davenport, and P. D. Evans. 1983. Biogenic amines in the brain of the honeybee, Apis mellifera. Cell Tissue Res. 234:655-677. Möbius, P., and H. Penzlin. 1993 Stress-induced release of octopamine in the American cockroach Periplaneta americana L. Acta. Biologica Hungarica. 44: 45-50. Mullins, J. W. 1993. Imidacloprid: a new nitroguanidine insecticide. ACS Symp. Ser. 254: 183-198. Murakami, S., and M. T. Itoh. 2001. Effects of aggression and wing removal on brain serotonin levels in male crickets, Gryllus bimaculatus. J. Insect Physiol. 47: 1309-1312. Murakami, S., and M. T. Itoh. 2003. Removal of both antennae influences the courtship and aggressive behaviors in male cricket. J. Neurobiol. 57: 110:118. Narahashi, T. 1996. Neuronal ion channels as the targets of insecticides. Pharmacol. Toxicol. 79: 1-14. Nauen, R., U. Ebbinghaus-Kintscher, and R. Schmuck. 2001a. Toxicity and nicotinic acetylcholine receptor interaction of imidacloprid and its metabolites in Apis mellifera (Hymenoptera: Apidae). Pest Manag. Sci. 57:577-586. Nauen, R., U. Ebbinghaus-Kintscher, A. Elbert, P. Jeschke, and K. Tietjen. 2001b. Acetylcholine receptors as sites for developing neonicotinoid insecticides. pp. 77-105. In: I. Ishaaya, ed. Biochemical sites of insecticide action and resistance. Berlin: Springer-Verlag. Pack, K., and M. Palkovits. 2001. Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr. Rev. 22: 502-548. Page, R. E., G. E. Robinson, M. K. Fondrk, and M. E. Nasr. 1995. Effects of worker genotypic diversity on honey-bee colony development and behavior (Apis mellifera L.). Behav. Ecol. Sociobiol. 36: 387-396. Pflumm W. 1969. Correlations between preening behaviour and foraging tendency in the honeybee. Z. Vergl. Physiol. 64: 1-36. Pham-Delègue, M.-H., A. Decourtye, L. Kaiser, and J. Devillers. 2002. Behavioural methods to assess the effects of pesticides on honey bees. Apidol. 33: 425-432. Porrini, C., A. G. Sabatini, S. Girotti, F. Fini, L. Monaco, G. Celli, L. Bortolotti, and S. Ghini. 2003. The death of honey bees and environmental pollution by pesticides: the honey bees as biological indicators. Bull. Insectology 56: 147-152. Pribbenow, B., and J. Erber. 1996. Modulation of antennal scanning in the honeybee by sucrose stimuli, serotonin and octopamine: behavior and electrophysiology. Neurobiol. Learn. Mem. 66: 109-120. Ramirez-Romero, R., J. Chaufaux, and M.-H. Pham Delègue. 2005. Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidol. 36: 601-611. Rauschenbach, I. Yu., L. I. Serova, and I. S. Timokhina. 1991. Change in the level of biogenic amines in two lines of D. virilis and their hybrids during ontogeny and under heat stress. Genetika (Moscow). 27: 657-667. Rauschenbach, I. Yu., M. Jh. Sukhanova, L. V. Shumnaya, N. E. Gruntenko, L. G. Grenback, T. K. Khlebodarova, and N. A. Chentsova. 1997. Role of DOPA decarboxylase and N-acetyl transferase in regulation of dopamine content in Drosophila virulis under normal and heat stress conditions. Insect Biochem. Mol. Biol. 27: 729-739. Raveret-Richter, M., and K. D. Waddington. 1993. Past foraging experience influences honey bee dance behaviour. Anim. Behav. 46: 123-128. Raymond-Delpech, V., K. Matsuda, B. M. Sattelle, J. J. Rauh, and D. B. Sattelle. 2005. Ion channels: molecular targets of neuroactive insecticides. Invert. Neurosci. 5: 119-133. Roces, F., and J. Blatt. 1999. Haemolymph sugars and the control of the proventriculus in the honey bee Apis mellifera. J. Insect Physiol. 45: 221-229. Roeder, T. 1994. Biogenic amine and their receptor in insects. Comp. Biochem. Physiol. C 107: 1-12. Roeder, T. 1999. Octopamine in invertebrates. Prog. Neurobiol. 59: 533-561. Sabban, E. L., and R. Kevtñanský. 2001. Stress-triggered activation of gene expression in catecholaminergic system: dynamics of transcriptional evens. Trends Neurosci. 24: 91-98. Sattelle, D. B., S. D. Buckingham, K. A. Wafford, S. M. Sherby, N. M. Bakry, A. T. Eldefrawi, M. E. Eldefrawi, and T. E. May. 1989. Actions of the insecticide 2-(nitromethylene)-tetrahydro-1,3-thiazine on insect and vertebrate nicotinic acetylcholine receptors. Proc. R. Soc. Lond., B, Biol. Sci. 237: 501-514. Schäfer, S., and V. Rehder. 1989. Dopamine-like immunoreactivity in the brain and suboesophageal ganglia of the honeybee. J. Comp. Neurol. 280:43-58. Scheiner, R., R. E. Page, and J. Erber. 2004. Sucrose responsiveness and behavioral plasticity in honey bees (Apis mellifera). Apidol. 35: 133-142. Scheiner, R., S. Plückhahn, B. Öney, W. Blenau, and J. Erber. 2002. Behavioural pharmacology of octopamine, tyramine and dopamine in honey bees. Behav. Brain Res. 136: 545-553. Schmuck, R. 1999. No causal relationship between Gaucho® seed dressing in sunflowers and the French bee syndrome. Pflanzenschutz-Nachr. Bayer 52: 257-299. Schmuck, R., R. Schöning, A. Stork, and O. Schramel. 2001. Risk posed to honeybees (Apis mellifera L., Hymenoptera) by an imidacloprid seed dressing of sunflowers. Pest Manag. Sci. 57: 225-238. Schricker, B., and W. P. Stephen. 1970. The effects of sublethal doses of parathion on honeybee behaviour. I. Oral administration and the communication dance. J. Apic. Res. 9:141-153. Schroeder, M. E., and R. F. Flattum. 1984. The mode of action and neurotoxic properties of the nitromethylene heterocycle insecticides. Pestic. Biochem. Physiol. 22: 148-160. Schulz, D. J., and G. E. Robison. 1999. Biogenic amines and division of labor in honey bee colonies: behaviorally related changes in the antennal lobes and age-related changes in the mushroom bodies. J. Comp. Physiol. A 184: 481-488. Schulz, D. J., and G. E. Robison. 2001. Octopamine influences division of labor in honeybee colonies. J. Comp. Physiol. A 187: 53-61. Schulz, D. J., A. B. Barron, and G. E. Robison. 2002a. Arole for octopamine in honey bee division of labor. Brain Behav. Evol. 60: 350-359. Schulz, D. J., M. M. Elekonich, and G. E. Robison. 2002b. Biogenic amines in the antennal lobes and the initiation and maintenance of foraging behavior in honey bees. J. Neurobiol. 54: 406-416. Schürmann, F. W., and N. Klemm. 1984. Serotonin-immunoreactive neurons in the brain of the honeybee. J. Comp. Neurol. 255:570-580. Schürmann, F. W., K. Elekes, and M. Geffard. 1989. Dopamine-like immunoreactivity in the bee brain. Cell Tiss. Res. 256: 399-410. Shackman, J. G., C. J. Watson, and R. T. Kennedy. 2004. High-throughput automated post-processing of separation data. J. Chromatogr. A 1040: 273-282. Seeley, T. D. 1982. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11: 287-293. Sokolowski, M. B. 2002. Social eating for stress. Nature 419: 893-894. Soloway, S. B., A. C. Henry, W. D. Kollmeyer, W. M. Padgwtt, J. E. Powell, S. A. Roman, C. H. Tieman, R. A. Corey, and C. A. Horne. 1979. Nitromethylene insecticides. pp. 206-217. In: H. Geissbühler, G. T. Brooks, and P. C., Kearney, eds. Advances in pesticide science. Vol. 2. Oxford: Pergamon. Stevenson, P. A., H. A. Hofmann, K. Schoch, and K. Schildberger. 2000. The fight and flight responses of crickets depleted of biogenic amines. J. Neurobiol. 43: 107-120. Suchail, S., L. Debrauwer, and L. P. Belzunces. 2003. Metabolism of imidacloprid in Apis mellifera. Pest Manag. Sci. 60: 291-296. Suchail, S., D. Guez, and L. P. Belzunces. 2000. Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environ. Toxicol. Chem. 19: 1901-1905. Suchail, S., D. Guez, and L. P. Belzunces. 2001. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ. Toxicol. Chem. 20: 2482-2486. Summers, C. H., and N. Greenberg. 1995. Activation of central biogenic amines following aggressive interactions in male lizards, Anolis carolinensis. Brain Behav. Evol. 45: 339-349. Takeda, K. 1961. Classical conditioned response in the honey bee. J. Insect Physiol. 6: 168-179. Taylor, D. J., G. E. Robinson, B. J. Logan, R. Laverty, and A. R. Mercer. 1992. Changes in brain amine levels associated with the morphological and behavioral development of the worker honeybee. J. Comp. Physiol. A 170: 715-712. Tezze, A. A., and W. M. Farina. 1999. Trophallaxis in the honeybee, Apis mellifera: the interaction between viscosity and sucrose concentration of the transferred solution. Anim. Behav. 57: 1319-1326. Thompson, H. M. 2003. Behavioural effects of pesticides in bees-their potential for use in risk assessment. Ecotoxicol. 12: 317-330. Tomizawa, M., and J. E. Casida. 2003. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu. Rev. Entomol. 48: 339-364. Tomizawa, M., and J. E. Casida. 2005. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 45: 247-168. Tomizawa, M., and I. Yamamoto. 1992. Binding of nicotinoids and the related compounds to the insect nicotinic acetylcholine receptor. J. Pestic. Sci. 17: 231-236. Tomizawa, M., and I. Yamamoto. 1993. Structure-activity relationships of nicotinoids and imidacloprid analogs. J. Pestic. Sci. 18: 91-98. Tomizawa, M., D. L. Lee, and J. E. Casida. 2000. Neonicotinoid insecticides: molecular features conferring selectivity for insect versus mammalian nicotinic receptors. J. Agric. Food Chem. 48: 6016-6024. Vandame, R., M. Meled, M. E. Colin, and L. Belzunces. 1995. Alteration of the homing flight in the honey bee Apis mellifera L. exposed to sublethal dose of deltamethrin. Environ Toxicol. Chem. 14: 855-860. Wagener-Hulme, C., J. C. Kuehn, D. J. Schulz, and G. E. Robison. 1999. Biogenic amines and division of labor in honey bee colonies. J. Comp. Physiol. A 184: 471-479. Waller, G. D. 1972. Evaluating responses of honey bees to sugar solutions using an artificial-flower feeder. Ann. Entomol. Soc. Am. 65: 857-861. Wallner, K. 2001. Test regarding effects of imidacloprid on honey bees. Les Colloques de l’INRA 98: 91-94. Wallner, K., A. Schur, and B. Stürz. 1999. Test regarding the danger of the seed disinfectant, Gaucho® 70WS, for honeybees. Apidol. 30: 423. Weng, C. F., C. C. Chiang, H. Y. Gong, M. C. Chen, W. T. Huang, C. Y. Cheng, and J. L. Wu. 2002a. Bioenergetics of adaptation to a salinity transition in euryhaline teleost (Oreochromis mossambicus) brain. Exp. Biol. Med. 227: 45-50. Weng, C. F., C. C. Chiang, H. Y. Gong, M. C. Chen, C. J. F. Lin, W. T. Huang, C. Y. Cheng, P. P. Hwang, and J. L. Wu. 2002b. Acute changes in gill Na+- K+- ATPase and creatine kinase in response to salinity changes in the euryhaline teleost, tilapia (Oreochromis mossambicus). Physiol. Biochem. Zool. 75: 29-36. Yamamoto, I. 1965. Nicotinoids as insecticide. pp. 231-260. In: R. L. Metcalf, ed. Advances in pest control research. Vol. 6. New York: Wiley. Yamamoto, I., M. Tomizawa, T. Saito, T. Miyamoto, E. C. Walcott, and K. Sumikawa. 1998. Structural factors contributing to insecticidal and selective actions of neonicotinoids. Arch. Insect Biochem. Physiol. 37: 24-32. Yamamoto, I., G. Yabuta, M. Tomizawa, T. Saito, T. Miyamoto, and S. Kagabu. 1995. Molecular mechanism for selective toxicity of nicotinoids and neonicotinoids. J. Pestic. Sci. 20: 33-40. Zwart, R., M. Oortgiesen, and H. P. Vijverberg. 1992. The nitromethylene heterocycle 1-(pyridin-3-yl-methyl)-2-nitromethylene-imidazolidine distinguishes mammalian from insect nicotinic receptor subtypes. Eur. J. Pharmac. Env. Toxic. Pharmac. 228: 165-169.
Previous studies had shown the honeybee (Apis mellifera L.) behavior was affected by imidacloprid at lower median lethal dose (LD50). These results suggest that bee colony may be weakened and the bee products may be reduced if the natural environment is contaminated by imidacloprid. In this study, the bees were fed with different concentrations of imidacloprid and observed the variation of the time interval between two visits at the same feeding site. Besides, this observation would be a method to assess the effects of insecticides on non-target insect. Under the normal situation, the time interval was less than 300 seconds. However, 15.2% of the bees shown abnormal foraging behavior (>300 sec.) when the concentration of imidacloprid was higher than 50 μg/L. At concentration of 600 μg/L, 34.4% of the tested bees were missing, and the number of missing bees would increase with the concentration. On the second day of the imidacloprid treatment, all the missing bees were back to the feeding site when the concentration were lower than 1600 µg/L, but some bees lose the recovery ability at concentration higher than 3000 μg/L. Abnormal foraging behavior was observed even if these missing bees were back to the feeding site on the second day. Besides, the foraging behavior of bees were not immediately affected by imidacloprid at lower concentration. But the bees shown abnormal foraging behavior within 10 min when the concentration of imidacloprid was higher than 1200 μg/L, indicating the concentration of imidacloprid was also related to the access time after imidacloprid ingestion. In physiology, on the other hand, when animals incur stress conditions, the level of stress hormone, such as octopamine (OA), was changed in the invertebrates. Therefore, the biogenic amines levels in the bee brain were measured to explain the abnormal foraging behavior after imidacloprid treatment. At concentration of 6000 μg/L, the OA and dopamine (DA) levels were significantly increased, but no significant difference in the serotonin level, suggesting that the abnormal foraging behavior of bees would relate to the OA and DA levels in the bee brain.

前人研究顯示益達胺在低於半致死劑量(LD50)的處理下即會導致蜜蜂(Apis mellifera L.)產生異常行為,此影響極可能是使蜜蜂族群衰弱以及蜂產品產量降低的原因之一。本研究藉由給予蜜蜂取食不同濃度的益達胺,觀察蜜蜂在往返巢房之間所需的來回時間是否發生改變,以作為往後評估藥劑對非標的昆蟲的毒性之方法。當僅給予取食50%蔗糖溶液時,蜜蜂皆保持正常的取食行為(來回時間少於300秒),但取食含有益達胺濃度為50 μg/L的蔗糖溶液後,則會導致15.2%的蜜蜂產生不正常的取食行為(來回時間多於300秒)。此外,濃度在600 μg/L時發現有34.4%的蜜蜂於當天消失不見,且消失的比例也隨著益達胺濃度升高而增加。於處理後的第二天觀察發現,濃度在1600 μg/L以下時,所有消失不見的蜜蜂皆能重新返回餵食器取食;但是在3000 μg/L以上時,則有少部份的蜜蜂喪失重新返回餵食器取食的能力。雖然這些消失不見的蜜蜂大部分皆能在處理後的第二天重新返回餵食器取食,但依然呈現不正常的取食行為。而在試驗中也發現益達胺在低劑量時並不會立即危害蜜蜂的取食行為,但是在1200 μg/L以上時,蜜蜂在10分鐘以內其取食行為即會受到益達胺影響,此結果顯示濃度高低與益達胺開始影響蜜蜂取食行為有關。另一方面,當生物受到逆境因子(stressor)刺激之後,stress hormone,如無脊椎動物中的鱆胺(octopamine, OA),其含量亦隨之改變。本研究利用高效率液相層析儀(HPLC)測量蜜蜂腦中生物胺包括OA、多巴胺(dopamine, DA)與血清素(serotonin, 5-HT)含量的變化,以探討是否與調控蜜蜂取食行為延遲的機制有關。結果發現在6000 μg/L處理下,腦內OA與DA的含量皆呈顯著增加,而5-HT則無顯著變化。由以上結果推測蜜蜂受到益達胺毒害後,其來回時間的改變應與腦中OA與DA含量變化有關。
其他識別: U0005-0102200816562500
Appears in Collections:昆蟲學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.