Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30681
標題: 長葉木薑子葉片多型性蟲癭之造癭癭蚋生物系統分類
Biosystematics of the cecidomyiid forming polymorphic galls on the leaves of Litsea acuminata (Bl.) Kurata
作者: Ling, Sheng-Feng
林聖豐
關鍵字: gall polymorphism;蟲癭多型性;Litsea acuminate (Bl.) Kurata;Bruggmanniella;gall midge;life history;geographical distribution;COI region;長葉木薑子;Bruggmanniella;癭蚋;生活史:地理分布;粒線體細胞色素細胞I
出版社: 昆蟲學系所
引用: 周樑鎰。1996。膜翅目分科圖索表(編譯)。台灣省農業試驗所。114頁 徐堉峰。2002。昆蟲學概論(編譯)。合計圖書出版社。476頁。 翁瑜鞠。2003。臺灣中部楨楠屬植物上常見的五種癭蚋蟲癭之比較。國立中興大學生命科學院碩士在職專班碩士論文。105頁。 梁立明、楊淑燕、楊正澤、陳明義。1999。關刀溪森林生態系變葉新木薑子與長葉木薑子蟲癭之發育。林業研究季刊 21:75-89頁。 陳文能。2009。臺灣樟科楨楠屬植物營養癭與癭蚋科Daphnephila造癭昆蟲之生物學及交互作用。國立中興大學昆蟲學研究所碩士論文。82頁。 楊曼妙。1999。造癭昆蟲生物學與進化。113-126頁。昆蟲分類及進化研討會專刊。國立臺灣大學昆蟲系及臺灣省立博物館出版。 楊淑燕。1996。關刀溪森林生態系下植群與昆蟲相之關係。國立中興大學植物學系碩士論文。105頁。 楊淑燕。2001。癭蚋蟲癭應用於台灣楨楠屬植物系統分類之研究。國立中興大學植物學系博士論文。109頁。 董景生。1997。樟科植物蟲癭多樣性及土肉桂木蝨蟲癭的形成。國立臺灣大學森林研究所資源保育組碩士論文。109頁。 蘇姿櫻。2002。台灣殼斗科植物癭。國立中興大學植物學系碩士論文。107頁。 Buhr, H. 1965. Bestimmingstabellen der gallen (Zoo- und Phytocecidian) an pflanzen mittelund nordeuropas. I and II. G. Fischer, Jena. Dreger-Jauffret, F., and J. D. Shorthouse. 1992. Diversity of gall-inducing insects and Their galls. pp. 8. In: Shorthouse, J. D., and O. Rohfritsch, eds., Biology of insect-induced galls. Oxford University Press, New York. 285 pp. Espírito-Santo, M. M., and G. W. Fernandes. 2007. How many gall-inducing insects are there on earth, and where they are? Annals of the Entomological Society of American 100: 95-99. Evenhuis, N. L. 1994. Catalogue of the fossil flies of the world (Insecta: Diptera). Backhuys Publishers, Leiden. 600 pp. Fulmek, L. 1968. Parasitinsekten der Insektengallen Europas. Beiträge zur Entomologie 18: 719-952. Fukatsu, T., S. Aoki, U. Kurosu, and H. Ishikawa. 1994. Phylogeny of Cerataphidini aphids revealed their symbiotic microorganisms and basic structure of their galls: implications for host–symbiont coevolution and evolution of sterile soldier castes. Zoological Science 11: 613-623. Gagné, R. J. 1989. The plant-feeding gall midges of North America. Cornell University Press, USA. 356 pp. Gagné, R. J. 1994. The gall midges of the Neotropical region. Cornell University Press, USA. 352 pp. Gagné, R. J. 2004. A catalog of the Cecidomyiidae (Diptera) of the world. The entomological society of Washington, Washington, D. C. 408 pp. Gagné, R. J. 2010. Update for a catalog of the Cecidomyiidae (Diptera) of the world. Digital version 1. Systematic Entomology Laboratory, Agricultural Research Service, USDA. Retrieved from: Http://www.ars.usda.gov/SP2UserFiles/ Place/12754100/Gagne_2010_World_Catalog_Cecidomyiidae.pdf Gagné, R. J., F. Posada, and Z. N. Gil. 2004. A new species of Bruggmanniella (Diptera: Cecidomyiidae) aborting young fruit of avocado, Persea americana (Lauraceae), in Colombia and Costa Rica. Proceedings of the Entomological Society of Washington 106: 547-553. Ganaha, T., J. Yukawa, N. Uechi, M. Nohara, and J. C. Paik. 2004. Identifications of some species of the genus Rhopalomyia (Diptera: Cecidomyiidae) inducing galls on Artemisia (Asteraceae) in Korea. Esakia 44: 45-55. Ganaha, T., M. Nohara, S. Sato, N. Uechi, K. Yamagishi, S. Yamauchi, and J. Yukawa. 2007. Polymorphism of axillary bud galls induced by Rhopalomyia longitubifex (Diptera: Cecidomyiidae) on Artemisia princeps and A. montana (Asteraceae) in Japan and Korea, with the designation of new synonyms. Entomological Science 10: 157-169. Gullan, P. J., and P. S. Cranston. 2000. The Insects: An Outline of Entomology. 2nd edition. Blackwell Science, Oxford. 470 pp. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis. http://www.mbio.ncsu.edu/BioEdit/bioedit.html Harris, K. M. 1975. The taxonomic status of the carob gall midge, Asphondylia gennadii (Marchal) comb. nov. (Diptera, Cecidomyiidae), and of other Asphondylia species recorded from Cyprus. Bulletin of Entomological Research 65: 377-380. Harris, K. M. 1994. Gall midges (Cecidomyiidae) classification and biology. pp. 201-211. In: M. A. J. Williams eds., Plant Galls. Oxford University Press, USA. 400 pp. Hawkins, B. A., and R. D. Geoden. 1984. Organization of a parasitoid community associated with a complex of galls on Atriplex spp. in southern California. Ecological Entomology 9: 271-292. Hebert, P. D. N., A. Cywinska, S. L. Ball, and J. R. Waard. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B 270 : 313-322. Jaschhof, M. 2000. Catotrichinae Subfam. N.: a re-examination of higher classification in gall midges (Diptera: Cecidomyiidae). Entomological Science 3: 639-652. Kehlmaier, C. 2006. The West-Palaearctic species of Jassidophaga Aczél and Verrallia Mik described up to 1966 (Diptera: Pipunculidae). Stuttgarter Beiträge zur Naturkunde, Series A 697: 1-34. Kehlmaier, C., and T. Assmann. 2010. Molecular analysis meets morphology-based systematics — a synthetic approach for Chalarinae (Insecta: Diptera: Pipunculidae). Systematic Entomology 35: 181-195. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111-120. Larew, H. G. 1992. Fossil galls. pp. 50-59. In: J. D. Shorthouse, and O. Rohfritsch, eds., Biology of Insect-induced Galls. Oxford University Press. USA. 296 pp. Maeda, N., S. Satô, and J. Yukawa. 1982. Polymodal emergence pattern of the machilus leaf gall midge, Daphnephila machilicola Yukawa (Diptera, Cecidomyiidae). Kontyû 50: 44-50. Maia, V. C., G. W. Fernandes, and L. A. Oliveira. 2010. A new species of Bruggmanniella (Diptera, Cecidomyiidae, Asphondyliini) associated with Doliocarpus dentatus (Dilleniaceae) in Brazil. Revista Brasileira de Zoologia 54: 225-228. Mani, M. S. 1964. Ecology of plant galls. Dr. W. Junk Publisher, the Hague, Netherlands. 434 pp. Mishima, M., and J. Yukawa. 2007. Dimorphism of leaf galls induced by Pseudasphondylia neolitseae (Diptera: Cecidomyiidae) on Neolitsea sericea (Lauraceae) and their distributional patterns in Kyushu, Japan. Bulletin of the Kyushu University Museum 5: 57-64. Möhn, E. 1961. Gallmücken (Diptera, Itonididae) aus El Salvador. 4. Zur Phylogenie der Asphondyliidi der neotropischen und holarktischen Region. Senckenbergiana Biologica 42: 131-330. Ohno, K., and J. Yukawa. 1984. Description of a new gall midge (Diptera, Cecidomyiidae) causing leaf galls on Camellia japonica L., with notes on its bionomics. Kontyû 52: 427-434. Orphanides, G. M. 1975. Biology of the carob midge complex, Asphondylia spp. (Diptera, Cecidomyiidae), in Cyprus. Bulletin of Entomological Research 65: 381-390. Price, P. W., G. W. Fernandes, and G. L. Waring. 1986. Hypotheses on the adaptive nature of galls. Proceedings of the Entomological Society Washington 88: 361-363. Price, P. W., G.W. Fernandes, and G. L.Waring. 1987. Adaptive nature of insect galls. Environmental Entomology 16: 15-24. Redfern, M. 1975. The life history and morphology of the early stages of the yew gall midge Taxomyia taxi (Inchbald) (Diptera: Cecidomyiidae). Journal of Natural History 9 : 513-533. Rohfritsch, O., and J. D. Shorthouse. 1982. Insect galls. pp. 131-152. In: K. Günter and J. S. Schell. eds., Molecular Biology of Plant Tumors. Academic Press. New York, USA. 615 pp. Ronquist, F., and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. Roskam, J. C. 1992. Evolution of the gall inducing guild. pp. 34-49. In: J. D. Shorthouse, and O. Rohfritsch, eds., Biology of insect-induced galls. Oxford University Press. USA. 285 pp. Sato, S., and J. Yukawa. 2004. Redescription of Hartigiola faggalli (Monzen) comb. n. (Diptera: Cecidomyiidae) inducing leaf galls on Fagus crenata (Fagaceae) in Japan. Esakia 44: 13-26. Stern, D. L. 1995. Phylogenetic evidence that aphids, rather than plants, determine gall morphology. Proceedings of the Royal Society of London, Series B 260: 85-89. Stireman III, J. O., H. Devlin, G. C. Timothy, and P. Abbot. 2010. Evolutionary diversification of the gall midge genus Asteromyia (Cecidomyiidae) in a multitrophic ecological context. Molecular Phylogenetics and Evolution 54 : 194-210. Stone, G. N., and J. M. Cook. 1998. The structure of cynipid oak galls: patterns in the evolution of an extended phenotype. Proceedings of the Royal Society of London, Series B 265: 979-988. Stone, G. N., and K. Schönrogge. 2003. The adaptive significance of insect gall morphology. Trends in Ecology and Evolution 18: 512-522. Sunose, T. 1985a. Population regulation of the euonymus gall midge Masakimyia pustulae Yukawa and Sunose (Diptera: Cecidomyiidae) by hymenopterous parasitoid. Researches on Population Ecology 27: 287-300. Sunose, T. 1985b. Geographical distribution of two gall type Masakimyia pustulae Yukawa and Sunose (Diptera: Cecidomyiidae) and reproductive isolation between them by a parasitoid. Kontyû 53: 677-689. Tabuchi, K., and A. Hiroshi. 2003. Polymodal emergence pattern and parasitoid composition of Asteralobia sasakii (Monzen) (Diptera: Cecidomyiidae) on Ilex crenata and I. integra (Aquifoliaceae). Applied Entomology Zoology 38: 493-500. Takasu, K., and J. Yukawa. 1984. Two-year life history of the Neolitsea leaf gall midge, Pseudasphondylia neolitseae Yukawa (Diptera, Cecidomyiidae). Kontyû 52: 596-604. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution (In Press). Tokuda, M. 2004. Illiciomyia Tokuda, a new genus for Illiciomyia yukawai sp. n. (Diptera : Cecidomyiidae : Asphondyliini) inducing leaf galls on Illicium anisatum (Illiciaceae) in Japan. Esakia 44: 1-11. Tokuda, M., and J. Yukawa. 2002. Morphological features of the mature larva and pupa of Pseudasphondylia rokuharensis Monzen (Diptera: Cecidomyiidae). Esakia 42: 11-17. Tokuda, M., and J. Yukawa. 2005. Two new and three known Japanese species of genus Pseudasphondylia Monzen (Diptera: Cecidomyiidae: Asphondyliini) and their life history strategies. Annals Entomological Society of America 98: 259-272. Tokuda, M., and J. Yukawa. 2006. First records of genus Bruggmanniella (Diptera: Cecidomyiidae: Asphondyliini) from Palaearctic and Oriental regions, with descriptions of two new species that Induce stem galls on Lauraceae in Japan. Annals Entomological Society of America 99: 629-637. Tokuda, M., and J. Yukawa. 2007. Biogeography and evolution of gall midges (Diptera: Cecidomyiidae) inhabiting broad-leaved evergreen forests in Oriental and eastern Palearctic Regions. Orient Insects 41: 121-139. Tokuda, M., M. M. Yang, and J. Yukawa. 2008a. Taxonomy and molecular phylogeny of Daphnephila gall midges (Diptera: Cecidomyiidae) inducing complex leaf galls on Lauraceae, with descriptions of five new species associated with Machilus thunbergii in Taiwan. Zoological Science 25: 533-545. Tokuda, M., J. Yukawa, and W. Suasa-ard. 2008b. Dimocarpomyia, a new Oriental genus of the tribe Asphondyliini (Diptera: Cecidomyiidae) inducing leaf galls on Longan (Sapindaceae). Annals Entomological Society of America 101: 301-306. Tokuda M., M. Nohara, J. Yukawa, S. Usuba, and M. Yukinari. 2004. Oxycephalomyia, gen. nov., and life history strategy of O. styraci comb. nov. (Diptera: Cecidomyiidae) on Styrax japonicus (Styracaceae). Entomological Science 7: 51-62. Tung, G. S., P. S. Yang, and M. M. Yang. 2006. Pattern analysis of galling host-plants in Taiwan. Taiwan Journal of Forest Science 21: 205-214. Uechi, N., and J. Yukawa. 2004. Description of Asphondylia itoi sp. n. (Diptera: Cecidomyiidae) inducing fruit galls on Distylium racemosum (Hamamelidaceae) in Japan. Esakia 44: 27-43. Uechi, N., M. Tokuda, and J.Yukawa. 2002. Distribution of Asphondylia gall midges (Diptera:Cecidomyiidae) in Japan. Esakia 42: 1-10. Uechi, N., J. Yukawa, and D. Yamaguchi. 2004. Host alternation by gall midges of the genus Asphondylia (Diptera: Cecidomyiidae). pp. 53-66. In: Evenhuis, N. L. and K.Y. Kaneshiro eds., Contributions to the Systematics and Evolution of Diptera. Bishop Museum Bulltin in Entomology. Japan. 222 pp. Uechi, N., M. Tokuda, J. Yukawa, F. Kawamura, K. K. Teramoto, and K. M. Harris. 2003.Confirmation by DNA analysis that Contarinia maculipennis (Diptera: Cecidomyiidae) is a polyphagous pest of orchids and other unrelated cultivated plants. Bulletin of Entomological Research 93: 545-551. Weis, A. E. 1982. Use of a symbiotic fungus by the gall maker Asteromyia carbonifera to inhibit attack by the parasitoid Torymus capite. Ecology 63: 1602-1605. Weiss, K. A. 2000. Illustrated guide to the plant galls of the Roemer Arboretum at SUNY Geneseo. SUNY Geneseo Journal of Science and Mathematics 1: 16-32. Yamagishi, K. 1980. Platygastrid parasites of willow gall midges in Japan (Hymenoptera, Proctotrupoidea). Esakia 15: 161-175. Yang, M. M., and G. S. Tung. 1998. The diversity of insect-induced galls on vascular plants in Taiwan: a preliminary report. pp. 44-53. In: G. Csóka, W. J. Mattson, G. N. Stone and P. W. Price eds., The biology of gall-inducing arthropods. USDA For. Serv. North Central For. Expt. Sta. Gen. Tech. Rep. 329 pp. Yukawa, J. 1971. A revision of the Japanese gall midges (Diptera: Cecidomyiidae). Kagoshima University, Japan. 203 pp. Yukawa, J. 1974. Descriptions of new Japanese gall midges (Diptera, Cecidomyiidae, Asphondyliidi) causing leaf galls on Lauraceae. Kontyû 42: 293-304. Yukawa, J. 1983. Arthropod community centred upon the neolitsea leaf gall midge, Pseudasphondylia neolitseae Yukawa (Diptera, Cecidomyiidae) and its host plant, Neolitsea sericea (Blume) Koidz. (Lauraceae). Memoirs of the Faculty of Agriculture Kagoshima University 19: 89-96. Yukawa, J. 1987. Life history stratigies of univoltine gall making Cecidomyiidae (Diptera) in Japan. Phytophaga 1: 121-139. Yukawa, J. 2000. Synchronization of gallers with host plant phenology. Population Ecology 42: 105-113. Yukawa, J., and H. Masuda. 1996. Insect and Mite Galls of Japan in Colors. Zenkoku Nôson Kyôiku Kyôkai, Tokyo. 826 pp. Yukawa, J., and N. Ohsaki. 1988. Adult behavior of the aucuba fruit midge, Asphondylia aucubae Yukawa and Ohsaki (Diptera, Cecidomyiidae). Kontyû 56: 645-652. Yukawa, J., and O. Rohfritsch. 2005. Biology and ecology of gall-inducing Cecidomyiidae (Diptera). pp. 273-304. In: A. Raman, C. W. Schaefer and T. M. Withers eds., Biology, Ecology, and Evolution of Gall-Inducing Arthropods, Vol. 1, Science Publications, USA. 429 pp. Yukawa, J., N. Uechi, M. Horikiri, and M. Tokuda. 2003. Description of the soybean pod gall midge, Asphondylia yushimai sp. n. (Diptera: Cecidomyiidae), a major pest of soybean and findings of host alternation. Bulletin of Entomological Research 93: 73-86.
摘要: 
造癭昆蟲與植物長期交互作用下,常發展對其寄主植物、植物組織之專一性,而其引發之蟲癭形態亦常與造癭物種之身分對應,因此有許多研究指出,蟲癭形態可視為造癭昆蟲表型之延伸或判斷造癭物種之依據。於台灣產長葉木薑子葉片曾記錄杯狀及傘狀蟲癭,但於野外調查發現,除上述所提兩種形態之外,尚存在一系列中間型形態,此類變異極大之蟲癭是否為單一造癭物種引發? 引發蟲癭形態變異之機制為何? 則有待釐清。本研究以引發杯狀蟲癭之癭蚋(cup-shaped gall midge,本文以CGM代稱)及引發傘狀蟲癭之癭蚋 (umbrella-shaped gall midge,本文以UGM代稱)做為材料,以分類鑑定、生物學調查及蟲癭形態學比較,檢驗蟲癭形態是否反應造癭物種遺傳特性或其他生物及非生物特性。於分類鑑定方面,結合形態特徵及分子證據,顯示幼蟲胸骨、蛹頭角、雄性生殖器等特徵均相似,且兩類癭蚋之COI遺傳距離差異不超過1.6%,確立為單一物種,並處理為一新種。於生物學方面,兩類癭蚋之生活史並無一致的現象,推論與蟲癭多型性之成因無關;於寄生蜂調查方面,雖然寄生蜂物種及數量受到樣區不同而有差異,但仍可發現UGM之寄生比率(40%以上)高於CGM (20%~40%);於地理分布調查顯示,CGM遍布台灣全島,而UGM僅分布於台灣中部;於蟲癭形態發育顯示,杯狀蟲癭(6月)發育時間較傘狀蟲癭(8月)早;於植物體分布顯示,兩類蟲癭大部分(88%)分布於葉片背面,於不同年生枝條之著生比率則隨樣區而有所不同,顯示蟲癭於植物體分布狀況與蟲癭形態無直接關連;於蟲癭形態發育時期(10~11月)之溫溼度記錄顯示,杯狀蟲癭均產於日均溫(13.75℃及14.74℃)及日平均溼度 (83.35%及84.42%)較低之環境,而傘狀蟲癭則產於日均溫 (16.74℃及17.58℃)及平均溼度(91.77%及95.77%)較高之環境。綜合結果顯示 (1) 由分子分析、寄生比率、蟲癭形態及地理分布顯示此種癭蚋於各樣區具有分化的趨勢,且各樣區之分化可反應於(三種杯狀及兩種傘狀)蟲癭形態上。此外,由分子資料推測,僅分布於台灣中部且寄生率高之傘狀蟲癭為較原始的蟲癭型式,而於全台分布且寄生率較低的杯狀蟲癭為衍生之蟲癭型式。(2) 寄生比率、兩類蟲癭發育時間、溫濕度記錄及海拔分布等資料均顯示與蟲癭多型性有相關性,並進一步推測溫度、溼度或是溫濕度聯合效應可能為影響蟲癭多型性之重要因子。(3) 蟲癭形態雖可作為造癭物種之判斷依據,但仍需對該造癭物種所引發之蟲癭形態變異有所瞭解,以避免產生誤判造癭物種之結果。

The specificity of the host species, plant organ, and morphology of gall inducing insect are the consequences of long term interactions between gall inducing insects and their host plant. Previous studies have suggested that gall morphology could be regarded as the extensions of phenotypes of galling species, and henthforth use as an indication for identifying gallers. The cup-shaped and umbrella-shaped galls on Litsea acminata in Taiwan have been recorded in previous studies. However, there are a series of intermediate forms exist besides cup-shaped and umbrella-shaped galls in our field research. Are these different types of galls induced by a single species? What kind of mechanisms could cause the variation of gall morphology? In this study, cup-shaped gall midge (CGM) and umbrella-shaped gall midge (UGM) were collected for the study of their taxonomy, comparative biology and gall morphology to test whether gall shape reveal the genetic bases of gall inducers and to understand its relationship with other biological and non-biological factors. In the taxonomic study, morphological traits showed that the larval sterna spatuala, pupal apical horn, and male genitalia of CGM and UGM were similar. Besides, the COI distance variation of CGM and UGM was less than 1.6%. It indicates that CGM and UGM are the same species. It is described as a new species here. In the biological studies, life history within and among populations of CGM and UGM varied which suggests that life history were not associate with gall polymorphism. The parasitism ratio of UGM (more than 40%) were higher than CGM (20~30%), even the parasitoid species number and abundance were affected by environmental factors at different sampling areas. In geographical distribution, CGM distributed all over Taiwan wheras UGM could be only found in central Taiwan. The gall developmental time of CGM (June) was earlier than UGM (August) and they both mainly grew on the lower surface of leaves (about 88%). Examination of galls developed on branches of different years showed that it didn't relate to the gall types. The recording of temperature and humidity during the growth phase of galls, October and November, reveals that cup-shaped galls located at the place with lower average temperature (13.75℃and 14.74℃) and humidity (83.35% and 84.42%), while umbrella-shaped galls were located at the place where both average temperature (average 16.74℃and 17.58℃) and humidity (91.77% and 95.77%) were higher. In summarize, (1) The results of molecular analysis, parasitic rate, gall morphology, and geographical distribution, indicate that the gall midge diversifies among different populations of the same species, and the diversification reflects on the morphological variation of each gall type. Besides, the umbrella-shaped gall which distributed only in central Taiwan and with higher rate of parasitism might be the primitive type, and the cup-shaped gall which widely distributed in Taiwan and with lower rate of parasitism would be derived type. (2) The data of parasitism, gall developmental time, altitude, temperature and humidity were related to the gall polymorphism and further inference could be made that temperature, humidity, or hygrothermal effects are important factors affecting gall polymorphism. (3) the overall results suggest that gall morphology may provide a basis for determining species of gall inducers but it is important to understand the variation of gall morphology to avoid misidentification of galling species.
URI: http://hdl.handle.net/11455/30681
其他識別: U0005-1008201116521900
Appears in Collections:昆蟲學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.