Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30684
標題: 以尿酸酶基因序列及表現研究類酵母菌共生物與飛蝨 (Hemiptera: Delphacidae) 之關係
Relationship between the yeast-like symbiote and planthoppers (Hemiptera: Delphacidae) based on uricase gene sequences and expression
作者: 賴啟芳
Lai, Chi-Fang
關鍵字: http://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-0402200814180100;類酵母菌共生物;尿酸酶基因;親緣關係;表現
出版社: 昆蟲學系所
引用: 路光暉,侯豐男。1984。水稻黑尾葉蟬體內共生物之組織學研究。興大昆蟲學報。17 : 15-25。 路光暉,侯豐男。1989。幾種抗生素對水稻黑尾葉蟬的影響。興大昆蟲學報。21: 23-34。 Aksoy, S. 1995. Molecular analysis of the endosymsionts of tsetse flies: 16S rDNA locus and over-expression of a chaperonin. Insect Mol. Biol. 4: 23-29. Ao, J-Q, E. Ling, and X-Q Yu. 2008. A toll receptor from Manduca sexta is in respond to Escherichia coli infection. Mol. Immunol. 45: 543-552. Baker, J. E., and P. T. M. Lum. 1973. Development of aposymbiosis in larve of Sito (Coleoptera: Curculionidae) by dietary treatment with antibiotics. J. Stored Prod. Res. 9: 241-245. Bao, S. N., E. W. Kitajima, G. Callani, and R. Dallai. 1996. Virus-like particles and rickettsia-like organisms in male germ and cyst cells of Bemisia tabaci (Homoptera, Aleyrodidae). J. Invertebra. Pathol. 67: 309-311. Bosco, D., L. Lagetto, P. Leoncini, P. Saracco, B. Raccah, and C. Marzachi. 2007. Interrelationships between “Candidatus Phytoplasma asteris” and its leafhopper vectors (Homoptera: Cicadellidae). J. Econ. Entomol. 100: 1504-1511. Bourgoin, T., J. D. Steffen-Campbell, and B. C. Campbell. 1997. Molecular phylogeny of Fulgoromorpha (Insecta, Hemiptera, Archaeorrhyncha). The enigimatic Tettigometridae: evolutionary affiliations and historical biogeography. Cladistics 13: 207-224. Bowen, B. W., W. S. Nelson, and J. C. Avise. 1993. A molecular phylogeny for marine turtles: trait mapping, rate assessment, and conservation relevance. Proc. Natl. Acad. Sci. USA. 90: 5574-5577. Breenwer, J. A. J., R. Stouthamer, S. M. Barns, D. A. Pelletier, W. G. Weinsburg, and J. H. Werren. 1992. Phylogeny of cytoplasmic incompatability microorganisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Mol. Biol. 1: 25-36. Brooks, M. A. 1954. Certain aspects of the histochemistry metabolic significance in the intracellular bodies (bacteroids) of cockroaches. Ph. D. Thesis, University of Minnesoda, 63pp. Buchner, P. 1965. Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New York. 909pp. Campbell, B. C., T. S. Bragg, and C. E. Turner. 1992. Phylogeny of symbiotic bacteria of four weevil species (Coleoptera: Curculionidae) based on analysis pf 16S ribosomal DNA. Insect Biochem. Mol. Biol. 22: 415-421. Castrillo, L. A., L. Thomsen, P. Juneja, and A. E. Hajek. 2007. Detection and quantification of Entomophaga maimaiga resting spores in forest soil using real-time PCR. Mycol. Res. 111: 324-331. Charles, H., A. Heddi, J. Guillaud, C. Nardon, and P. Nardon. 1997. A molecular aspect of symbiotic interactions between the weevil Sitophilus oryzae and its endosymbiotic bacteria: over-expression of a chaperonin. Biochem. Biophys. Res. Communic. 239: 769-774. Chen, C. C., L. L. Cheng, and R. F. Hou. 1981a. Studies on the intracellular yeast-like symbiote in the brown planthopper, Nilaparvata lugens Stal. II. Effects of antibiotics and elevated temperature on the symbiotes and their host. Z. Ang. Entomol. 92: 440-449. Chen, C. C., L. L. Cheng, C. C. Kuan, and R. F. Hou. 1981b. Studies on the intracellular yeast-like symbiote in the brown planthopper, Nilaparvata lugens Stal. I. Histological observations and population changes of the symbiote. Z. Ang. Entomol. 91: 321-327. Chen, D. Q., B. C. Campbell, and A. H. Purcell. 1996. A new rickettsia from herbivorous insect, the pea aphid Acyrthosiphon pisum (Harris). Current Microbiol. 33: 123-128. Chen, X., S. Li, and S. Askoy. 1999. Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J. Mol. Evol. 48: 49-58. Cheng, D. J., and R. F. Hou. 1996. Ultrastructure of the yeast-like endosymbiont in the brown planthopper, Nilaparvata lugens (Stal) (Homoptera: Delphacidae). Endocytobiosis Cell Res. 11:107-117. Cheng, D. J., and R. F. Hou. 2001. Histological observations on transovarial transmission of yeast-like symbiotes in the brown planthopper, Nilaparvata lugens. Tissue Cell 33: 273-279. Cheng, D. J., and R. F. Hou. 2005. Determination and distribution of a female-specific protein in the brown planthopper, Nilaparvata lugens Stal (Homoptera: Delphacidae). Tissue Cell 37: 37-45. Chiel, E., Y. Gottlieb, E. Zchori-Fein, N. Mozes-Daube, N. Katzir, M. Inbar, and M. Ghanim. 2007. Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bull. Entomol. Res. 97: 407-413. Dijkstra, D, J. M. Rubio, and R. J. Post. 2003. Resolving relationships over a wide taxonomic range in Delphacidae (Homoptera) using the COI gene. Systematic Entomol. 28: 89-100. Douglas, A. E. 1988a. On the source of sterols in the green peach aphid, Myzus persicae, reared on holidic diets. J. Insect Physiol. 34: 403-408. Douglas, A. E. 1988b. Experimental studies on the mycetome symbiosis in the leafhopper Euscelis incisus. J. Insect Physiol. 34: 1043-1053. Douglas, A. E., and A. F. G. Dixon. 1987. The mycetocyte symbiosis of aphids: variation with age and morph in virginoparae of Megoura viciae and Acyrthosiphon pisum. J. Insect Physiol. 33: 109-113. Fukatsu T., and H. Ishikawa. 1996. Phylogenic position of yeast-like symbiont of Hamiltonaphis styraci (Homoptera, Aphididae) based on 18S rDNA sequence. Insect Biochem. Mol. Biol. 26: 383-388. Fukatsu, T., and N. Nikoh. 1998. Two intracellur symbiotic bacteria from the mulberry psyllid Anomoneura mori (Insecta, Homoptera). Appl. Environ. Microbiol. 64: 3599-3606. Fukatsu, T., and N. Nikoh. 2000. Endosymbiotic microbiota of the bamboo pseudococcid Antonina crawii (Insect, Homoptera). Appl. Environ. Microbiol. 66: 643-650. Fukatsu, T., K. Watanabe, and Y. Sekiguchi. 1998. Specific detection of intracellular symbiotic bacteria of aphids by oligonucleotide-probed in situ hybridization. Appl. Entomol. Zool. 33: 461-472. Gottlieb, Y., M. Ghanim, E. Chiel, D. Gerling, V. Portnoy, S. Steinberg, G. Tzuri, A. Horowitz, E. Belausov, N. Mozes-Daube, S. Kontsedalov, M. Gershon, S. Gal, N. Katzir, and E. Zchori-Fein. 2006. Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl. Environ. Microbiol. 72: 3646-3652. Heddi, A., H. Charles, C. Khatchadourian, G. Bonnot, and P. Nardon. 1998. Molecular characterization of the principal symbiotic bacteria of the weevil Sitophilus oryzae: a peculiar G+C content of an endocytobiotic DNA. J. Mol. Evol. 47: 52-61. Hinde, R. 1971. The control of the mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae, and Macrosiphum rosae. J. Insect Physiol. 17: 1971-1980. Hongoh, Y., and H. Ishikawa. 2000. Evolutionary studies on uricases of fungal endosymbionts of aphids and planthoppers. J. Mol. Evol. 51: 265-277. Hongoh, Y., T. Sasaki, and H. Ishikawa. 2000. Cloning, sequence analysis and expression in E. coli of the gene encoding a uricase from the yeast-like symbiont of the brown planthopper, Nilaparvata lugens. Insect Biochem. Mol. Biol. 30: 173-182. Houk, E. J., and G. W. Griffiths. 1980. Intracellular symbiotes of the Homoptera. Annu. Rev. Entomol. 25: 161-187. Hypas, V., and S. Askoy. 1997. Phylogenetic characterization of two transovarially transmitted endosymbionts of the bedbug Cimex lectularius (Hemiptera: Cimicidae). Insect Mol. Biol. 6: 301-304. Ishikawa, H. 1984a. Characterization of the protein species synthesized in vivo and in vitro by an aphid endosymbiont. Insect Biochem. 14: 417-425. Ishikawa, H. 1984b. Age-dependent regulation of protein synthesis in anaphid endosymbiont by the host insect. Insect Biochem. 14: 427-433. Ishikawa, H., and M. Yamaji. 1985. Symbionin, an aphid endosymbiont-specific protein-I production of insect deficient in symbiont. Insect Biochem. 15: 155-163. Kitajima, E. W., T. Groot, V. M. Novelli, J. Freitas-Astua, G. Alberti, and G. J. de Moraes. 2007. In situ observation of the Cardinium symbionts of Brevipalpus (Acari: Tenuipalpidae) by electron microscopy. Exp. Appl. Acarol. 42: 263-271. Koyama, K. 1985. Nutritional physiology of the brown rice planthopper, Nilaparvata lugens Stal (Hemiptera: Delphacidae). I. Effect of sugars on nymphal development. Appl. Entomol. Zool. 20: 292-298. Kusumi, T, Y. Suwa, H. Kita, and S. Nasu. 1980. Properties of intracellular symbiotes of the smaller brown planthopper Laodelphax striatellus Fallen (Hemiptera: Delphacidae). Appl. Entomol. Zool. 15: 129-134. Lee, Y. H., and R. F. Hou. 1987. Physiological roles of a yeast-like symbiote in reproduction and embryonic development of the brown planthopper, Nilaparvata lugens Stal. J. Insect Physiol. 33: 851-860. Li, H-M, V. Margan, W. M. Muir, L. L. Murdock, and B. R. Pittendrich. 2007. Changes in Drosophila melanogaster midgut proteins in respond to dietary Bowman-Birk inhibitor. Insect Mol. Biol. 16: 539-549. Martinez-Torres, D., C. Buades, A. Lattore, and A. Moya. 2001. Molecular systematics of aphids and their primary endosymbionts. Mol. Phylogen. Evol. 20: 437-449. Moran, N., and P. Baumann. 1994. Phylogenetics of cytoplasmically inherited microorganisms of arthropods. TREE. 9: 15-20. Munson, M. A., P. Baumann, M. A. Clark, L. Bauman, N. A. Moran, D. J. Voegtelin, and B. C. Campbell. 1991. Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J. Bacteriol. 173: 6321-6324. Nakabachi, A., and H. Ishikawa. 2001. Expression of host S-adenosylmethionine decarboxylase gene and polyamine composition in aphid bacteriocytes. Insect Biochem. Mol. Biol. 31: 491-496. Nasir, H., and H. Noda. 2003. Yeast-like symbiotes as a sterol source in anobiid beetles (Coleoptera, Anobiidae): possible metabolic pathways from fungal sterols to 7-dehydrocholesterol. Arch. Insect Biochem. Physiol. 52: 175-182. Noda, H., K. Wada, and T. Saito. 1979. Sterols in Laodelphax striatellus with special reference to the intracellular yeastlike symbiotes as a sterol source. J. Insect Physiol. 25: 443-447. Noda, K., N. Nakashima, and M. Koizumi. 1995. Phylogenetic position of yeast-like symbiotes of rice planthoppers based on partial 18S rDNA sequences. Insect Biochem. Mol. Biol. 25: 639-646. Novakova, E., and V. Hypsa. 2007. A new Sodalis lineage from bloodsucking fly Craterina melbae (Diptera, Hippoboscoidea) originated independently of the tsetse flies symbiont Sodalis glossinidius. FEMS Microbiol. Letter 269: 131-135. Page, R. D. M. 2001. TreeView 1.6.6. Perotti, M. A., J. M. Allen, D. L. Reed, and H. R. Braig. 2007. Host-symbiont interactions of the primary endosymbiont of human head and body lice. Feder. Amer. Soc. Exp. Biol. 21: 1058-1066. Prosser, W. A., S. J. Simpson, and A. E. Douglas. 1992. How an aphid (Acyrthosiphon pisum) symbiosis responds to variation in dietary nitrogen. J. Insect Physiol. 38: 301-307. Roeland, C. H. J., A. Moya, and A. Latorre. 1997. Putative evolutionary origin of plasmids carrying the genes involved in leucine biosynthesis in Buchnera aphidicola. J. Bacteriol. 179: 4768-4777. Sakurai, M, K. Ryuichi, T. Tsuchida, X-Y. Meng, and T. Fukatsu. 2005. Rickettsia symbiont in the pea aphid Acyrthosiphon pisum: novel cellular tropism, effect on host fitness, and interaction with the essential symbiont Buchnera. Appl. Environ. Microbiol. 71: 4069-4075. Sandstrom, J., and N. Moran. 1999. How nutritionally imbalances is phloem sap for aphids? Entomologia Exp. Appl. 91: 203-210. Sasaki, T., and H. Ishikawa. 1995. Production of essential amino acids from glutamate by mycetocyte symbionts of the pea aphid, Acyrthosiphon pisum. J. Insect Physiol. 41: 41-46. Sasaki, T., M. Kawamura, and H. Ishikawa. 1996. Nitrogen recycling in the brown planthopper, Nilaparvata lugens : involvement of yeast-like endosymbionts in uric acid metabolism. J. Insect Physiol. 42: 125-129. Sasaki, T., T. Aoki, H. Hayashi, and H. Ishikawa. 1990. Amino acid composition of the honeydew of symbiotic and aposymbiotic pea aphids Acyrthosiphon pisum. J. Insect. Physiol. 36: 35-40. Shinkai, T., N. Matsumoto, Y. Kobayashi, and T. Fukatsu. 2007. Ecological characterization of three different phylogenetic groups belonging to the cellulolytic bacterial species Fibrobacter succinogenes in the rumen. Appl. Environ. Micobiol. 73: 4308-4316. Starr, M. P. 1975. A generalized scheme for classifying organismic associations. In “Symbiosis” (Jennings, D. H. and D. L. Lee, eds.). pp. 1-20. Cambridge University Press, Cambridge, England. Stouthamer, R., J. A. J. Breeuwer, R. F. Luck, and J. H. Werren. 1993. Molecular identification of microorganisms associated with parthenogenesis. Nature 361: 66-68. Suh, S-O, H. Noda, and M. Blackwell. 2001. Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage. Mol. Biol. Evol. 18: 995-1000. Swofford, D. L. 1998. PAUP : Phylogenetic Analysis Using Parsiminy, Ver. 4.0 Beta. Tanada, Y., and H. Kaya. 1993. Insect Pathology. Academic Press, San Diego, CA. 666pp. Telang, A, J. Sandrom, E. Dyreson, and N. A. Moran. 1999. Feeding damage by Diuraphis noxia results in a nutritionally enhanced phloem diet. Entomologia Exp. Appl. 91: 403-412. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882. Urban, J. M., and J. R. Cryan. 2007. Evolution of the planthoppers (Insecta: Hemiptera: Fulgoroidea). Mol. Phylogen. Evol. 42: 556-572. Uterman, B. M., P. Bauman, and D. L. Mclean. 1989. Pea aphid symbiont relationships established by analysis of 16S rRNAs. J. Bacteriol. 171: 2970-2974. Yang, C. T. 1989. Delphacidae of Taiwan (II) (Homoptera : Fulgoroidea). NSC, ROC. Taipei. 334pp. Yang, J. T., and C. T. Yang. 1986. Delphacidae of Taiwan (I) Asiracinae and Tribe Tropidocephalini (Homoptera : Fulgoroidea). in “Collected Papers on Homoptera of Taiwan”. Taiwan Museum, Taipei, 203pp. Yeh, W. B., and C. T. Yang. 1999. Fulgoromorpha phylogeny based on 28S rDNA nucleotide sequences. Chinese J. Entomol. 11: 87-111. Yeh, W. B., C. T. Yang, and C. F. Hui. 1998. Phylogenetic relationships of the Tropiduchidae-group (Homoptera: Fulgoroidea) of planthoppers inferred through nucleotide sequences. Zool. Stud. 37: 45-55.
摘要: 
Investigations on taxonomic position and phylogeny of the yeast-like symbiote (YLS) in Delphacidae (Insecta: Hemiptera) were carried out using paraffin sectioning and analyses of uricase gene sequences in the brown planthopper, Nilaparvata lugens. Uricase gene was known to be present in the YLS of the planthoppers (Hemiptera: Delphacidae). Based on uricase gene sequences, the YLS of Delphacidae belongs to Ascomycota in Fungi, and forms a monophylic group. By phylogenetic analysis, coevolutionary relationship between YLS and Delphacidae hosts was suggested, whereas the relationship among the symbiotes of their host insects from the same host plant was placed the same clade. By in situ hybridization, except compound eye and muscle, uricase gene was found in most body cavity, especially abundant in fat body syncytia and also in ovaries and oviposotional tubes. Real-time PCR analyses of the YLS uricase DNA levels and mRNA transcriptions in different developmental stages of N. lugens showed that the uricese DNA was more abundant in adult females than in adult males and the mRNA was declined in the older nymphal stages. After heat treatment at 35oC, the transcription of uricase mRNA was lower in the heat-treated insects than those incubated at room temperature for 24 h. However, the mRNA was restored to the normal level after heat treatment for 48 and 72 h. These results indicated that heat treatment could reduce the activity of YLS uricase gene. The YLS had coevolutionary relationship with Delphicidae hosts based on uricase gene sequence analyses. The DNA and mRNA transcriptions of uricase gene were age dependent, and reduced by heat treatment at 35oC.

以組織切片與類酵母菌共生物 (yeast-like symbiote, YLS) 尿酸酶之基因序列分析,研究稻蝨科 (Delphacidae) 蟲類體內共生物之親緣關係,發現稻蝨科成員體內共生物並不相同,其中11種具有類酵母共生物的種類,進一步利用褐飛蝨 (Nilaparvata lugens) 尿酸酶 (uricase) 基因序列分析其親緣關係。試驗結果顯示稻蝨科YLS之其分類地位屬真菌綱的Ascomycota門,且為單源群,基於Delphacidae內分類群間YLS之相似性,及其YLS之親緣關係系統樹,稻蝨科昆蟲之YLS與寄主昆蟲間具有共同演化之現象,但於蠟蟬總科 (Fulgoroidea) 之各科間,YLS與寄主昆蟲之演化並不一致。同類寄主植物之昆蟲的共生物並無法形成同一單系群,故認為YLS之親緣與昆蟲寄主植物之形成並非同源,可能是長期共同演化下之適應現象。利用in situ hybridization偵測以石蠟包埋之Tarophagus colocasiae及Peregrinus maidis體內尿酸酶基因之位置,結果發現此基因伴隨共生物存在,普遍分布於蟲體各部位含有共生物之體腔內,但在不含YLS之複眼及肌肉等組織則未觀察到,除脂肪體懷菌融合體 (syncytium) 外,在其產卵管、卵巢等組織中累積有較多該基因之DNA。抽取不同齡期褐飛蝨之總體DNA與RNA,再以即時定量PCR分析DNA量及其表現量。結果發現蟲體內的尿酸酶基因DNA量,以雌成蟲及老熟若蟲最多,雄成蟲最少,而體內尿酸酶之mRNA之表現量,則以雌成蟲與初齡若蟲體內最多,老熟若蟲體內最少。將褐飛蝨以35oC 高溫處理1 h之後,再繼續飼育,發現熱處理後在24 h體內mRNA之量最少,但能逐漸回復,至第48及72 h則與對照組相近,此結果顯示熱處理褐飛蝨具有降低共生物尿酸酶基因之功能。本研究結果顯示,YLS尿酸酶基因之DNA量及其表現與齡期有關,且因熱處理會降低其表現,故對於稻蝨科昆蟲具有重要之生理功能。由序列分析之結果亦顯示,YLS與稻蝨科寄主昆蟲間具有某種程度之共同演化關係。
URI: http://hdl.handle.net/11455/30684
其他識別: U0005-0402200814180100
Appears in Collections:昆蟲學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.