Please use this identifier to cite or link to this item:
標題: 黃條葉蚤之生活史與其對植物誘導反應之研究
Life history of Phyllotreta striolata (Fabricius) (Coleoptera: Chrysomelidae) and its induced plant responses
作者: 林曉民
Lin, Shiao-Min
出版社: 昆蟲學系所
引用: Agrawal, A. A. 1998. Induced responses to herbivory and increased plant performance. Science 279: 1201-1202. Agrawal, A. A. 1999. Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80: 1713-1723. Baldwin, I. T., Z. P. Zhang, N. Diab, T. E. Ohnmeiss, E. S. McCloud, G. Y. Lynds, and E. A. Schmelz. 1997. Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris. Planta 201: 397-404. Benrey, B. and R. F. Denno. 1997. The slow-growth-high-mortality hypothesis: a test using the cabbage butterfly. Ecology 78: 987-999. Bezemer, T. M., and N. M. van Dam. 2005. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20: 617-624. Bezemer, T. M., R. Wagenaar, N. M. van Dam, and F. L. Wackers. 2003. Interactions between above- and belowground insect herbivores as mediated by the plant defense system. OIKOS 101: 555-562. Bezemer, T. M., R. Wagenaar, N. M. van Dam, W. H. van Der Putten, and F. L. Wackers. 2004. Above- and below-ground terpenoid aldehyde induction in cotton, Gossypium herbaceum, following root and leaf injury. J. Chem. Ecol. 30: 53-67. Blossey, B. and T. Hunt-Joshi. 2003. Below herbivory by insect: influence on plant and aboveground herbivores. Ann. Rev. Entomol. 48: 521-547. Bown, A. W., D. E. Hall, and K. B. MacGregor. 2002. Insect footsteps on leaves stimulate the accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll fluorescence and superoxide production. Plant Physiol. 129: 1430-1434. Burgess, L. and J. E. Wiens. 1976. Maintaining a colony of the striped flea beetle, Phyllotreta striolata (Coleoptera: Chrysomlidae), in the greenhouse. Can. Ent. 108: 53-55. Chaerle, L. and D. Van der Straeten. 2000. Imaging techniques and the early detection of plant stress. Trends Plant Sci. 5: 495-501. Chen, C. C., F. J. Shy, W. F. Ko, T. F. Hwang, and C. S. Lin. 1991. Studies on the ecology and control of Phyllotreta striolata (Fab.) (II)Developmental duration and population fluctuation. Plant Prot. Bull. 33: 354-363. (in Chinese) Chen, C. C., W. H. Ko and C. L. Lee. 1990. Studies on the ecology and control of Phyllotreta striolata (Fab.) (I) morphology, rearing method, behaviors and host plants. Research Bulletin of Taichung District Agric. Research and Ext. Stn. 27: 37-48. (in Chinese) Chen, S. and E. Andreasson. 2001. Update on glucosinolate metabolism and transport. Plant Physiol. Biochem. 39: 743-758. Chen, Y. Z., L. Lin, C. W. Wang, C. C. Yeh, and S. Y. Hwang. 2004. Response of two Pieris (Lepidoptera: Pieridae) species to fertilization of a host plant. Zool. Stud. 43: 778-786. van Dam, N. M., L. Witjes, and A. Svatoš. 2004. Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New Phytol. 161: 801-810. van Dam, N. M., C. E. Raaijmakers, and W. H. van der Putten. 2005. Root herbivory reduces growth and survival of the shoot feeding specialist Pieris rapae on Brassica nigra. Entomol. Exp. Appl. 115: 161-170. English-Loeb, G., M. J. Stout, and S. S. Duffey. 1997. Drought stress in tomatoes: changes in plant chemistry and potential nonlinear consequences for insect herbivores. Oikos. 79: 456-468. Fahey, J. W., A. T. Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56: 5-51. Feeny, P., K. L. Paauwe, and N. J. Demong. 1970. Flea beetles and mustard oils: host plant specificity of Phyllotreta cruciferae and P. striolata adults (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 63: 832-841. Felton, G. W. 1996. Nutritive variation quality of plant protein: sources of and insect herbivore responses. Arch. Insect Biochem. Physiol. 32: 107-130. Feng, H. T., Y. J. Huang, and J. C. Hsu. 2000. Insecticide susceptibility of cabbage flea beetle (Phyllotreta striolata (Fab.)) in Taiwan. Plant Prot. Bull. 42: 67-72. (in Chinese) Heeb, A., B. Lundegardh, T. Ericesson, and G. P. Savage. 2005. Effect of nitrate-, ammonium-, and organic-nitrogen-based fertilizers on growth and yield of tomatoes. J. Plant Nutr. Soil Sci. 168: 123-129. Heil, M. 2002. Ecological costs of induced resistance. Curr. Opin. Plant Biol. 5: 345-350. Hsu, Y. T. 2006. Performance of Pieris rapae crucivora on cabbage with organic and inorganic fertilization. Master thesis. Entomol. Dept. of National Chung Hsing Univ. Taichung, Taiwan. 52 pp. (in Chinese) Huang, Y. J. 2003. Studies on infection of the striped flea beetle, Phyllotreta striolata (Fabricius), with the entomopathogenic nematode, Steinernema abbasi and the white muscardine fungus, Beauveria bassiana. Master thesis. Entomol. Dept. of National Chung Hsing Univ. Taichung, Taiwan. 80 pp. (in Chinese) Hung, C. C., and J. S. Hwang. 2000. Influence of cylinder-type sticky traps baited with different mustard oil lures on Phyllotreta striolata (Coleoptera: Chrysomelidae). Chinese J. Entomol. 20: 201-204. (in Chinese) Karban, R., A. A. Agrawal, J. S. Thaler, and L. S. Adler. 1999. Induced plant responses and information content about risk of herbivory. Trends Ecol. Evol. 14: 443-447. Karban, R. and J. H. Myers. 1989. Induced plant responses to herbivory. Ann. Rev. Ecol. Syst. 20: 331-348. Kliebenstein, D. J., J. Kroymann, and T. Mitchell-Olds. 2005. The glucosinolate-myrosinase system in an ecological and evolutionary context. Curr. Opin. Plant Biol. 8: 264-271. Lang, C. A. 1958. Simple microdetermination of Kjeldahl nitrogen in biological materials. Analytical Chem. 30: 1692-1694. Lee, S. S. 1953. The occurrence of turnip flea beetle and its control experiment. Agric. Res. 4:30-35. (in Chinese) Li, Q., S. D. Eigenbrode, G. R. Stringam, and M. R. Thiagarajah. 2000. Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. J. Chem. Ecol. 26: 2401-2419. Lower, S. S., S. Kirshenbaum, and C. M. Orians. 2003. Preference and performance of a willow-feeding leaf beetle: soil nutrient and flooding effects on host quality. Oecologia 136: 402-411. Martin, N. and C. Muller. 2007. Induction of plant responses by a sequestering insect: Relationship of glucosinolate concentration and myrosinase activity. Basic Appl. Ecol. 8: 13-25. Masters, G. J. and V. K. Brown. 1992. Plant-mediated interaction between two spatially separated insects. Funct. Ecol. 6: 175-179. Mattson, W. A. 1980. Herbivory in relation to plant nitrogen content. Ann. Rev. Ecol. 11: 19-38. McKey, D. 1974. Adaptive patterns in alkaloid physiology. Am. Nat. 108: 305-320. Miyasakaa, S. C., J. D. Hansenb, T. G. McDonaldc, and G. K. Fukumoto. 2007. Effects of nitrogen and potassium in kikuyu grass on feeding by yellow sugarcane aphid. Crop Prot. 26: 511-517. Murray, P. J., L. A. Dawson, and S. J. Grayston. 2002. Influence of root herbivory on growth responses and carbon assimilation by white clover plants. Appl. Soil Ecol. 20: 97-105. Pivnick, K. A., R. J. Lamb, and D. Reed. 1992. Response of flea beetles, Phyllotreta spp., to mustard oils and nitriles in field trapping experiments. J. Chem. Ecol. 18: 863-873. Ratzka, A., H. Vogel, D. J. Klieberstein, T. Mitchell-Olds, and J. Kroymann. 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. USA 99: 11223-11228. Redman, A. M., D. F. Cipollini Jr., and J. C. Schultz. 2001. Fitness costs of jasmonic acid-induced defense in tomato, Lycopersicon esculentum. Oecologia 126: 380-385. Schoonhoven, L. M., J. J. A. van Loon, and M. Dicke. 2005. Insect-plant biology. 2ed ed. Oxford University Press. New York, USA. 421 pp. Shearer, J. F., M. J. Grodowitz, and D. G. McFarland. 2007. Nutritional quality of Hydrilla verticillata (L.F.) Royle and its effects on a fungal pathogen Mycoleptodiscus terrestris (Gerd.) Ostazeski. Biol. Control 41: 175-183. Shelton, A. L. 2005. Within-plant variation in glucosinolate concentrations of Raphanus sativus across multiple scales. J. Chem. Ecol. 31: 1711-1732. Slansky, F. Jr and G. S. Wheeler. 1992. Caterpillars'' compensatory feeding response to diluted nutrients leads to toxic allelochemical dose. Entomol. Exp. Appl. 65: 171-186. Smith, E. H. 1985. Revision of the genus Phyllotreta Chevrolat of America north of Mexico part I. the maculate species (Coleoptera: Chrysomelidae, Alticinae). Fieldiana, Zool. 28: 1-168. Tao, C. C., and S. S. Lee. 1951. Report on the insecticidal control of turnip flea beetle of crucifer. Agric. Res. 2: 61-68. (in Chinese) Thaler, J. S., M. J. Stout, R. Karban, and S. S. Duffey. 1996. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 22: 1767-1781. Traw, M. B. and T. E. Dawson. 2002. Reduced performance of two specialist herbivores (Lepidoptera: Pieridae, Coleoptera: Chrysomelidae) on new leaves of damaged black mustard plants. Environ. Entomol. 31: 714-722 . Trumble, J. T., D. M. Kolodny-Hirsch, and I. P. Ting. 1993. Plant compensation for arthropod herbivory. Ann. Rev. Entomol. 38:93-119. Turlings, T. C. J., J. H. Loughrin, P. J. McCall, U. S. R. Rose, W. J. Lewis, and J. H. Tumlinson. 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. USA 92: 4196-4174. Wadleigh, R. W. and S. Yu. 1988. Metabolism of an organothiocyanate allelochemical by glutathione transferase in three Lepidoptera insects. J. Econ. Entomol. 81: 776-780. Wang, S. S., C. D. Ko, and W. S. Chen. 1993. Control on insect pests of vegetables under pipehouse. Plant Protection Society of the Republic of China. Special Publication New no. 1. pp. 209-219. (in Chinese) Wheeler, G. S. and M. D. Halpern. 1999. Compensatory responses of Samea multiplicalis larvae when fed leaves of different fertilization levels of the aquatic weed Pistia stratiotes. Entomol. Exp. Appl. 92: 205-216. Wittstock U., N. Agerbirk, E. J. Stauber, C. E. Olsen, M. Hippler, T. Mitchell-Olds. J. Gershenzon, and H. Vogel. 2004. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl. Acad. Sci. USA 101: 4859-4864.
本研究目的在探討植物誘導反應,利用黃條葉蚤(Phyllotreta striolata (Fabricius))成蟲與幼蟲分別取食植物葉片與根部的習性,對青江菜(Brassica chinensis L. cv. Ching-geeng)進行地上部與地下部的傷害處理,觀察植物生長情形與分析植物中營養成分的變化,再以斜紋夜盜蛾(Spodoptera litura (Fabricius))幼蟲的生長表現作為植物營養程度指標,探討植物中誘導反應的模式。過去飼養黃條葉蚤的方法較不適用於大量飼育,經改良後,飼育效率的提高,有助於在植物誘導反應上的研究。在25℃環境下飼育,卵期平均為3.94 ± 0.05天,卵發育至成蟲所需時間平均為26.41 ± 0.34天,存活率為9.80 ± 2.22%,成蟲壽命平均為76.4天,雌蟲平均產卵量達700顆。當青江菜經過地下部傷害處理後,植株葉片數平均減少1.13片且上位葉乾重較對照組少0.5 g。在植物營養物質方面,地下部與地上部傷害處理後,植物下位葉中蛋白質含量平均增加30.49 mg/g,但經地下部傷害後上位葉中蛋白質含量則減少19.56 mg/g。斜紋夜盜蛾四齡蟲短期餵食試驗中,取食經傷害處理之植物上位葉,齡期平均延長0.5天;而取食下位葉的結果,地下部與地上部傷害處理組生長表現皆優於對照組,但差異未達顯著。植物在防禦昆蟲的策略上除了生成防禦物質外,本研究的結果亦顯示營養物質分布的變化,影響了取食植物不同部位葉片的昆蟲生長表現。由此可知,在植物防禦中,營養物質的分布也許也扮演著重要的角色。

The aim of this study is to evaluate the plant induced responses by using adult (leaf chewing) and larval (root chewing) feeding habit of Phyllotreta striolata on Brassica chinensis L. cv. Ching-Geeng plant. After above- and below-ground herbivore treatments, plant growth and nutrition content were measured. In addition, growth performance of Spodoptera litura was used as an indicator of plant's induced resistance. The rearing method of P. striolata was first modified to increase the efficiency of production. The results indicated that under 25℃, the egg period is about 3.94 day, premature development time is about 26.41 day, and the premature survival rate is about 9.8%. The adult longevity is 76.4 day and female adult fecundity is 700 eggs in average. The B. chinensis L. cv. Ching-Geeng plant decrease 1.13 in leaf number and 0.5g immature leaf dry weight after treated with belowground herbivory by P. striolata when compare to control group. After herbivory treatments, the protein contents increase 30.49 mg/g in mature leave, but decrease 19.56 mg/g in immature leaf after belowground treatment. In short-term feeding test of S. litura, insect fed on immature leaf of herbivore-treated plant had extended 0.5 day in duration and had lower relative growth rate. When insect fed on mature leaf, the performance was better on above-ground treated plant than on below-ground one and the control plant was the worst. Except producing defensive compounds, plants may modify plant nutrient allocation to against insect herbivores. My results prove that the distribution of plant nutrition may also play an important role in plant defense.
其他識別: U0005-0507200717371700
Appears in Collections:昆蟲學系

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.