Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30690
DC FieldValueLanguage
dc.contributor杜武俊zh_TW
dc.contributor唐立正zh_TW
dc.contributor王重雄zh_TW
dc.contributor賴世展zh_TW
dc.contributor.advisor侯豐男zh_TW
dc.contributor.advisorRoger Feng-Nan Houen_US
dc.contributor.author吳孟學zh_TW
dc.contributor.authorMeng-ShiueWuen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T07:39:55Z-
dc.date.available2014-06-06T07:39:55Z-
dc.identifierU0005-0908200711115300zh_TW
dc.identifier.citation施淑蓮。2005。綠殭菌毒素對斜紋夜蛾幼蟲之影響。國立中興大學昆 蟲學系碩士論文。59 pp.。 Abraham, M. C., and S. Shaham. 2004. Death without caspases, caspases without death. Trends Cell Biol. 14: 184-193. Ahmad, M., S. M. Srinivasula, L. J. Wang, G. Litwack, T. Fernandes-Alnemri, and E. S. Alnemri. 1997. Spodoptera frugiperda caspase-1, a novel insect death protease that cleaves the nuclear immunophilin FKBP46, is the target of the beculovirus antiapoptotic protein p35. J. Biol. Chem. 272: 1421-1424. Ameisen, J. C., and A. Capron. 1991. Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immunol. Today 12: 102-105. Baehrecke, E. H. 2002. How death shape life during development. Nat. Rev. Mol. Cell Biol. 3: 779-787. Beidler, D. R., M. Tewari, P. Friesen, G. Poirier, and V. Dixit. 1995. The baculovirus p35 protein inhibits Fas- and tumor necrosis factor-induced apoptosis. J. Biol. Chem. 270: 16526-16528. Benedict, C. A., P. S. Norris, and C. F. Ware. 2002. To kill or be killed: viral evasion of apoptosis. Nature Immunol. 3: 1013-1018. Bergmann, A., J. Agapite, and H. Steller.1998. Mechanisms and control of programmed cell death in invertebrates. Oncogene 17: 3215-3223. Birnbaum, M. J., R. J. Clem, and L. K. Miller. 1994. An - 35 - apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J. Viol. 68: 2521-2528. Budihardjo, I., H. Oliver, M. Lutter, X. Luo, and X.Wang. 1999. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15: 269-290. Bump, N. J., M. Hackett, M. Hugunin, S. Seshagiri, K. Brady, P. Chen, C. Ferenz, S. Franklin, T. Ghayur, P. Li, P. Licari, J. Mankovich, L. Shi, A. H. Greenberg, L. K. Miller, and W. W. Wong. 1995. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 269: 1885-1888. Cacere, C. R., C. C. Romano, M. J. S. M. Giannini, A. J. S. Duate, and G. Benard. 2002. The role of apoptosis in the antigen-specific T cell hyporesponsiveness of Paracoccidioidomycosis patients. Clin. Immunol. 105: 215-222. Cheng, E. H., M. C.Wei, S.Weiler, R. A. Flavell, T. W. Mak, T. Lindsten, and S. J. Korsmeyer. 2001. Bcl-2 and Bclx (L) sequester BH3 domain-only molecules preventing BAX-and BAK-mediated mitochondrial apoptosis. Mol. Cell 8: 705-711. Chen, P., A. Rodriguez, R. Erskine, T. Thach, and J. M. Abrams. 1998. Dredd, a novel effector of the apoptosis activators reaper, grim, and hid in Drosophila. Dev. Biol. 201: 202-216. Clem, R. J., M. Fechheimer, and L. K. Miller. 1991. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254: 1388-1390. Clem, R. J., J. M. Hardwick, and L. K. Miller. 1996. Anti-apoptotic genes of baculoviruses. Cell Death Differ. 3: 9-16. - 36 - Cohen, G. M. 1997. Caspases: the executioners of apoptosis. Biochem. J. 326: 1-16. Crook, N. E., R. J. Clem, and L. K. Miller. 1993. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 67: 2168-2174. Cryns, V. and J. Yuan. 1998. Proteases to die for. Genes Dev. 12: 1551-1570. Degterev, A., M. Boyce, and J. Yuan. 2003. A decade of caspases. Oncogene 22: 8543-8567. Dorstyn, L., P. A. Colussi, L. M. Quinn, H. Richardson, and S. Kumar. 1999. DRONC, an ecdysone-inducible Drosophila caspase. Proc. Natl. Acad. Sci., U. S. A. 96: 4307-4312. Dorstyn, L., S. H. Read, L. M. Quinn, H. Richardson, and S. Kumar. 1999. DECAY, a novel Drosophila caspase related to mammalian caspase-3 and caspase-7. J. Biol. Chem. 274: 30778-30783. Ellis, H. M., and H. R. Horvitz. 1986. Genetic control of programmed cell death in the nematode C. elegans. Cell 44: 817-829. Filler, S. G., and D. C. Sheppard. 2006. Fungal invasion of normally non-phagocytic host cells. PLoS Pathogens 2: 1099-1105. Fraser, A. G., and G. I. Evan. 1997. Identification of a Drosophila melanogaster ICE/CED-3-related protease, drICE. EMBO J. 16: 2805-2813. Fuentes-Prior, P. and G. S. Salvesen. 2004. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J. 384: 201-232. Gao, L. A., and Y. A. Kwaik. 1999a. Activation of caspase-3 during - 37 - Legionella pneumophila-induced apoptosis. Infect. Immun. 67: 4886–4894. Gao, L.-Y., and Y. A. Kwaik. 1999b. Apoptosis in macrophages and alveolar epithelial cells during early stages of infection by Legionella pneumophila and its role in cytopathogenicity. Infect. Immun. 67: 862-870. Green, D. R., and G. I. Evan. 2002. A matter of life and death. Cancer Cell 1: 19-30. Gross, A., J. M. McDonnel, and S. J. Korsmeyer. 1999. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 13: 1899-1911. Groux, H., G. Torpier, D. Monté, Y. Mouton, A. Capron, and J. C. Ameisen. 1992. Activation-induced death by apoptosis in CD4+ T cells from human immunodeficiency virus-infected asymptomatic individuals. J Exp. Med. 175: 331-340. Hay, B. A., D. A. Wassarman, and G. M. Rubin. 1995. Drosophila homologs of baculovirus inhibitor of apoptosis proteins fuction to block cell death. Cell 83: 1253-1262. Hay, B. A., J. R. Huh, and M. Guo. 2004. The genetics of cell death: approaches, insights and opportunities in Drosophila. Nature 5: 911-922 Hengartner, M. O., R. E. Ellis, and H. R. Horvitz. 1992. Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494-499. Holdom, D. G., and G. van de Klashorst. 1986. Inexpensive culture media and methods for Nomuraea rileyi. J. Invertebr. Pathol. 48: 264-248. - 38 - Huang, Q., Q. L. Deveraux, S. Maeda, G. S. Salvesen, H. R. Stennicke, B. D. Hammock, and J. C. Reed. 2000. Evolutionary conservation of apoptosis mechanisms: lepidopteran and baculoviral inhibitor of apoptosis proteins are inhibitors of mammalian caspase-9. Proc. Natl. Acad. Sci., U. S. A. 97: 1427-1432. Huang, Q. H., Q. L. Deveraux, S. Maeda, H. R. Stennicke, B. D. Hammock, and J. C. Reed. 2001. Cloning and characterization of an inhibitor of apoptosis protein (IAP) from Bombyx mori. Biochim. Biophys. Acta Mol. Cell Res. 1499: 191-198. Hughes, A. L. 2002. Evolution of inhibitors of apoptosis in baculoviruses and their insect hosts. Infect. Genet. Evol. 2: 3-10. Ignoffo, C. M. 1981. The fungus Nomuraea rileyi as a microbial insecticide. pp. 513-537. In: Microbial Control of Pest and Plant Diseases. 1970-1981. (H. D. Burges, ed.), Academic Press, New York. James, E. R., and D. R. Green. 2004. Manipulation of apoptosis in the host-parasite interaction. Trends Parasitol. 20: 280-287. Kerr, J. F., A. H. Wyllie, and A. R. Currie. 1972. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26: 239-257. Lavrik, I. N., A. Golks, and P. H. Krammer.2005. Caspases: pharmacological manipulation of cell death. J. Clin. Invest. 115: 2665-2672. Lawen, A. 2003. Apoptosis- an introduction. BioEssays 25: 888-896. Liston, P., N. Roy, K. Tamai, C. Lefebvre, S. Baird, G. Cherton-Horvat, R. Farahani, M. McLean, J. E. Ikeda, A. MacKenzie, and R. G. Korneluk. 1996. Suppression of apoptosis in mammalian cells by NAIP and a - 39 - related family of IAP genes. Nature 379: 349-353. Liu, Q., and N. Chejanovsky. 2005. Spodoptera littoralis caspase-1, a Lepidopteran effector caspase inducible by apoptotic signaling. Apoptosis 10: 787-795. Manji, G. A., and P. D. Friesen. 2001. Apoptosis in motion- An apical, P35-insensitive caspase mediates programmed cell death in insect cell. J. Biol. Chem. 276: 16704-16710. Martinou, I., P. A. Fernandez, M. Missotten, E. White, B. Allet, R. Sadoul, and J. C. Martinou. 1995. Viral proteins E1B19K and p35 protect sympathetic neurons from cell death induced by NGF deprivation. J. Cell Biol. 128: 201-208. Mattson, M. P. 2000. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol. 1: 120-129. Mazet, I., and A. Vay. 1995. Hirsutellin A, a toxic protein produced in vitro by Hirsutella thompsomii. Microbiology 141: 1343-1348. Mendes-Giannini, M. J. S., S. A. Hanna, J. L. M. da Silva, P. F. Andreotti, L. R. Vincenzi, G. Benard, H. L. Lenzi, and C. P. Soares. 2004. Invasion of epithelial mammalian cells by Paracoccidioides brasiliensis leads to cytoskeletal rearrangement and apoptosis of the host cell. Microb. Infec. 6: 882-891. Messmer, U. K., and J. Pfeilschifter. 2000. New insights into the mechanism for clearance of apoptotic cells. Bioassays 22: 878-881. Mohamed, A. K. A., P. P. Sikorowski, and J. V. Bell. 1977. Susceptibility of Heliothis zea larvae to Nomuraea rileyi at various temperatures. J. Invertebr. Pathol. 30: 414-417. Moon, D. O., S. Y. Park, M. S. Heo, K. C. Kim, C. Park, W. S. Ko, Y. H. - 40 - Choi, and G. Y. Kim. 2006. Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt. Int. Immunopharmacol. 6: 1796-1807. Nordstrom, J., and J. M. Abrams. 2000. Guardian ancestry: fly p53 and damage-inducible apoptosis. Cell Death Differ. 7: 1035-1038. Opferman, J. T. and S. J. Korsmeyer. 2003. Apoptosis in the development and maintenance of the immue system. Nature Immunol. 4: 410-415. Pendland, J. G., and D. G. Boucias. 1997. In vitro growth of the entomopathogenic hyphomycete Nomuraea rileyi. Mycologia 89: 66-71. Rabizadeh, S., D. J. LaCount, P. D. Friesen, and D. E. Bredesen. 1993. Expression of the baculovirus p35 gene inhibits mammalian neural cell death. J. Neurochem. 61: 2318-2321. Raff, M. C. 1992. Social control on cell survival and cell death. Nature 356: 397-400. Rothe, M., M. –G. Pan, W. J. Henzel, M. Ayres, and V. Goeddel. 1995. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83: 1243-1252. Ruckdeschel, K., A. Roggenkamp, V. Lafont, P. Mangeat, J. Heesemann, and B. Rouot. 1997. Interaction of Yersinia enterocolitica with macrophages leads to macrophage cell death through apoptosis. Infect. Immun. 65: 4813–4821. Samson, R. A., C. W. McCoy, and K. L. O’Donnell. 1980. Taxonomy of the acarine parasite Hirsutella thompsonii. Mycologia 72: 359-377. - 41 - Shaham, S., 1999. Mutational analysis of Caenorhabiditis elegans cell death gene ced-3. Genetics 153: 1655-1671. Song, Z. W., K. McCall, and H. Steller. 1997. DCP-1, a Drosophila cell death protease essential for development. Science 275: 536-540. Sperandio, S., I. de Belle, and D. E. Bredesen. 2000. An alternative, nonapoptotic form of programmed cell death. Proc. Natl. Acad. Sci., U. S. A. 97: 14376-14381. Uren, A. G., M. Pakusch, C. J. Hawkins, K. L. Puls, and D. L. Vaux. 1996. Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc. Natl. Acad. Sci., U. S. A. 93: 4974-4978. Vaux, D. L. and S. J. Korsmeyer. 1999. Cell death in development. Cell 96: 245-254. Wasti, S. S., and G. C. Hartmann. 1978. Host-parasite, Interactions betweem larvae of gypsy moth, Lymantria dispar,(L.) (Lepidoptera: Lymantriidae) and the entomogenous fungus, Nomuraea rileyi (Farlow) Sansom (Moniliales: Moniliaceae). Appl. Entomol. Zool. 13: 23-28. Yuan, J. and H. R. Horvitz. 1992. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and its expressend during the period of extensive programmed cell death. Development 116: 309-320. Yuan, J., S. Shaham, S. Ledoux, H. M. Ellis, and H. R. Horvitz. 1993. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75: 641-652. - 42 - Zheng, J., S. W. Edelman, G. Tharmarajah, D. W. Walker, S. D. Pletcher, and L. Seroude. 2005. Differential patterns of apoptosis in response to aging in Drosophila. Proc. Natl. Acad. Sci., U. S. A. 102: 12083-12088. Zoog, S. J., J. J. Schiller, J. A.Wetter, N. Chejanovsky, and P. D. Friesen. 2002. Baculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo. EMBO J. 21: 5130-5140. Zou, H., W. J. Henzel, X. Liu, A. Lutschg, and X. Wang. 1997. Apaf- 1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405-413.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/30690-
dc.description.abstract本研究由細胞型態的改變及DNA-laddering 等現象確認綠殭菌 (Nomuraea rileyi) 培養液能誘發鱗翅目細胞株SF-21 產生細胞凋亡,進一步以TUNEL 染色法確認細胞內DNA 發生斷裂,並發現綠殭菌培養液誘發SF-21 細胞產生細胞凋亡的能力具有劑量依變反應。 Caspase 抑制劑z-VAD-fmk 能阻斷細胞凋亡的發生,說明此細胞凋亡現象乃以caspase 為其調控的中心。在以綠殭菌培養液處理SF-21 細胞後,能偵測到sf-caspase-1 受質之胺基酸序列DEVD 被切割的訊號;經加入抑制劑z-DEVD-fmk 後,發現能阻斷細胞凋亡的發生,證明sf-caspase-1 參與此細胞凋亡現象。而同時加入caspase-8 抑制劑,z-IETD-fmk 及caspase-9 抑制劑,z-LEHD-fmk,與單獨加入其中之一;比較之下,同時加入兩種抑制劑具有更佳的抑制細胞凋亡效果,推測綠殭菌培養液引發之SF-21 細胞細胞凋亡現象,係同時以兩個不同的caspase 活化路徑進行。而在此細胞凋亡過程中偵測到caspase-9 受質之胺基酸序列LEHD 被切割的訊號,因此推測SF-21 細胞之initiator caspase 可能具有與哺乳動物caspase-9 類似之活性。zh_TW
dc.description.abstractIn this study, we identified that apoptosis in SF-21 cells could be induced by cultured fluid of the entomopathogenic fungus, Nomuraea rileyi, based on characteristics of cell morphological changes and DNA laddering. Using TUNEL staining we observed the DNA fragmentation in SF-21 cells, and further found that the level of apoptosis induced by N. rileyi cultured fluid was a dose-dependent response. The induction of apoptosis in SF-21 cells was inhibited by adding pan-caspase inhibitor, z-VAD-fmk, indicating that the apoptosis was mediated by caspase. We detected that cleavage signal of DEVD, a sf-caspase-1 substrate peptide, raised in SF-21 cells after treatment with N. rileyi cultured fluid, and that the apoptosis could be inhibited by adding sf-caspase-1 inhibitor z-DEVD-fmk. These results indicate that sf-caspase-1 is involved in the apoptosis induced by N. rileyi. Furthermore, apoptosis in SF-21 cells could be inhibited greater by adding both caspase-8 inhibitor, z-IETD-fmk, and caspase-9 inhibitor, z-LEHD-fmk, than adding either one of them, suggesting that two caspase pathways could occur in the apoptosis of SF-21 cells induced by N. rileyi. We also found that the cleavage signal of LEHD, a caspase-9 substrate peptide, elevated after treatment with N. rileyi cultured fluid, suggesting that the activity of initiator caspase in SF-21 cells is similar to that of mammalian caspase-9.en_US
dc.description.tableofcontents目錄 前言……………………………………………………………………1 前人研究………………………………………………………………3 材料與方法……………………………………………………………10 結果……………………………………………………………………16 討論……………………………………………………………………21 參考文獻………………………………………………………………30 圖表……………………………………………………………………39zh_TW
dc.language.isoen_USzh_TW
dc.publisher昆蟲學系所zh_TW
dc.subjecthttp://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-0908200711115300en_US
dc.subject綠殭菌zh_TW
dc.subjectSF-21 細胞株zh_TW
dc.subject細胞凋亡zh_TW
dc.subjectcaspasezh_TW
dc.titleInduction of apoptosis in SF-21 cell line through caspase pathway by Nomuraea rileyi cultured fluiden_US
dc.title綠殭菌菌液藉由caspase 途徑誘發SF-21 細胞產生細胞凋亡zh_TW
dc.typeThesis and Dissertationzh_TW
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en_US-
item.fulltextno fulltext-
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
Appears in Collections:昆蟲學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.