Please use this identifier to cite or link to this item:
標題: The Effects of Induced Response in Radish by Phyllotreta striolata (Coleoptera: Chrysomelidae) to Pieris rapae and Cotesia glomerata
作者: 吳雨昂
Wu, Yu-Ang
關鍵字: Phyllotreta striolata;黃條葉蚤;Pieris rapae;Cotesia glomerata;plant volatiles;Indirect defense;日本紋白蝶;菜蝶絨繭蜂;植物揮發物;間接防禦
出版社: 昆蟲學系所
引用: 林建宗、賴婉綺、蕭文鳳、王昇陽。2007。柳杉心材精油對衣魚之忌避與致死活性之研究。中華林學季刊 40(2):251-260。 林曉民。2007。黃條葉蚤之生活史與其對植物誘導反應之研究。國立中興大學昆 蟲系論文。43頁。 陳慶忠、柯文華、李建霖。1990。黃條葉蚤(Phyllotreta striolata (Fabricius))之生 態及防治研究(I)外部形態、飼養方法、生活習性及寄主植物調查。臺中區農業改良場研究彙報 27:37-48。 黃育仁。2003。本土產蟲生線蟲(Steinernema abbasi)及白殭菌(Beauveria bassiana) 感染黃條葉蚤(Phyllotreta striolata)之研究。國立中興大學昆蟲系論文。80頁。 馮海東、黃育仁、許如君。2000。臺灣地區黃條葉蚤對殺蟲劑之感受性。植物保護學會會刊42:67-72。 鄭秋玲、許長漢。2003。日本紋白蝶(Pieris rapae crucivora)(鱗翅目:粉蝶科)之形態及溫度對其發育之影響。植物保護學會會刊 45:271-284。 羅儒哲。2009。甲基茉莉花酸對不同作物誘導之防禦反應及其對斜紋夜蛾生長表現與產卵偏好之影響。中興大學學昆蟲系論文。58頁。 鄒議慷。2008。日本紋白蝶幼蟲齡期與其寄主植物對菜蝶絨繭蜂生長發育及搜尋行為之影響。中興大學學昆蟲系論文。56頁。 Agrawal, A. A. 1999. Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80: 1713-1723. Ahuja, I., J. Rohloff & A. M. Bones. 2011. Defence mechanisms of brassicaceae: implications for plant-insect interactions and potential for integrated pest management. Sustainable Agriculture 2: 623-670. Anderson, P. & H. Alborn. 1999. Effects on oviposition behaviour and larval development of Spodoptera littoralis by herbivore induced changes in cotton plants. Entomologia Experimentalis et Applicata 92: 45-51. Arimura, G., C. Kost & W. Boland. 2005. Herbivore-induced, indirect plant defences. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1734: 91-111. Bezemer, T. & N. M. van Dam. 2005. Linking aboveground and belowground interactions via induced plant defenses. Trends in Ecology & Evolution 20: 617-624. Bezemer, T., R. Wagenaar, N. M. van Dam & F. L. Wackers. 2003. Interactions between above and belowground insect herbivores as mediated by the plant defense system. Oikos 101: 555-562. Bones, A. M. & J. T. Rossiter. 1996. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiologia Plantarum 97: 194-208. Bruce, T. J. A., L. J. Wadhams & C. M. Woodcock. 2005. Insect host location: a volatile situation. Trends in Plant Science 10: 269-274. Bruinsma, M., M.A. Posthumus, R. Mumm, M. J. Mueller, J. J. van Loon A. & M. Dicke. 2009. Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. Journal of experimental botany 60: 2575-2587. Chen, Y., D. M. Olson & J. R. Ruberson. 2010. Effects of nitrogen fertilization on tritrophic interactions. Arthropod-Plant Interactions 4: 81-94. Chen, Y. Z., L. Lin, C. W. Wang, C. C. Yeh &, S. Y. Hwang. 2004. Response of two Pieris (Lepidoptera: Pieridae) species to fertilization of a host plant. Zoological Studies 43: 778-786. De Moraes, C. M., M. C. Mescher & J. H. Tumlinson. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410: 577-580. De Moraes, C. M., W. J. Lewis, P. W. Pare, H. T. Alborn & J. H. Tumlinson. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393: 570-573. Deng, C., X. Zhang, W. Zhu, and J. Qian. 2004. Gas chromatography-mass spectrometry with solid-phase microextraction method for determination of methyl salicylate and other volatile compounds in leaves of Lycopersicon esculentum. Analytical and Bioanalytical Chemistry 378: 518-522. Dosdall, L. M., M. G. Dolinski, N. T. Cowle & P. M. Conway. 1999. The effect of tillage regime, row spacing, and seeding rate on feeding damage by flea beetles, Phyllotreta spp. (Coleoptera: Chrysomelidae), in canola in central Alberta, Canada. Crop Protection 18: 217-224. Felton, G. W. & K. L. Korth. 2000. Trade-offs between pathogen and herbivore resistance. Current Opinion in Plant Biology 3: 309-314. Fernandes, F., P. Guedes de Pinho, P. Valenta o, J. A. Pereira & P. B. Andrade. 2009. Volatile constituents throughout Brassica oleracea L. var. acephala germination. Journal of Agricultural and Food Chemistry 57: 6795-6802. Gershenzon, J. 2007. Plant volatiles carry both public and private messages. Proceedings of the National Academy of Sciences 104: 5257-5258. Gruber, M. Y., N. Xu, L. Grenkow, X. Li, J. Onyilagha, J. Soroka, N. D. Westcott & D. D. Hegedus. 2009. Responses of the crucifer flea beetle to Brassica volatiles in an olfactometer. Environmental Entomology 38: 1467-1479. Hilker, M. & T. Meiners. 2006. Early herbivore alert: insect eggs induce plant defense. Journal of Chemical Ecology 32: 1379-1397. Honda, K. 1995. Chemical basis of differential oviposition by lepidopterous insects. Archives of Insect Biochemistry and Physiology 30: 1-23. Hopkins, R. J., N. M. Van Dam & J. J. A. Van Loon. 2009. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annual Review of Entomology 54: 57-83. Huang, X. & J. A. A. Renwick. 1994. Relative activities of glucosinolates as oviposition stimulants for Pieris rapae and P. napi oleracea. Journal of chemical Ecology 20: 1025-1037. Hung, C. C. & J. S. Hwang. 2000. Influence of cylinder-type sticky traps baited with different mustard oil lures on Phyllotreta striolata (Coleoptera: Chrysomelidae). Chinese Journal of Entomology 20: 201-214. (in Chinese) Ikawa, T., and H. Okabe. 1985. Regulation of egg number per host to maximize the reproductive success in the gregarious parasitoid, Apanteles glomeratas L. (Hymenoptera: Braconidae). Applied Entomology and Zoology 20: 331-339. Jaenike, J. 1978. An hypothesis to account for the maintenance of sex within populations. Theoretical Population Biology 14: 350-356. Johnson, S. N., A. N. E. Birch, P. J. Gregory & P. J. Murray. 2006. The "mother knows best" principle: should soil insects be included in the preference and performance debate? Ecological Entomology 31: 395-401. Kessler, A. & I. T. Baldwin. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annual Review of Plant Biology 53: 299-328. Masters, G. J. & V. K. Brown. 1992. Plant-mediated interactions between two spatially separated insects. Functional Ecology 6: 175-179. Masters, G. J., V. K. Brown & A. C. Gange. 1993. Plant mediated interactions between above-and below-ground insect herbivores. Oikos 66: 148-151. Moran, N. A. & T. G. Whitham. 1990. Interspecific competition between root-feeding and leaf-galling aphids mediated by host-plant resistance. Ecology 71: 1050-1058. Pare, P. W. & J. H. Tumlinson. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiology 121: 325-331. Pawliszyn, J. 1997. Solid phase microextraction: theory and practice. Wiley-VCH, New York. 247 pp. Perfecto, I. & L. E. M. Vet. 2003. Effect of a nonhost plant on the location behavior of two parasitoids: The tritrophic system of Cotesia spp. (Hymenoptera: Braconidae), Pieris rapae (Lepidoptera: Pieridae), and Brassica oleraceae. Environmental Entomology 32: 163-174. Pinto, D. M., A. M. Nerg, J. K. Holopainen. 2007. The role of ozone-reactive compounds, terpenes, and green leave volatiles (GLVs), in the orientation of Cotesia plutellae. Journal of Chemical Ecology 33: 2218-2228. Preston, C. A., C. Lewandowski, A. J. Enyedi & I. T. Baldwin. 1999. Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta 209: 87-95. Prosen, H. & L. Zupani-Kralj. 1999. Solid-phase microextraction. TrAC Trends in Analytical Chemistry 18: 272-282. Rasmann, S. & T. C. J. Turlings. 2007. Simultaneous feeding by aboveground and belowground herbivores attenuates plant mediated attraction of their respective natural enemies. Ecology Letters 10: 926-936. Renwick, J. A. A. & C. D. Radke. 1985. Constituents of host-and non-host plants deterring oviposition by the cabbage butterfly, Pieris rapae. Entomologia Experimentalis et Applicata 39: 21-26. Rohloff, J. & A. M. Bones. 2005. Volatile profiling of Arabidopsis thaliana-Putative olfactory compounds in plant communication. Phytochemistry 66: 1941-1955. Shiojiri, K., J. Takabayashi, S. Yano & A. Takafuji. 2001. Infochemically mediated tritrophic interaction webs on cabbage plants. Population Ecology 43: 23-29. Soler, R., J. A. Harvey & T. M. Bezemer. 2007b. Foraging efficiency of a parasitoid of a leaf herbivore is influenced by root herbivory on neighbouring plants. Functional Ecology 21: 969-974. Soler, R., J. A. Harvey, T. M. Bezemer & J. F. Stuefer. 2008. Plants as green phones: Novel insights into plant-mediated communication between below-and above-ground insects. Plant Signaling & Behavior 3: 519-520. Soler, R., J. A. Harvey, R. Rouchet, S. V. Schaper & T. Martijn Bezemer. 2010. Impacts of belowground herbivory on oviposition decisions in two congeneric butterfly species. Entomologia Experimentalis et Applicata 136: 191-198. Soler, R., T. M. Bezemer, A. M. Cortesero, W. H. Van der Putten, L. E. M. Vet & J. A. Harvey. 2007a. Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid. Oecologia 152: 257-264. Soler, R., S. V. Schaper, T. Bezemer, A. M. Cortesero, T. S. Hoffmeister, W. H. van Der Putten, L. E. M. Vet & J. A. Harvey. 2009. Influence of presence and spatial arrangement of belowground insects on host plant selection of aboveground insects: a field study. Ecological Entomology 34: 339-345. Soler, R., J. A. Harvey, A. F. D. Kamp, L. E. M. Vet, W. H. van Der Putten, N. M. van Dam, J. F. Stuefer, R. Gols, C. A. Hordijk & T. Martijn Bezemer. 2007c. Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant volatile signals. Oikos 116: 367-376. Takabayashi, J., Y. Sato, M. Horikoshi, R. Yamaoka, S. Yano, N. Ohsaki & M. Dicke. 1998. Plant effects on parasitoid foraging: differences between two tritrophic systems. Biological Control 11: 97-103. Tansey, J. A., L. M. Dosdall, B. A. Keddie & R. M. Sarfraz. 2008. Differences in Phyllotreta cruciferae and Phyllotreta striolata (Coleoptera: Chrysomelidae) responses to neonicotinoid seed treatments. Journal of Economic Entomology 101: 159-167. Thaler, J. S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399: 686-688. Trdan, S., N. Valic, D. Žnidarčič, M. Vidrih, K. Bergant, E. Zlatič & L. Milevoj. 2005. The role of Chinese cabbage as a trap crop for flea beetles (Coleoptera: Chrysomelidae) in production of white cabbage. Scientia Horticulturae 106: 12-24. van Dam, N. M. 2009. How plants cope with biotic interactions. Plant Biology 11: 1-5. van Dam, N. M., C. E. Raaijmakers & W. H. van Der Putten. 2005. Root herbivory reduces growth and survival of the shoot feeding specialist Pieris rapae on Brassica nigra. Entomologia Experimentalis et Applicata 115: 161-170. van Poecke, R. M. P., M. Roosjen, L. Pumarino & M. Dicke. 2003. Attraction of the specialist parasitoid Cotesia rubecula to Arabidopsis thaliana infested by host or non host herbivore species. Entomologia Experimentalis et Applicata 107: 229-236. Vos, M., S. M. Berrocal, F. Karamaouna, L. Hemerik & L. E. M. Vet. 2001. Plant mediated indirect effects and the persistence of parasitoid and herbivore communities. Ecology Letters 4: 38-45. Wackers, F. L. & T. M. Bezemer. 2003. Root herbivory induces an above ground indirect defence. Ecology Letters 6: 9-12. Wercinski, S. A. S. 1999. Solid phase microextraction: a practical guide. Marcel Dekker, New York. 257 pp.
Many previous studies have pointed out that plants may be induced indirectly after insects feeding. Phyllotreta striolata is one of the main economic pests of cruciferous plants, it will cause plants both aboveground and belowground damages. When different parts of plant get injuries, different defensive mechanism may be induced individually, such as volatile as a defensive signal that attracts parasitoids or predators to locate their hosts. For the aim of this study, I want to understand the effects of the induce defense response on the behavior of specialist herbivore and their endoparasitoid. To know the effect of crucifer plants fed by phytophagous insect and the interaction between induced plant defense responses and herbivores, four-week-old radish was used in this study. There are five treatments in this experiment. Six days before the experiment, 100 eggs of P. striolata were put into the radish plot soil; when they hatched to feed on the root, they were considered as the belowground treatment. The aboveground treatment separate to two types, one is feeding injury, the other is mechanical injury. For the feeding injury, one day before the experiment, 40 adult flea beetles will randomly feed on radish's leaves. For the mechanical injury, one day before the experiment, needles were used to make 100 holes on all the leaves which length is more than 3 cm. I also used the same way to make both aboveground and belowground injury. The control treatment has no damage. To assess how the effect of different treatments, female of P. rapae oviposition preference and female of C. glomerata odor preference tests were conducted. Then, the same treatments were set up to collect plant volatiles by SPME, and chemical composition was analyzed by GC-MS. The results indicated that oviposition preference of P. rapae was affected by flea beetles feeding on different plant parts; but the effect on C. glomerata is not significant overall. At least one defensive related volatile compound β-caryophyllene would emit only through aboveground damage by insects, and the concentration of other green leaf volatiles were varied from different herbivore feeding damages.

植物經由昆蟲取食傷害後,誘導產生的間接防禦(indirect defense)已經被研究許久。黃條葉蚤(Phyllotreta striolata)為十字花科作物上主要的經濟害蟲之一,會造成植物地上部與地下部的取食傷害。植物受到不同空間分布的傷害後會啟動個別防禦機制,例如產生揮發物做為防禦信號,以利寄生蜂或是捕食者對寄主的定位。而這種信號對於專食性植食者,以及其內寄生性寄生蜂的行為影響,為此研究之目的。為瞭解十字花科植物於田間受植食者取食後所誘導植物的防禦反應與植食者間的交互作用,選用四週大的蘿蔔進行試驗。本實驗共計五個處理,地下部處理部分,於實驗前六天蒐集黃條葉蚤(P. striolata)的卵100顆洗入盆栽近莖部土壤,待幼蟲孵化後進行地下部傷害;地上部處理分別為植食者傷害與機械傷害,植食者傷害為於實驗前一天以絹網套住40隻黃條葉蚤成蟲進行地上部傷害24小時;機械傷害則以針頭在每片葉長大於3公分的葉子穿刺100個洞,並同時進行地上部與地下部植食者傷害處理和未傷害處理。以上述不同方式處理植物後,測試黃條葉蚤取食對日本紋白蝶(Pieris rapae)雌蟲產卵偏好(oviposition preference)的影響,以及對日本紋白蝶專一性寄生蜂菜蝶絨繭蜂(Cotesia glomerata)氣味偏好(odors preference)的影響。並佐以固相微萃取技術(SPME)進行植物揮發物的蒐集,與利用GC-MS進行化合物的分析鑑定。本試驗結果指出日本紋白蝶的產卵偏好會受到黃條葉蚤同時取食蘿蔔不同空間部位而影響,然而菜蝶絨繭蜂的搜尋行為對於蘿蔔受到黃條葉蚤的不同空間取食傷害後,整體來看則無顯著偏好。在植物揮發物質鑑定部分,目前已發現至少有一防禦性的揮發性化合物β-caryophyllene僅會經由植食者地上部的傷害而產生。而其餘的綠葉揮發物質(GLVs, green leaf volatiles)經由不同程度的昆蟲傷害後也會產生濃度上的變化。未來除了可探討不同種天敵的影響外,增加揮發物濃度的釋放,應該更有助於瞭解相關的交互作用機制。
其他識別: U0005-2008201100183500
Appears in Collections:昆蟲學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.