Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30696
標題: Comparison of pathogenicity of two entomopathogenic nematodes, Steinernema abbasi and S. carpocapsae, to Orgyia postica (Walker) (Lepidoptera : Lymantriidae)
兩種蟲生線蟲Steinernema abbasi及S. carpocapsae對小白紋毒蛾(鱗翅目:毒蛾科)致病力之比較
作者: 焦汝安
Chiao, Ju-An
關鍵字: http://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-1408200715052200;蟲生線蟲;小白紋毒蛾;Steinernema abbasi;Steinernema carpocapsae;生物防治
出版社: 昆蟲學系所
引用: 白志芳。1998。蟲生線蟲(Steinernema carpocapsae)感染斜紋夜蛾(Spodoptera litura)及田間效力評估。國立中興大學昆蟲學系碩士論文。54頁。 白志芳、侯豐男。2002。蟲生線蟲在害蟲防治上應用之實例。台灣昆蟲特刊 3: 147-156。 白志方、侯豐男。2006。土壤因子對蟲生線蟲Steinernema abbasi (Rhabditida: Steinernematidae)殺蟲活性之影響。台灣昆蟲26: 369-377。 呂佳宜。1994。蟲生線蟲(Steinernema carpocapsae)之人工繁殖及其對斜紋夜盜(Spodoptera litura)與小菜蛾(Plutella xylostella)之致病力。國立中興大學昆蟲學系碩士論文。54頁。 朱俊洪、張方平。2004。熱帶果樹毒蛾類害蟲及其防治技術。中國南方果樹 33: 37-42。 朱俊洪、朱穩、張方平。2005。不同食料植物對棉古毒蛾生長發育和繁殖的影響。華東昆蟲學報 14: 9-13。 李茂雄。1954。小白紋毒蛾藥劑防治試驗。台灣省立農學院植物病蟲害學系學士論文。37頁。 易希陶。1963。經濟昆蟲學。國立編譯館。121-123頁。 唐立正、侯豐男。2004。蟲生線蟲在害蟲防治之應用。台灣昆蟲特刊 6: 227-265。 高慧齡。2005。兩種蟲生線蟲Steinernema abbasi及Steinernema carpocapsae量產與保存之改進。國立中興大學昆蟲學系碩士論文。56頁。 章加寶。1988。葡萄害蟲及其他有害動物種類及其季節消長。中華昆蟲 8: 39-48。 陳文雄。1967。小白紋毒蛾外部形態、生活史、以及生態之觀察。國立中興大學昆蟲學系學士論文。57頁。 陳仁昭。1981。台灣蓮霧害蟲調查。中華昆蟲 2: 40-57。 陳順立、李友恭、林邦超。1990。棉古毒蛾生物學特性與防治的研究。福建林學院學報 10: 130-136。 陳輿賢。2004。兩種蟲生線蟲Steinernema abbasi及S. carpocapsae (線蟲目 : 斯氏線蟲科)對斜紋夜蛾(鱗翅目 : 夜蛾科)之侵染力及致病力比較。國立中興大學昆蟲學系碩士論文。97頁。 張紋菁。2002。本土產蟲生線蟲(Steinernema abbasi)在實驗室內之保存。國立中興大學昆蟲學系碩士論文。53頁。 曾美容。1995。蟲生線蟲(Steinernema carpocapsae)對甜菜夜蛾(Spodoptera exigua)之致病力及田間持久性。國立中興大學昆蟲學系碩士論文。59頁。 曾慶慈。2006。兩種蟲生線蟲Steinernema abbasi及Steinernema carpocapsae對黑角舞蛾(鱗翅目 : 毒蛾科)致病力之比較。國立中興大學昆蟲學系碩士論文。73頁。 廖哲毅。1999。本地產蟲生線蟲(Steinernema abbasi)生物特性及對斜紋夜蛾(Spodoptera litura)致病力之測定。國立中興大學昆蟲學系碩士論文。58頁。 鄭旗志。1992。蟲生線蟲防治亞洲玉米螟之潛用性。國立中興大學昆蟲學系碩士論文。80頁。 鄭旗志、侯豐男。1997。數種環境因子對蟲生線蟲Steinernema carpocapsae存活之影響。中華昆蟲 17: 120-131。 鄭秋玲、楊淑閔、鄭明發。2001。小白紋毒蛾(Orgyia posticus) (鱗翅目 : 毒蛾科)之形態及溫度對其發育之影響。台灣昆蟲 21: 17-27。 劉婉君。2005。蟲生線蟲Steinernema abbasi (Rhabditida目 : Steinernematidae科)共生菌之毒力與抗菌活性。國立中興大學昆蟲學系碩士論文。72頁。 鍾芳鴛。1991。蘇力菌及蟲生線蟲對小菜蛾致病力之研究。國立中興大學昆蟲學系碩士論文。52頁。 蕭素女。2002。茶園常見病蟲害防治 AT 茶園常見病蟲害防治手冊。行政院農業委員會茶葉改良場編印。31-32頁。 羅如娟。2001。本土產蟲生線蟲(Steinernema abbasi)之人工培養。國立中興大學昆蟲學系碩士論文。59頁。 羅明榮、黃杰正。1993。棉古毒蛾發生及防治初報。廣西植保 3: 42-44。 蘇智勇。1985。溫度對台灣黃毒蛾及小白紋毒蛾之生活期及食葉量。中華昆蟲 5: 53-61。 蘇智勇。1987。溫度及食物對台灣黃毒蛾及小白紋毒蛾之生活期及食葉量之影響。植保會刊 29: 147-156。 Bedding, R. A. 1981. Low cost in vitro mass production of Neoplectana and Heterorhabditis species (Nematoda) for field control of insect pests. Nematologica 27: 109-114. Bedding, R. A., and A. S. Molyneux. 1982. Penetration of insect cuticle by infective juveniles of Heterorhabditis spp. (Heterorhabditidae: Nematoda). Nematologica 28: 354-359. Bornstein-Forst, S., H. Kiger, and A. Rector. 2005. Impacts of fluctuating temperature on the development and infectivity of entomopathogenic nematode Steinernema carpocapsae A10. J. Invertebr. Pathol. 88: 147-153. Cabanillas, H. E. 2003. Susceptibility of the boll weevil to Steinernema riobrave and other entomopathogenic nematodes. J. Invertebr. Pathol. 82: 188-197. Campbell, J. F., and R. Gaugler. 1993. Nictation behavior and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour 126: 156-169. Chi, H. 1997. Computer program for the probit analysis. National Chung Hsing University, Taichung, Taiwan. (http://140.120.197.173/Ecology/prod02.html) Curran, J., C. Gilbert, and K. Butler. 1992. Routine crytopreservation of isolated of Steinernema and Heterorhabditis spp. J. Nematol. 24: 269-270. Dunphy, G. B., and G. S. Thurston. 1990. Insect immunity. pp. 301-323. In: Gaugler, R. and H. K. Kaya (eds.) Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Florida. Dutky, S. R., J. V. Thompson, and G. E. Cantwell. 1964. A technique for the mass propagation of the DD-136 nematode. J. Insect Pathol. 6: 417-422. Ehlers, R. U., A. Wulff, and A. Peters. 1997. Pathogenicity of axenic Steinernema feltiae, Xenorhabdus bovineii, and the bacto-helminthic complex to larvae of Tipula oleracea (Diptera) and Galleria mellonella (Lepidoptera). J. Invertebr. Pathol. 69: 212-217. Gaugler, R., and G. M. Boush. 1978. Effects of ultraviolet radiation and sunlight of the entomopathogenous nematode, Neoplectana carpocapsae. J. Invertebr. Pathol. 32: 291-296. Georgis, R. 1990. Formulation and application technology. pp. 173-191. In: Gaugler, R., and H. K. Kaya (eds.) Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Florida. Glazer, I. 2002. Survival biology. pp. 169-187. In: Gaugler, R., ed. Entomopathogenic Nematology. CAB International, Oxford. Gouge, D. H., L. L. Lee, and T. J. Henneberry. 1999. Effect of temperature and lepidopteran host species on entomopathogenic nematode (Nematoda: Steinernematidae, Heterorhabditidae) infection. Environ. Entomol. 25: 876-883. Grant, J. A., and M. G. Villani. 2003. Soil moisture effects on entomopathogenic nematodes. Environ. Entomol. 32: 80-87. Grewal, P. S., E. E. Lewis, and R. Gaugler. 1997. Response of infective stage parasites (Nematoda: Steinernematidae) to volatile cues from infected host. J. Chem. Ecol. 23: 503-515. Gu, S. H., R. S. Tsai, Y. S. Chow, and F. J. Lin. 1992. Sexual dimorphism in developmental rate and ecdysteroid titre in Orgyia postica. J. Insect Physiol. 38 : 1043-1049. Hazir, S., S. P. Stock, H. K. Kaya, A, M, Koppenhöffer, and N. Keskin. 2001. Development temperatures effects of five geographic isolates the entomopathogenic nematodes Steinernema feltiae (Nematoda: Steinernematidae). J. Invertebr. Pathol. 77: 243-250. Henneberry, T. J., L. F. Jech, R. A. Burke, and J. E. Lindegren. 1996. Temperature effects on infection and mortality of Pectinophora gossypiella (Lepidoptera: Gelechiidae) larvae by two entomopathogenic nematode species. Environ. Entomol. 25: 179-183. Hominick, W. M., A. P. Reid., D. A. Bohan, and B. R. Briscoe. 1996. Entomopathogenic nematodes: biodiversity, geographical distribution and the convention on biological diversity. Biocontrol Sci. Technol. 6: 317-331. Johnigk, S. A., and R. U. Ehlers. 1999. Endotokia matricida in hermaphrodites of Heterorhabditis spp. and the effect of the food supply. Nematology 1: 717-726. Kaya, H. K. 1985. Susceptibility of early larval stages of Pseudaletia unipuncta and Spodoptera exigua (Lepidoptera: Noctuidae) to the entomogenous nematode Steinernema feltiae (Rhabditida: Steinernematidae). J. Invertebr. Pathol. 46: 58-62. Kaya, H. K. 1990. Soil ecology. pp. 93-115. In: R. Gaugler, and H. K. Kaya. (eds.) Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Florida. Koppenhöffer, A. M., and E. M. Fuzy. 2003. Ecological characterization of Steinernema scarabaei, a scarab-adapted entomopathogenic nematode from New Jersey. J. Invertebr. Pathol. 83: 139-148. Koppenhöffer, A. M., H. K. Kaya, and S. P. Taormino. 1995. Infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae) at different soil depths and moistures. J. Invertebr. Pathol. 65: 193-199. Koppenhöffer, A. M., R. S. Cowles, E. A. Cowles, E. M. Fuzy, and L. Baumgartner. 2002. Comparison of neonicotinoid insecticides as synergists for entomopathogenic nematodes. Biol. Control 24: 90-97. Lacey, L. A., and T. R. Unruh. 1998. Entomopathogenic nematodes for control of codling moth, Cydia pomonella (Lepidoptera: Tortricidae): effect of nematode species, concentration, temperature, and humidity. Biol. Control 13: 190-197. Lacey, L. A., S. P. Arthurs., T. R. Unruh, H. Headrick, and R. Fritts, Jr. 2006. Entopathogenic nematodes for control of codling moth (Lepidoptera: Tortricidae) in apple and pear orchards: effect of nematode species and seasonal temperatures, adjuvants, application equipment, and post-application irrigation. Biol. Control 37: 214-223. Lewis, E. E. 2002. Behavioral ecology. pp. 205-223. In: Gaugler, R., ed. Entomopathogenic Nematology. CAB International, Oxford. Lewis, E. E., and R. Gaugler. 1994. Entomopathogenic nematode sex ratio relates to foraging strategy. J. Invertebr. Pathol. 64: 238-242. Lewis, E. E., R. Gaugler, and R. Harrison. 1992. Entomopathogenic nematode host finding: response to host contact cues by cruise and ambush foragers. Parasitology 105: 309-319. Lewis, E. E., R. Gaugler, and R. Harrison. 1993. Response of curiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Can. J. Zool. 71: 765-769. Liao, C. Y., L. C. Tang, C. F. Pai, W. F. Hsiao, B. R. Briscoe, and R. F. Hou. 2001. A new isolate of the entomopathogenic nematode, Steinernema abbasi (Nematoda: Steinernematidae), from Taiwan. J. Invertebr. Pathol. 77: 78-80. Mamiya, Y. 1989. Comparison of infectivity of Steinernema kushidai (Nematoda: Steinernematidae) and other Steinernematid and Heterorhabditid nematodes for three different insects. Appl. Entomol. Zool. 24: 302-308. Mason, J. M., G. A. Matthews, and D. J. Weight. 1999. Evaluation of spinning disc technology for the application of entomopathogenic nematodes against a foliar pest. J. Invertebr. Pathol. 73: 282-288. Medeiros, J., J. S. Rosa, J. Tavares, and N. Simões. 2000. Susceptibility of Pseudaletia unipuncta (Lepidoptera: Noctuidae) to entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) isolated in the azores: Effect of nematode strain and host age. J. Econ. Entomol. 93: 1403-1408. Morris, O. N. 1985. Susceptibility of 31 species of agricultural insect pests to the entomopathogenic nematodes Steinernema feltiae and Heterorhabditis bacteriophora. Can. Entomol. 117: 401-407. Muto, S., and K. Mori. 2001. Synthesis of posticlure [(6Z,9Z,11S,12S)-11,12-Epoxyhenicosa-6,9-diene], the female sex pheromone of Orgyia postica. Eur. J. Org. Chem. 4635-4638. Nguyen, K. B., and G. C. Smart. 1990. Steinernema scapterisci n. sp. (Rhabditida: Steinernematidae). J. Nematol. 22: 187-199. Nguyen, K. B., and G. C. Smart. 1994. Neosteinernema logicurvicauda n. gen., n. sp. (Rhabditida: Steinernematidae), a parasite of the termite Reticulitermes flavipes (Koller). J. Nematol. 26: 162-174. Peters, A., and R. U. Ehlers. 1994. Susceptibility of leather jackets (Tipula paludosa and T. oleracea; Tipulidae; Nematocera) to the entomopathogenic nematode Steinernema feltiae. J. Invertebr. Pathol. 63: 163-171. Poinar, G. O., Jr. 1976. Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n. gen. sp. (Rhabditida: Heterorhabditidae n. fam.). Nematologica 21: 463-470. Poinar, G. O., Jr. 1979. Nematodes for Biological Control of Insects. Academic Press, Berkeley. 277pp. Poinar, G. O., Jr. 1990. Taxonomy and biology of Steinernematidae and Heterorhabditidae. pp. 23-61. In: R. Gaugler, and H. K. Kaya, (eds.) Entomopathogenic Nematodes in Biological Control. CRC Press, Boca Raton, Florida. Popiel, I., and E. M. Vasquez. 1989. Cryopretection of Steinernema carpocapsae and Heterorhabditis bacteriophora. J. Nematol. 23: 423-437. Shannag, H. K., S. E. Webb, and J. L. Capinera. 1994. Entomopathogenic nematode effect on pickleworm (Lepidoptera: Pyralidae) under laboratory and field conditions. J. Econ. Entomol. 87: 1205-1212. Shapiro, D. I., E. E. Lewis, S. Paramasivam, and C.W. McCoy. 2000. Nitrogen partitioning in Heterorhabditis bacteriophora-infected hosts and the effects of nitrogen of attraction/repulsion. J. Invertebr. Pathol. 76: 43-48. Shapiro, D. I., J. R. Cate, J. Pena, A. Hunsberger, and C. W. McCoy. 1999. Effects of temperature and host age on suppression of Diaprepes abbreviatus (Coleoptera: Curculionidae) by entomopathogenic nematodes. J. Econ. Entomol. 92: 1086-1092. Siegel, J. P., L. A. Lacey, B. S. Higbee, P. Noble, and R. Fritts, Jr. 2006. Effect of application rates and abiotic factors on Steinernema carpocapsae for control of overwintering navel orangeworm (Lepidoptera: Pyralidae, Amyelois transitella) in pistachios. Biol. Control 36: 324-330. Simões, N., C. Caldas, J. S. Rosa, E. Bonifassi, and C. Laumond. 2000. Pathogenicity caused by high virulent and low virulent strains of Steinernema carpocapsae to Galleria mellonella. J. Invertebr. Pathol. 75: 47-54. Unruh, T. R., and L. A. Lacey. 2001. Control of codling moth, Cydia pomonella (Lepidoptera: Tortricidae), with Steinernema carpocapsae: Effects of supplemental wetting and pupation site on infection rate. Biol. Control 20: 48-56. Wakamura, S., N. Arakaki, M. Yamamoto, S. Hiradate, H Yasui, T. Yasuda, and T. Ando. 2001. Posticlure: a novel trans-epoxide as a sex pheromone component of the tussock moth, Orgyia postica (Walker). Tetrahedron Lett. 42: 687-689. White, G. F. 1927. A method for obtaining infective nematode larvae from cultures. Science 66: 302-303. Williams, R. N., D. S. Fickle, P. S. Grewal, and J. R. Meyer. 2002. Assessing the potential of entomopathogenic nematodes to control grape root borer Vitacea polistiformis (Lepidoptera: Sesiidae) through laboratory and greenhouse bioassays. Biocontrol Sci. Technol. 12: 35-42. Wright, D. J., A. Peters, S. Schroer, and J. P. Fife. 2005. Application Technology. pp. 91-106. In: P. S. Grewal, R. Ehlers, and D. I. Shapiro-Ilan, eds. Nematodes as Biological Agents. CABI Press.
摘要: 
蟲生線蟲為微生物防治方法上具發展潛力之因子之一,本試驗藉由兩種蟲生線蟲對小白紋毒蛾(Orgyia postica (Walker))之致病力測試,評估於田間應用之潛用性。利用不同濃度之兩種蟲生線蟲(Steinernema abbasi ; Steinernema carpocapsae)懸浮液接種二齡至五齡小白紋毒蛾幼蟲,結果發現除五齡外,S. carpocapsae對二至四齡幼蟲所造成之半致死時間(LT50)均較S. abbasi為短。二齡幼蟲對於S. abbasi之感受性較低,死亡率為50-74.1%之間,其他齡期均可達到78.3-100%之死亡率。於四種溫度20、25、30及35°C下,以20 IJs/0.5 ml之線蟲懸浮液接種四齡幼蟲,則S. abbasi之LT50分別為61.2、42.8、29.9及21.6 h;而S. carpocapsae之LT50則為50.6、25.1、21.5及18.3 h,溫度升高時兩種線蟲之LT50也隨之縮短。模擬夏季與冬季之溫度與光週期下,分別接種20及30 IJs/0.5 ml兩種線蟲懸浮液於四齡小白紋毒蛾,夏季 (L : D = 13 h 20 min : 10 h 40 min ; 31 : 27°C) S. abbasi之LT50為43.1及38.8 h,S. carpocapsae之LT50為37.9及36.2 h;而冬季 (L : D = 11 : 13 h ; 21 : 16°C)時,S. carpocapsae之LT50為53.5及57.1 h,S. abbasi於冬季之死亡率僅達20及26.7%,此結果顯示兩種線蟲於冬季之效果較差,且S. abbasi不適用於該季節。於開放空間模擬田間試驗中,在早上及傍晚將300及500 IJs/ml之兩種懸浮液接種於茶樹上三齡幼蟲,發現施用時間所造成之死亡率無顯著差異,介於73.3-93.3%,S. abbasi在早上施用之LT50分別為46.6、48.1 h,而傍晚施用分別為57.8、45.1 h,而S. carpocapsae之LT50分別為38.4、34.9 h及37.3、41.2 h。上述試驗結果,提供蟲生線蟲對於小白紋毒蛾致病力之初步探討,且顯示其在田間防治上具有潛用性。

Entomopathogenic nematodes (EPNs) have been regarded as potential biological control agents against insect pests. In this study, two EPNs, Steinernema abbasi and Steinernema carpocapsae, were assayed to determine their pathogenicity against the small tussock moth, Orgyia postica (Walker) in the laboratory. When inoculated with different concentrations of nematodes to 2nd-5th instar larvae of O. postica, the LT50 values treated with S. carpocapsae were shorter than those with S. abbasi in most instars tested except the 5th instar. The cumulative mortalities of 2nd instar larvae treated with S. abbasi were 50-74.1%, while those of others were 78.3-100%. The LT50 values of S. abbasi against 4th instar larvae inoculated with 20 IJs/0.5 ml/larva at 20, 25, 30 and 35C were 61.2, 42.8, 29.9 and 21.6 h, respectively, while those of S. carpocapsae were 50.6, 25.1, 21.5 and 18.3 h, respectively. These results showed that the LT50 values declined as elevated the incubating temperatures inoculated with both nematodes. Inoculations of 4th instar larvae of O. postica with S. abbasi and S. carpocapsae at 20 and 30 IJs/0.5 ml/larva were conducted in artificial simulated seasons where summer was L : D = 13 h 20 min : 10 h 40 min ; 31 : 27C and winter L : D = 13 : 11 h ; 21 : 16C. The LT50 values infected with S. abbasi at 20 and 30 IJs/0.5 ml/larva under summer were 43.1 and 38.8 h, respectively, but the cumulative mortality under winter was only 20-26.7%. The LT50 values infected with S. carpocapsae at 20 and 30 IJs/0.5 ml/larva under summer were 37.9 and 36.2 h, respectively, whereas those under winter were 53.5 and 57.1 h, respectively. The pathogenicity of both nematodes in winter was lower than in summer. In opening space trials, when inoculated 3rd instar larvae with S. abbasi and S. carpocapsae at 300 and 500 IJs/ml, the cumulative mortalities resulted from applications in the morning and evening were not significantly different between two treatments. The LT50 values infected with S. abbasi at the same concentrations in the morning were 46.6 and 48.1 h, respectively, while those in the evening were 57.8 and 45.1 h, respectively. In S. carpocapsae, the LT50 values in the morning were 38.4 and 34.9 h, respectively, while those in the evening were 37.3 and 41.2 h, respectively. Therefore, it is suggested that both EPNs are potential to be applied as biocontrol agents against O. postica in field conditions.
URI: http://hdl.handle.net/11455/30696
其他識別: U0005-1408200715052200
Appears in Collections:昆蟲學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.