Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30704
標題: 聲音與肥料處理之甘藍對斜紋夜盜與紋白蝶表現的影響
Effects of sound stimulation and fertilization on the growth of cabbage and their further influence on the development and ovipositional preference of Spodptera litura and Pieris rapae
作者: Tan, Ching-Wen
譚景文
關鍵字: http://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-2108200713233900;甘藍;聲音;施肥;斜紋夜盜;紋白蝶
出版社: 昆蟲學系所
引用: 王雪香。1980。十字花科。台灣農家全書植物保護專輯(第二版)。豐年社。263頁。 王雪香。1995。花葉菜害蟲。台灣農家要覽農作篇(三)第二版。豐年社。 500頁。 沈再發。1995。葉菜類甘藍。台灣農家要覽農作篇(二)第三版。豐年社。 698頁。 林政行。1984。植物與昆蟲的共同演化。台灣省立博物館。205頁。 施怡如、鄭統隆、曾東海、王強生。2004。有色水稻中花青素的種類及其功能探討。中華農業研究。53: 221-228。 許育慈。2006。紋白蝶在有機肥與無機肥處理之甘藍的表現。中興大學昆 蟲系碩士論文。52頁。 費雯綺、王喻其。2004。物保護手冊。行政院農業委員會農業藥物毒物試 驗所。835頁。 簡宣裕。1999。製造堆肥時材料的碳氮比及水分含量之調整。堆肥製造技 術。農委會農業試驗所。59-64頁。 Awmack, C. S. and S. R. Leather. 2002. Host plant quality and fecundity in herbivorous insect. Annu. Rev. Entomol. 47: 817-844. Benrey, B., and R. F. Denno. 1997. The slow-growth—high-mortality hypothesis: a test using the cabbage butterfly. Ecology 78: 987-999. Bones, A. M., and J. T. Rossiter. 2006. The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry 67: 1053-1067. Bryant, J. P., F. S. Chapin, and D. R. Klein. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos. 40: 357-368. Campbell, N. A., J. B. Reece, and L. G. Mitchell. 1999. Biology, 5th ed. Addison Wesley Longman, Inc. U.S.A. 1175. Chen, S., and E. Andreasson. 2001. Update on glucosinolate metabolism and transport. Plant Physiol. Biochem. 39: 743-758. Chen, Y. Z., L. Lin, C. W. Wang, C. C. Yeh, and S. Y. Hwang. 2004. Response of two Pieris ( Lepidoptera: Pieridae ) species to fertilization of a host plant. Zool. Stud. 43: 778-786. Cornelissen, T., and P. Stiling. 2006. Does low nutritional quality act as a plant defence? An experimental test of the slow-growth, high-mortality hypothesis. Ecol. Entomol. 31: 32-40. Davies, M. S. 1996. Effects of 60 Hz electromagnetic fields on early growth in three plant species and a replication on previous result. Bioelectromagnetics 17: 154-161. Dixon, R. A., and N. L. Paiva. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7: 1085-1097. Fordyce, J. A., and A. M. Shapiro. 2003. Another perspective on the slow-growth/high-mortality hypothesis: chilling effects on swallowtail larvae. Ecology 84: 263-268. Galston, A. W., and R. K. Sawhney. 1990. Polyamines in plant physiology. Plant Physiol. 94: 406-410. Haughton, P. H. 2002. Acoustics for audiliogists. Calif Elsevier. San Diego. 422. Hirt, H., and K. Shinozaki. 2004. Plant response to abiotic stress. Springer-Verlag Berlin Heidelberg. Germany. 300. Holton, T. A., and E. C. Cornish. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7: 1071-1083. Hopkins, W. G. 1999. Introduction to plant physiology, 2nd Edition. John Wiley & Sons, Inc. New York. 512. Hou, T. Z., and R. E. Mooneylam. 1999 a. Applied studies of plant meridian system: Ⅰ. The effect of agri-wave technology on yield and quality of tomato. Am. J. Chin. Med. 1: 1-10. Hou, T. Z., and R. E. Mooneylam. 1999 b. Applied studies of plant meridian system: Ⅱ. Agri-wave technology increase the yield and quality of spinach and lettuce and enhance the disease resistant properties of spinach. Am. J. Chin. Med. 2: 131-141. Janz, N., and S. Nylin. 1997. The role of female search behaviour in determining host plant range in plant feeding insect: A test of the information processing hypothesis. Proc. R. Soc. Lond. B 264: 701-707.. Jiang, M. X., and J. A. Cheng. 2003. Interaction between the striped stem borer Chilo suppressalis ( Walk. ) ( Lep., Pyralidae ) larvae and rice plants in response to nitrogen fertilization. J. Pest Science 76: 124-128. Kliebenstein, D., D. Pedersen, B. Barker, and T. Mitchell-Olds. 2002 Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161: 325-332. Lang, C. A. 1958. Simple microdetermination of Kjeldahl nitrogen in biological materials. Analytical Chem. 30: 1692-1694. Lange, H., W. Shropshire Jr., and H. Mohr. 1971. An analysis of phtochrome-mediated anthocyanin synthesis. Plant Physiol. 47: 649-655. Li, Q., S. D. Eigenbrode, G. R. Stringam, and M. R. Tiagarajah. 2000. Feeding and growth on Plutela xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentration and myrosinase activity. J. Chem. Ecol. 26: 2401-2419. Liu, Y. Y., B. C. Wang, X. F. Long, C. R. Duan, and A. Sakanishi. 2002. Effects of sound field on the growth Chrysanthemum callus. Colloids Surf. B Biointerfaces 24: 321-326. Loader, C., and H. Damman. 1991. Nitrogen content of food plants and vulnerability of Pieris rapae to natural enemies. Ecology 72: 1586-1590. Lower, S. S., S. Kirshenbaum, and C. M. Orians. 2003. Preference and performance of a willow-feeding leaf beetle: soil nutrient and flooding effects on host quality. Oecologia 136: 402-411. Lucas, P. W., L. W. Ramsedn, P. Riba, K. E. Stoner, and I. M. Turmer. 2002. Why are young leaves red? Oikos. 98: 163-176. Marazzi, C., and E. Städler. 2004. Influence of plant sulphur nutrition on oviposition and larval performance of the diamondback moth. Entomologia Experimental et Applicata 111: 225-232. Merzlyak, M. N., and O. B. Chivkunova. 2000. Light-stress-induced pigment changes and evidence for anthocyanin photoprotection in apples. J. Photochem. Photobiol. B Biol. 55: 155–163. Morales, H., I. Perfecto, and B. Ferguson. 2001. Traditional fertilization and its effect on corn insect population in the Guatemalan highland. Agric. Ecosyst. Environ. 84: 145-155. Nevo, E., and M. Coll. 2001. Effect of nitrogen fertilization on Aphis gossypii ( Homoptera: Aphididae ): Variation in size, color, and reproduction. J. Econ. Entomol. 94: 27-32. Pavlou, G. C., C. D. Ehaliotis, and V. A. Kavvadias. 2007. Effect of organic and inorganic fertilizers applied during successive crop season in growth and nitrate accumulation in lettuce. Sci. Hortic. 111: 319-325. Phelan, P. L., J. F. Mason, and B. R. Stinner. 1995. Soilifertility management and host preference by European corn borer, Ostrinia nubilalis ( Hübner), on Zea mays L.: A comparison of organic and conventional chemical farming. Agric. Ecosyst. Environ. 56: 1-8. Pietrini, F., M. A. Iannelli, and A. Massacci. 2002. Anthocyanin accumulation in the illuminated surface of maize enhances protection from photo-inhibitory risks at low temperature, without further limitation to photosynthesis. Plant Cell Environ. 25: 1251-1259. Prudic, K. L., J. C. Oliver, and M. D. Bower. 2005. Soil nutrient effects on oviposition preference, larval performance, and chemical defence of a specialist insect herbivore. Oecologia 143: 578-587. Qin, Y. C., W. C. Lee, Y. C. Choi, and T. W. Kim. 2003. Biochemical and physiological changes in plant as a result of different sonic exposures. Ultrasonics 41: 407-411. Ratzka, A., H. Vogel, D. J. Kliebenstein, T. Mitchell-Olds, and J. Kroyann. 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. 99: 11223-11228. Sarma, A. D., Y. Sreelakshmi, and R. Sharma. 1997. Antioxidant ability of anthocyanins against ascorbic acid oxidation. Phytochemistry. 45: 671-674. Schoonhoven, L. M., T. Jermy, and J. J. A. van Loon. 1998. Insect-Plant Biology. Chapman & Hall UK. 409. Slansky Jr., F., and G. S. Wheeler. 1992. Caterpillars’ compensatory feeding response to dilute nutrients leads to toxic allelochemical dose. Entomol. Exp. Appl. 65: 171-186. Steinhachová-Vojtíšková, L., E. Tulová, A. Soukup, H. Novická, O. Votrubová, H. Lipavská, and H. Novická. 2006. Influence of nutrient supply on growth, carbohydrate and nitrogen metabolic relation in Typha angustifolia. Environ. Exp. Bot. 57: 246-257. Taiz L., and E. Ziger. 2002. Plant physiology, 3rd ed . Sinauer Associats, Inc. U. S. A. 690. Traynier, R. M. M., and R. J. W. Truscott. 1991. Potent natural egg-laying stimulant for cabbage butterfly Pieris rapae. J. Chem. Ecol. 17: 1371-1380. Uggla, C., E. J. Mellerowicz, and B. Sundberg. 1998. Indole-3-acid control cambial growth in scots pine by positional signaling. Plant Physiol. 117: 113-121. Walden, R., A. Cordeiro, and A. F. Tiburcio. 1997. Polyamines: Small molecules triggering pathways in plant growth and development. Plant Physiol. 113: 1009-1013. Wang, B. C., A. Yoshiloshi, and A. Sakanishi. 1998. Carrot cell growth response in response in a stimulated ultrasonic environment. Colloids Surf. B Biointerfaces 12: 89-95. Wang, B. C., X. F. Long, C. R. Duan and A. Sakanishi. 2002 a. The effects of mechanical vibration on the microstructure of Gerbera jamesonii acrocarpous callus. Colloids Surf. B Biointerfaces 23: 1-5. Wang, B. C., H. C. Zhao, X. J. Wang, C. R. Duan, D. H. Wang, and A. Sakanishi. 2002 b. Influence of sound stimulation on plasma membrane H+-ATPase activity. Colloids Surf. B Biointerfaces 25: 183-188. Wang, B. C., X. Chen, Z. Wang, Q. H. Fu, H. Zhou, and L. Ran. 2003. Biological effect of sound field stimulation on paddy rice seeds. Colloids Surf. B Biointerfaces 32: 29-34. Wang, X. J., B. C. Wang, Y. Jia, D. Q. Hou, and C. R. Duan. 2003 a. Effect of sound stimulation on cell cycle of chrysanthemum ( Gerbera jamesonii ). Colloids Surf. B Biointerfaces 29: 103-107. Wang, X. J., B. C. Wang, Y. Jia, D. F. Liu, C. R. Duan, and A. Sakanishi. 2003 b. Effect of sound wave on the synthesis of nucleic acid and protein in chrysanthemum. Colloids Surf. B Biointerfaces 29: 99-102. Wittstock, U., N. Agerbirn, E. J. Stauber, C. E. Olsen, M. Hippler, T. Mitchell-olds, J. Gershenzon, and H. Vogel. 2004. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl. Acad. Sci. USA 101: 4859-4864. Yang, X. C., B. C. Wang, Y. Y. Liu, C. R. Duan, and C. Y. Dai. 2002. Biological effects of Actinidia chinensis callus on mechanical vibration. Colloids Surf. B Biointerfaces 25: 197-203. Yang, X. C., B. C. Wang, and C. R. Duan. Effect of sound stimulation on energy metabolism of Actinidia chinensis callus. 2003. Colloids Surf. B Biointerfaces 30: 67-72. Yi, J., B. C. Wang, X. J. Wang, D. H. Wang, C. R. Duan, Y. Toyama, and A. Sakanish. 2003 a. Effect of sound wave on the metabolism of chrysanthemum roots. Colloids Surf. B Biointerfaces 29: 115-118. Yi, J., B. C. Wang, X. J. Wang, C. R. Duan, Y. Toyama, and A. Sakanishi. 2003 b. Influence of sound wave on the microstructure of plasmlemma of chrysanthemum roots. Colloids Surf. B Biointerfaces 29: 109-113. Zhao, H. T. Zhu, J. Wu, and B. S. Xi. 2002 a. Role of protein kinase in the effect of sound stimulation on the PM H+-ATPase activity of Chrysanthemum callus. Colloids Surf. B Biointerfaces 26: 335-340. Zhao, H. C., J. Wu, B. S. Xi, and B. C. Wang. 2002 b . Effects of sound-wave stimulation on the secondary structure of plasma membrane protein of tobacco cells. Colloids Surf. B Biointerfaces 25: 29-32. Zhao, H. C., J. Wu, L. Zheng, T. Zhu, B. S. Xi, B. C. Wang, S. X. Cai, and Y. N. Wang. 2003. Effect of sound stimulation on Dendranthema morifolium callus growth. Colloids Surf. B Biointerfaces 29: 143-147.
摘要: 
傳統的農業耕作採取施肥的方式,以提供植物更多的養分來源,進而促進植物生長與增加產量。然而,近年來發現聲音刺激也可達到促進植物生長的效果。本研究目的為瞭解聲音與施肥同時處理,對甘藍生長表現與其化學物質含量的影響。另ㄧ方面以聲音直接與間接刺激,觀察對斜紋夜盜與紋白蝶生長表現與產卵偏好的影響。試驗中,甘藍以聲音 ( 120 Hz, 75 dB(A),2h/day )與三種不同濃度液態施肥處理。藉由測量地上部植株濕重、乾重、葉面積與葉片數,發現聲音與高施肥同時處理下,植物有最好的生長表現。聲音與施肥兩種處理皆會影響植物代謝物質含量,施肥處理增進植物含氮量,而降低了非結構性碳水化合物與花青素含量。聲音刺激並不影響非結構性碳水化合物含量,但於總處理時間的中期與中後期,對含氮量與花青素含量分別有提升與降低的作用。整體而言,昆蟲的生長表現隨著施肥濃度增加而提升,於聲音直接刺激下,斜紋夜盜與紋白蝶發育時間延長,對生長表現呈現負面影響。聲音處理後的植物並不影響產卵偏好,施肥為主要影響因素。因此若於田間同時使用聲音與施肥處理,可有效促進植物生長,減短耕種時間,並降低昆蟲生長表現。

關鍵詞: 甘藍、聲音、施肥、斜紋夜盜、紋白蝶

Modern agriculture heavily relied on application of fertilizers to promote growth and yields of crop plants. Recent studies revealed that sound stimulation could also promote plant growth. The objective of this study was to evaluate the interacting effects of both sound stimulation and fertilization on the growth and chemical changes of cabbage. Direct and indirect effects of sound on the growth performance and oviposition preference of Spodoptera litura and Pieris rapae were also evaluated using sound treated cabbage. Cabbage was treated with sound (120 Hz and 75dB(A); two hr/day) and three different concentrations of liquid fertilizers. The result indicated that cabbage grew best when treated with both sound and high concentration of fertilizer simultaneously. The plant's fresh weight, dry weight, leaf area, and leaf numbers of the above-ground plant were all higher than those of other treatments. The result also indicated that the content of plant metabolites could be affected by both sound and fertilization. Fertilization could increase and decrease plant's nitrogen and carbon-based components, respectively. Sound stimulation alone did not affect the content of non-structure carbohydrates. However, it affected the plant by increasing nitrogen and decreasing its anthocyanin contents. Insect performed better on plants treated with higher concentration of fertilizer. The developmental time of S. litura and P. rapae was extended under direct stimulation of sound. Sound-treated plants did not affect the oviposition preference of the test insects. Fertilization, however, was the major reason for the oviposition preference of the test insects. Therefore, simultaneously using sound and fertilization in the field could promote plant growth rate, reduce planting period and decrease insect growth performance.

Keywords: cabbage, sound stimulation, fertilization, Spodoptera litura, Pieris rapae
URI: http://hdl.handle.net/11455/30704
其他識別: U0005-2108200713233900
Appears in Collections:昆蟲學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.