Please use this identifier to cite or link to this item:
標題: 茉莉酸甲酯及施肥對番茄誘導防禦反應及對番茄夜蛾生長之影響
The effect of methyl jasmonic acid and fertilization on tomato's induced resistance and subsequently on the performance of tomato fruitworm (Helicoverpa armigera) (Lepidoptera: Noctuidae)
作者: Chiang, Shu-Ya
關鍵字:;茉莉酸甲酯;番茄番茄夜蛾 ( Helicoverpa armigera );多酚氧化酵素;蛋白脢抑制劑;胰蛋白脢抑制劑
出版社: 昆蟲學系所
引用: 費雯綺、王喻其編。2004。植物保護手冊。行政院農業委員會農業藥物毒物試驗所。258頁。 農業統計年報。2005。行政院農業委員會編印。65頁。 Ament, K., M. R. Kant, M. W. Sabelis, M. A. Haring, and R. C. Schuurink. 2004. Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiol. 135: 2025-2037. Black, C. A., R. Karban, L. D. Godfrey, J. Granett, and W. E. Chaney. 2003. Jasmonic acid: a vaccine against leafminers (Diptera: Agromyzidae) in celery. Environ. Entomol. 32: 1196-1202. Boland, W., J. Hopke, J. Donath, J. Nüske, and F. Bublitz. 1995. Jasmonic acid and coronatin induce odor production in plants. Angew. Chem. Int. Ed. 34: 1600-1602. Boughton, A. J., K. Hoover, and G. W. Felton. 2006. Impact of chemical elicitor applications on greenhouse tomato plants and population growth of the green peach aphid, Myzus persicae. Entomol. Exp. & Appl. 120: 175-188. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 284-285. Cheng, T. M., P. C. Huang, J. P. Pan, K. Y. Lin, S. J. T. Mao. 2007. Gel electrophoresis of polyphenol oxidase with instant identification by in situ blotting. J. Chromatogr. B 849: 331-336. Cipollini, D. F. Jr., and A. M. Redman. 1999. Age-dependent effects of jasmonic Acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomato. J. Chem. Ecol. 25: 271-281. Constabel, C.P. 1999. A survey of herbivore-inducible defensive proteins and phytochemicals. American Phytopathological Society Press. St. Paul, MN (USA). Induced plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture. pp137-165. Constabel, C. P., and C. A. Ryan. 1998. A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry 47: 507-511. Constabel, C. P., D. R. Bergey, and C. A. Ryan. 1995. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc. Natl. Acad. Sci. USA 92: 407-411. Cooper, W. R., and F. L. Goggin. 2005. Effects of jasmonate-induced defenses in tomato on the potato aphid, Macrosiphum euphorbiae. Entomol. Exp. & Appl. 115: 107-115. Cotter, S. C., and O. R. Edwards. 2006. Quantitative genetics of preference and performance on chickpeas in the noctuid moth, Helicoverpa armigera. Heredity 96: 396-402. Cunningham, J. P., M. P. Zalucki, and S. A. West. 1999. Learning in Helicoverpa armigera (Lepidoptera: Noctuidae): a new look at the behaviour and control of a polyphagous pest. Bull. Entomol. Res. 89: 201-207. Degenhardt, D. C., and D. E. Lincoln. 2006. Volatile emissions from an odorous plant in response to herbivory and methyl jasmonate exposure. J. Chem. Ecol. 32: 725-743. Deng, C., X. Zhang, W. Zhu, and J. Qian. 2004. Gas chromatography-mass spectrometry with solid-phase microextraction method for determination of methyl salicylate and other volatile compounds in leaves of Lycopersicon esculentum. Anal. Bioanal. Chem 378: 518-522. Dhillon, M. K., and H.C. Sharma. 2007. Effect of storage temperature and durationon viability of eggs of Helicoverpa armigera (Lepidoptera: Noctuidae). Bull. Entomol. Res. 97: 55-59. Farmer, E. E., and C. A. Ryan. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87:7713-7716. Farmer, E. E., R. R. Johnson, and C. A. Ryan. 1992. Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol. 98: 995-1002. Farrar R. R. Jr., J. D. Barbour, and G. G. Kennedy. 1989. Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 82: 593-598. Felton, G. W. 2005. Indigestion is a plant’s best defense. Proc. Natl. Acad. Sci. USA 102: 18771-18772. Felton, G. W., K. Donato, R. J. D. Vecchio, and S. S. Duffey. 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores. J. Chem. Ecol. 15: 2667-2693. Ferry, N., M. G. Edwards, J. A. Gatehouse, and A. M. Gatehouse. 2004. Plant-insect interactions: molecular approaches to insect resistance. Current Opinion in Biotechnology 15: 155-161. Filella, I., J. Peñuelas, and J. Llusià. 2006. Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid. New Phytologist 169: 135-144. Fitt, G.P. 1989. The ecology of Heliothis species in relation to agro-ecosystems. Annu. Rev. Entomol. 34: 17-52. Gandía-Herrero, F., M. Jiménez-Atiénzar, J. Cabanes, F. García-Carmona, and J. Escribano. 2005. Evidence for a common regulation in the activation of a polyphenol oxidase by trypsin and sodium dodecyl sulfate. Biol. Chem. 386: 601-607. Green, T. R., and C. A. Ryan. 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175: 776-777. Haq, S. K., S. M. Atif, and R. H. Khan. 2004. Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch. Biochem. Biophys. 431: 145-59. Johnson, R., J. Narvaez, G. An, and C. Ryan. 1989. Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc. Natl. Acad. Sci. USA 86: 9871-9875. Koiwa, H., R. A. Bressan, and P. M. Hasegawa. 1997. Regulation of protease inhibitors and plant defense. Trends Plant Sci. 2: 379-384. Lang, C. A. 1958. Simple microdetermination of Kjeldahl nitrogen in biological materials. Analytical Chem. 30: 1692-1694. León, J., and J. J. Sánchez-Serrano. 1999. Molecular biology of jasmonic acid biosynthesis in plants. Plant Physiol. Biochem. 37: 373-380. Li, L., C. Li, G. I. Lee, and G. A. Howe. 2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc. Natl. Acad. Sci. USA 99: 6416-6421. Mayer, A. M. 1987. Polyphenol Oxidases in plants-recent progress. Phytochemistry 26: 11-20. Mayer, A. M., and E. Harel. 1979. Polyphenol Oxidases in plants. Phytochemistry 18: 193-215. McCloud, E. S., and I. T. Baldwin. 1997. Herbivory and caterpillar regurgitants amplify the wound-induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203: 430-435. Melo, G. A., M. M. Shimizu, and P. Mazzafera. 2006. Polyphenoloxidase activity in coffee leaves and its role in resistance against the coffee leaf miner and coffee leaf rust. Phytochemistry 67: 277–285. Meyer, A., O. Miersch, C. Biittner, W. Dathe, and G. Sembdner. 1984. Occurrence of the plant growth regulator jasmonic acid in plants. J. Plant Growth Reg. 3: 1-8. Minoggio, M., L. Bramati, P. Simonetti, C. Gardana, L. Iemoli, E. Santangelo, P. L. Mauri, P. Spigno, G. P. Soressi, and P. G. Pietta. 2003. Polyphenol pattern and antioxidant activity of different tomato lines and cultivars. Ann. Nutr. Metab. 47: 64-69. Moore, J. P., N. D. Paul, J. B. Whittakerand, J. E. Taylor. 2003. Exogenous jasmonic acid mimics herbivore-induced systemic increase in cell wall bound peroxidase activity and reduction in leaf expansion. Funct. Ecol. 17: 549–554. Nissinen, A., M. Ibrahim, P. Kainulainen, K. Tiilikkala, and J. K. Holopainen. 2005. Influence of carrot psyllid ( Trioza apicalis) feeding or exogenous limonene or methyl jasmonate treatment on composition of carrot ( Daucus carota) leaf essential oil and headspace volatiles. J. Agric. Food Chem. 53: 8631-8638. Omer, A. D., J. S. Thaler, J. Granett, and R. Karban. 2000. Jasmonic acid induced resistance in grapevines to a root and leaf feeder. J. Econ. Entomol. 93: 840-845. Omer, A. D., J. Granett, R. Karban, and E. M. Villa. 2001. Chemically-induced resistance against multiple pests in cotton. International journal of pest management 47: 49-54. Orians, C. M., J. Pomerleau, and R. Ricco. 2000. Vascular architecture generates fine scale variation in systemic induction of proteinase inhibitors in tomato. J. Chem. Ecol. 26: 471-485. Paré, P. W., W. J. Lewis, and J. H. Tumlinson. 1999. Induced plant volatiles: biochemistry and effects on parasitoids. American Phytopathological Society Press. St. Paul, MN (USA). Induced plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture. pp167-180 Prudic, K. L., J. C. Oliver, and M. D. Bowers. 2005. Soil nutrient effects on oviposition preference, larval performance, and chemical defense of a specialist insect herbivore. Oecologia 143: 578-587. Ramiro, D. A., O. Guerreiro-Filho, and P. Mazzafera. 2006. Phenol contents, oxidase activities, and the resistance of coffee to the leaf miner Leucoptera coffeella. J. Chem Ecol. 32: 1977-1988. Rodriguez-Saona, C., J. A. Chalmers, S. Raj, and J. S. Thaler. 2005. Induced plant responses to multiple damagers: differential effects on an herbivore and its parasitoid. Oecologia 143: 566–577. Rodriguez-Saona, C., S. J. Crafts-Brandner, P. W. Paré, and T. J. Henneberry. 2001. Exogenous methyl jasmonate induces volatile emissions in cotton plants. J. Chem. Ecol. 27: 679-695. Ryan, C. A., P. Gregory, and W. Tingey. 1982. Phynolic oxidase activities in glandular trichomes of Solanum berthaultii. Phytochemistry 21: 1885-1887. Ryan, C. A. 1990. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol. 28: 425-449. Sánchez-Hernández, C., M. G. López, and J. P. Délano-Frier. 2006. Reduced levels of volatile emissions in jasmonate-deficient spr2 tomato mutants favour oviposition by insect herbivores. Plant Cell Environ. 29: 546-557. Sembdner, G., and B. Parthier. 1993. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 569-589. Shinoda, T., T. Nagao, M. Nakayama , H. Serizawa, M. Koshioka, H. Okabe, and A. Kawai. 2002. Identification of a triterpenoid saponin from a crucifer, Barbarea vulgaris, as a feeding deterrent to the diamondback moth, Plutella xylostella. J. Chem. Ecol. 28: 587-599. Staswick, P. E., and C.C. Lehman. 1999. Jasmonic acid-signaled responses in plants. American Phytopathological Society Press. St. Paul, MN (USA). Induced plant defenses against pathogens and herbivores: biochemistry, ecology, and agriculture. pp117-136. Stout, M. J., K. V. Workman, and S. S. Duffey. 1996. Identity, spatial distribution, and variability of induced chemical responses in tomato plants. Entomol. Exp. & Appl. 79: 255-271. Stout, M. J., K. V. Workman, R. M. Bostock, and S. S. Duffey. 1998a. Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia 113: 74–81. Stout, M. J., K. V. Workman, R. M. Bostock, and S. S. Duffey. 1998b. Stimulation and attenuation of induced resistance by elicitors and inhibitors of chemical induction in tomato (Lycopersicon esculentum). Entomol. Exp. & Appl. 86: 267-279. Stout, M. J., G. W. Zehnder, and M. E. Baur. 2002. Potential for the use of elicitors of plant resistance in arthropod management programs. Arch. Insect Biochem. Physiol. 51: 222-235. Thaler, J. S. 1999a. Induced resistance in agricultural crops: effects of jasmonic acid on herbivory and yield in tomato plants. Environ. entomol. 28: 30-37. Thaler, J. S. 1999b. Jasmonate-inducible plant defenses cause increased parasitism of herbivores. Nature 399: 686-688. Thaler, J. S., M. J. Stout, R. Karban, and S. S. Duffey. 1996. Exogenous jasmonates simulate insect wounding in tomato plants, Lycopersicon esculentum, in the laboratory and field. J. Chem. Ecol. 22: 1767–1781. Thaler, J. S., M. J. Stout, R. Karban, and S. S. Duffey. 2001. Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol. Entomol. 26: 312-324. Thaler, J. S., M. A. Farag, P. W. Paré, and M. Dicke. 2002. Jasmonate-deficient plants have reduced direct and indirect defences against herbivores. Ecology letters 5: 764–774. Theis, N., and M. Lerdau. 2003. The evolution of function in plant secondary metabolites. Int. J. Plant Sci. (Suppl.) 164: 93-102. Thomas, J.C., D.G. Adams, V. D. Keppenne, C. C. Wasmann, J. K. Brown, M. R. Kanost, and H. J. Bohnert. 1995. Protease inhibitors of Manduca sexta expressed in transgenic cotton. Plant cell rep. 14: 758-762. Tolbert, N. E. 1973. Activation of polyphenol oxidase of chloroplasts. Plant Physiol. 51: 234-244. Waldbauer, G. P. 1968. The consumption and utilization of food by insect. Adv. Insect Physiol. 5: 229-288. Wasternack, C., I. Stenzela, B. Hauseb, G. Hausec, C. Kuttera, H. Mauchera, J. Neumerkela, I. Feussnerd, and O. Mierscha. 2006. The wound response in tomato – role of jasmonic acid. J. Plant Physiol. 163: 297-306.
The mass application of synthetic pesticides can cause severe health and environmental problems. Therefore, reducing pesticide input is a very important issue nowadays. One of the solutions for reducing the use of pesticides is using some natural products, such as jasmonic acid (JA), to trigger plant's defense. When plants are wounded by insects, the endogenous JA level increases. Jasmonic acid can transmit the wounding signal and subsequently plants produce some defensive compounds, such as defense proteins, against insect herbivores. Previously researches indicated that exogenous JA on tomato plants could elevate the activities of defense-related proteins, polyphenol oxidase (PPO) and proteinase inhibitor (PI). This induction response would also reduce the performance of some tomato pests. The effect of JA induction on tomato fruitworm (Helicoverpa armigera) and the effect of nutrient on this induction response are not known. The aim of this study is to know the effect of methyl jasmonic acid (MeJA) and plant's nutrient available levels on tomato's induced resistance, and subsequently on the performance of tomato fruitworm. Tomato plants were grown in different nutrient levels; then MeJA was applied. The results indicated that MeJA treatment would increase the activities of trypsin inhibitor (TI). There is no significant difference on the activity of PPO between MeJA-treated and control plants. In addition, MeJA treatment also increased the quantity of volatiles emission. Results of feeding study revealed that larvae all dead when fed on MeJA-treated leaflets. Results of the short-term feeding study also showed that relative growth rates were negative for larvae fed on MeJA-treated foliage. Adult oviposition, however, there was no difference between the treatments. Finally, we also found that fertilization did not affect the effect of MeJA induction. The induced resistance may have reached its maximum effect with minimum nutrient. In conclusion, the negative effect of MeJA induction on tomato fruitworm may due to the increased activities of trypsin inhibitor. Besides, increased volatiles emission and other unknown factors may also have effects on the reduced preference for MeJA-treated leaves.

當植物受到昆蟲傷害後植物內茉莉酸的量會上升,茉莉酸會傳遞傷害訊息,使植物產生防禦蛋白對抗昆蟲。過去尚未研究過番茄外加茉莉酸對番茄夜蛾 ( Helicoverpa armigera ) 生長的影響,以及植物營養對誘導防禦反應的效果。因此本實驗想瞭解外加茉莉酸甲酯以及配合不同程度的施肥條件對番茄之誘導防禦反應及對番茄夜蛾生長表現之影響。番茄先經高、低及無施肥三種施肥處理,接著三種施肥處理再各自分為兩大組,分別為茉莉酸甲酯處理組及控制組。實驗結果顯示,茉莉酸甲酯處理之番茄防禦蛋白胰蛋白酶抑制劑活性顯著高於控制組約3倍,多酚氧化酵素活性無顯著差異,而揮發物質的量上升。以茉莉酸甲酯處理之番茄葉片餵食四齡番茄夜蛾幼蟲,造成番茄夜蛾死亡,短期實驗發現相對生長速率為負値,但成蟲產卵偏好無顯著差異。另外,施肥處理並不影響茉莉酸甲酯誘導的效果,在無施肥處理防禦反應即達到很好的效果。茉莉酸甲酯處理番茄對番茄夜蛾生長發育有顯著的負面影響,除了可能由於葉片中 trypsin inhibitor 的量升高導致之外,揮發物質的量上升或其他尚未知的因素可能對於降低番茄夜蛾幼蟲對茉莉酸甲酯處理之葉片的偏好也有影響。
其他識別: U0005-2507200719594900
Appears in Collections:昆蟲學系

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.