Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3073
標題: 原位光化學輔助銀奈米粒子/酚醛環氧壓克力系複合薄膜製備
In Situ Photo-chemically Assisted Fabrication of Nanosilver/Cresol Epoxy Acrylate Composite Film
作者: 蘇品境
Su, Pin-Jing
關鍵字: 原位法;In situ;光化學還原;銀奈米粒子;奈米複合薄膜;Photo-chemical reduction;Silver nanoparticles;Nano-composite
出版社: 化學工程學系所
引用: 1.K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The Optical Properties of Metal Nanoparticles : The Influence of Size, Shape, and Dielectric Environment”, J. Phys. Chem. B (2003) 668-677. 2.S. Pruneanu, F. Pogacean, A. R. Biris, M. Coros, F. Watanabe, E. Dervishi, A. S. Biris, “Electro-Catalytic Properties of Graphene Composites Containing Gold or Silver Nanoparticles”, Electrochimica Acta 89 (2013) 246– 252. 3.W. T. Cheng, Y. W. Chih, W. T. Teh, “In situ fabrication of photocurable conductive adhesives with silver nano-particles in the absence of capping agent”, International Journal of Adhesion & Adhesives 27 (2007) 236-243. 4.C. J. Peng, S. C. Wang, S. F. Wang, C. S. Chang, T. S. Lin, “Aerosol Plasma Deposition Method for Preparation of Lead Zirconate Titanate Thick Films”, Japanese Journal of Applied Physics (2005) 3240-3241. 5.A. P. Abbott, K. E. Ttaib, G. Frisch, K. S. Ryder, D. Weston, “The Electrodeposition of silver composites using deep eutectic solvents”, J. Phys. Chem. (2012) 2443-2449. 6.X. Huang, D. Du, X. Gong, J. Cai, H. Tu, X. Xu, A. Zhang, “Composite Assembly of Silver Nanoparticles with Avidin and Biotinylated AChE on Gold for the Pesticidal Electrochemical Sensing”, Electroanalysis 20 (2008) 402-409. 7.N. Singh, P. K. Khanna, “In Situ Synthesis of Silver Nano-particles in Polymethylmethacrylate”, Materias Chemistry and Physics 104 (2007) 367-372. 8.G. Kortaberria, M. Sangermano, I. Mondragon, “In Situ Synthetized Silver/Epoxy Nanocomposites : Electrical Characterization in Terms of Dielectric Relaxation Spectroscopy”, Macromol. Symp. (2012) 112-117. 9.P. K. Khanna, N. Singh, S. Charan, A. K. Viswanath, “Synthesis of Ag/Polyaniline Nanocomposite Via An In Situ Photo-redox Mechanism”, Materials Chemistry and Physics 92 (2005) 214-219. 10.A. M.B. Silva, C. B. Araujo, S. S. Silva, A. Galembeck, “Silver Nanoparticle In Situ Growth within Crosslinked Poly(ester-co-styrene) Induced by UV Irradiation : Aggregation Control with Exposure Time”, Journal of Physics and Chemistry of Solids 68 (2007) 729-733. 11.G. Carotenuto, “Synthesis and Characterization of Poly(N-vinylpyrrolidone) Filled by Monodispersed Silver Clusters with Controlles Size”, Organometal. Chem. (2001) 344-351. 12.K. Akamatsua, S. Takei, M. Mizuhata, A. Kajinami, S. Deki, S. Takeoka, M. Fujii, S. Hayashi, K. Yamamoto, “Preparation and Characterization of Polymer Thin Films Containing Silver and Silver Sulfide Nanoparticles”, Thin Solid Films 359 (2000) 55-60. 13.K. Pashayi, H. R. Fard, F. Lai, S. Iruvanti, J. Plawsky, “High Thermal Conductivity Epoxy-Silver Composites Based on Selfconstructed Nanostructured Metallic Networks”, J. Appl. Phys. 111 (2012) 104310. 14.L. Balan, J. P. Malval and D. J. Lougnot, “In situ photochemically assisted synthesis of silver nanoparticles in polymer matrixes”, Silver Nanoparticle (2010) 79-92. 15.黃偉鎮,“紫外光輔助乙二醇合成奈米銀粒子之研究”, 國立中興大學碩士論文, 2006. 16.Y. Lu, M. Yu, M. Drechsler, M. Ballauff, “Ag Nanocomposite Particles: Preparation, Characterization and Application”, Macromol. Symp. (2007) 97-102. 17.J. Śleziona, J. Wieczorek, M. Dyzia, “Mechanical Properties of Silver Matrix Composites Reinfroced with Ceramic Particles”, Journal of Achievements in Materials and Manufacturing Engineering (2006) 165-168. 18.L. A. Dobrzanski, M. Drak, B. Ziebowicz, “New Possibilities of Composite Materials Application-Materials of Specific Magnetic Properties”, Journal of Materials Processing Technology 191 (2007) 352-355. 19.M. Szczepanik, J. Stabik, M. Lazarczyk, A. Dybowska, “Influence of Graphite on Electrical Properties of Polymeric Composites”, Archives of Materials Science and Engineering (2009) 37-44. 20.R. A. Karamaliyev, C. Q. Qajar, “Optical Properties of Composite Thin Films Containing Silver Nanoparticles”, Journal of Applied Spectroscopy (2012) 404-409. 21.S. M. Orbons, D. Freeman, B. L. Davies, B. C. Gibson, S. T. Huntington, D. N. Jamieson, A. Roberts, “Optical Properties of Silver Composite Metamaterials”, Physica B 394 (2007) 176-179. 22.M. S. Park, T. H. Lim, Y. M. Jeon, J. G. Kim, S. W. Joo, M. S. Gong, “Humidity Sensitive Properties of Copoly(TEAMPS/VP)/Silver Nanocomposite Films”, Sensors and Actuators B 133 (2008) 166-173. 23.X. Yang, L. Li, F. Yan, “Polypyrrole/Silver Composite Nanotubes for Gas Sensors”, Sensors and Actuators B 145 (2010) 495-500. 24.徐國財, 張立德,“奈米複合材料”, 五南圖書出版公司, 2003. 25.P. S. Kishore, B. Viswanathan, T. K. Varadarajan, “Synthesis and Characterization of Metal Nanoparticle Embedded Conducting Polymer–Polyoxometalate Composites”, Nanoscale Res Lett (2008) 14-20. 26.L. Balan, R. Schneider, D. J. Lougnot, “A new and convenient route to polyacrylate/silver nanocomposites by light-induced cross-linking polymerization”, Progress in Organic Coatings 62 (2008) 351-357. 27.A. Goyal, A. Kumar, P. K. Patra, S. Mahendra, S. Tabatabaei, P. J. J. Alvarez, G. John, P. M. Ajayan, “In Situ Synthesis of Metal Nanoparticle Embedded Free Standing Multifunctional PDMS Films”, Macromol. Rapid Commun. (2009) 1116-1122. 28.V. Melinte, T. Buruiana, I. D. Moraru, E. C. Buruiana, “Silver Polymer Composite Materials With Antibacterial Properties”, Digest Journal of Nanomaterials and Biostructures (2011) 213-223. 29.D. Kunwong, N. Sumanochitraporn, S. Kaewpirom, “Curing Behavior of A UV-curable Coating Based on Urethane Acrylate Oligomer : the Influence of Reactive Monomers”, Songklanakarin J. Sci. Technol. (2011) 201-207. 30.R. Junid, J. A. Razak, M. M. Mahat, “The Effects of Photoinitiator Addition to the Mechanical and Physical Properties of the Epoxy and Vinyl Ester Fiber Glass Laminated Composites”, International Journal of Applied Science and Technology (2011) 74-79. 31.L. Cheng, W. Shi, “Synthesis and Photoinitiating Behavior of Benzophenone-Based Polymeric Photoinitiators Used for UV Curing Coatings”, Progress in Organic Coatings 71 (2011) 355-361. 32.J. S. Wright, L. F. Francis, “Effect of Solution Processing on PZT Thin Films Prepared by A Hybrid MOD Solution Deposition Route”, Journal of Electroceramics 3 (1999) 261-268. 33.P. J. Rivero, J. Goicoechea, A. Urrutia, F. J. Arregui, “Effect of Both Protective and Reducing Agents in the Synthesis of Multicolor Silver Nanoparticles”, Nanoscale Research Letters (2013) 8:101. 34.D. Mathew, C. P. R.Nair, K. N. Ninan, “Effect of Polymeric Additives on Properties of Glass–Bisphenol A Dicyanate Laminate Composites”, Journal of Applied Polymer Science (2000) 75-88. 35.R. O. Kuehl, “Design of Experiments:Statistical Principles of Research Design and Analysis”, 2nd edition, Pacific Grove, CA, 2000. 36.D. C. Montgomery, “Design and Analysis of Experiments”, 4th edition, John Wiley & Sons, New York, 1997. 37.渡部, 義晴, 陳耀茂譯,“田口方法的應用”, 鼎茂圖書出版公司, 2011. 38.安部季夫, 陳耀茂譯,“直交表實驗計劃法”, 五南圖書出版公司, 2002. 39.陳耀茂, 黃廷彬,“品質工程Excel應用手冊”, 中國生產力中心, 2006. 40.H. J. Jeea, E. Sachsb, “A visual simulation technique for 3D printing”, Advances in Engineering Software (2000) 97-106. 41.羅錦興,“田口品質工程指引”,中國生產力中心, 1999. 42.李輝煌,“田口方法品質設計的原理與實務”, 高立圖書有限公司, 2000. 43.蘇朝墩,“品質工程”, 中華民國品質管制學會, 2002. 44.立林和夫,“入門田口方法”, 中衛發展中心發行, 2008. 45.田口玄一著, 陳耀茂譯,“田口統計解析法”, 五南圖書出版公司, 2003. 46.N. N. Greenwood, A. Earnshaw, “Chemistry of the Elements”, 2nd Ed., Oxford: Butterworth-Heinemann, 1997. 47.P. W. Atkins, “Physical Chemistry”, 6thed, Oxford university press,1998. 48.蔡毓楨, “原子力顯微鏡實作訓練教材”, 五南出版社, 2007. 49.何正恩, 高振宏, “SEM/EDS的原理與操作應用之簡介”, 化工技術, 2003. 50.余樹楨, “X光繞射之材料科學應用”, 科儀新知, 1986. 51.許樹恩, 吳泰柏, “X光繞射原理及材料結構分析”, 中國材料科學學會, 1996. 52.柯以侃, 吳明珠,“儀器分析”,文京圖書有限公司, 1999. 53.R. A. Much, U. Meridor, A. Frydman, A. Gedanken, “Formation of a Three-Dimensional Microstructure of Fe3O4-Poly(vinyl alcohol) Composite by Evaporating the Hydrosol under a Magnetic Field”, J. Phys. Chem. B (2006) 8194-8203. 54.Z. Zhang, M. Han, “One-Step Preparation of Size-Selected and Well- Dispersed Silver Nanocrystals in Polyacrylonitrile by Simultaneous Reduction and Polymerization”, J. Mater. Chem. (2003) 641-643.
摘要: 
現今環保意識興起,如何在各方面降低能源消耗即扮演重要腳色,其中利用紫外光固化法即為其中一部分,加上金屬複合材料可以增加散熱性,所以開發利用紫外光固化法及原位合成奈米金屬粒子,形成金屬複合奈米薄膜成為重要課題之一。
本論文主要以樹脂、溶劑、單體、光起始劑及硝酸銀為原料,並使用原位光化學輔助合成銀奈米粒子/酚醛環氧壓克力系複合薄膜,而不用額外添加銀粉。配方當中使用乙二醇不但可以當作溶劑,亦可將乙二醇用來還原銀離子變成銀奈米粒子,而不須分別添加還原劑及溶劑。實驗主要是利用紫外光能量提供光起始劑及乙二醇產生自由基,促使單體三羥甲基丙烷三丙烯酸酯(TMPTA)進行交聯反應及合成銀奈米粒子,形成銀奈米粒子/酚醛環氧壓克力系複合薄膜。首先利用原位光化學輔助製備複合薄膜後,經過紫外光可見光光譜儀(UV-visible)、場發射掃描式電子顯微鏡(FESEM)及X光繞射儀(XRD)分析,驗證出本研究配方及製程條件,成功將銀奈米粒子合成於感光性高分子薄膜中,形成銀奈米粒子/酚醛環氧壓克力系複合薄膜。接著使用田口品質工程靜態望大機制進行實驗。本文歸納出下面兩項重要成果:
(1)在不同配方條件下,單體及樹脂含量降低,能得到較高之UV-vis銀奈米粒子特性波長吸收值,提升銀奈米粒子含量,而光起始劑含量及膜厚則反之。且當光起始劑Irgacure500最大紫外光吸收波長250nm,位在紫外光曝光機較大能量波長上,相較於Darocur4265最大紫外光吸收波長為240nm,能獲得較高UV-vis銀奈米粒子特性波長吸收值。
(2)在不同製程條件下,當轉速提高至9000rpm,可將平均膜厚值降低至約5μm,而在此膜厚及不同配方條件下,當銀奈米粒子吸收值由1.33增加至2.19,則粗糙值由0.21nm提升至0.26nm。另外,隨著照光能量從0.6J/cm2提升至12J/cm2時,可由FESEM在複合薄膜斷面中觀察到,銀奈米粒子大小由17nm增加至23nm;接著利用相同樣品進行EDS分析,銀奈米粒子含量由2.45%增加至3.82%;且由TGA分析,其熱裂解溫度由227℃降低至207℃;最後由XRD分析,主要晶相(111) 平均晶粒大小由2.08nm增加至4.88nm。

Environmental protection consciousness gains ground, it plays an important role that how to reduce energy consumption in all aspects. The UV curing method can be increased the heat dissipation with adding metal composite materials. It is an important issue that taking the UV curing and in situ method to synthesis the thin film of metal nanocomposite.
The compositions in this study are resin, solvent, monomer, photoinitiator and AgNO3, which use in situ photo-chemically assisted fabrication of nanosilver/ cresol epoxy acrylate composite film, not adding additional silver. Ethylene glycol is not only as a solvent but also be a reducing agent to restore the silver ions to the silver nanoparticles without having to separately add the reducing agent and solvent. The experiments is using UV exposure to provide energy for initiator and ethylene glycol which produces the free radicals and promotes a monomer of trimethylolpropane triacrylate(TMPTA) to cross linked reaction and synthetic silver nanoparticles. First, we have used in-situ photochemical assisted preparation of composite films and used UV-visible, FESEM and XRD analysis, in order to inspect and verify formulation and validation the process conditions in this research, which has been succeed to synthesis the silver nanoparticles with photosensitive polymer film to form nanosilver/cresol epoxy acrylate composite film. Then use the static Taguchi method which is larger the better mechanism to experiment and draw out S/N ratio response graph of control factors. This article summarizes the following two important results:
(1)In the case of different formulation conditions, the monomer and the resin content decreased, in order to get higher absorption value in the (UV-visible) of the wavelength characteristic in silver nano-particles, and increased the content of the silver nano-particle. On the contrary, the content of photo-initiator and the thickness are progressively decreasing. When the maximum UV absorption wavelength of the photo-initiator Irgacure500 is 250nm, which has been shown at larger energy wavelength for UV exposure machine, compared to the maximum UV absorption wavelength of the Darocur4265 is 240nm, it can obtain higher the characteristic wavelength absorption values of silver nanoparticles for UV-vis.
(2)In the case of different process conditions, when the angular speed increased to 9000rpm, the average thickness value successfully reduced to 5μm, then in the same film thickness but different experiment conditions, which the silver nanoparticles UV-vis absorption value increased from the 1.325 to 2.188, the value of roughness enhanced from 0.2086nm to 0.2631nm. With the exposure energy raised from 0.6J/cm2 to 12J/cm2, the particle size of silver nanoparticles increased from 17nm to 23nm, which the composite film was observed in cross section by the FESEM. Then using EDS analyzes for the same samples, silver nanoparticles content increased from 2.45% to 3.82%. In addition to TGA showed that the pyrolysis temperature decreased from 227 ℃ to 207 ℃. Finally, the average grain size of the diffraction peaks (111) increased from 2.08nm to 4.88nm by X-ray diffraction.
URI: http://hdl.handle.net/11455/3073
其他識別: U0005-1908201316410900
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.