Please use this identifier to cite or link to this item:
標題: The functional analysis of a guanylyl cyclase, BdmGC-1, in the oriental fruit fly, Bactrocera dorsalis (Hendel)
東方果實蠅(Bactrocera dorsalis (Hendel))鳥苷酸環化酵素BdmGC-1之功能分析
作者: 張哲誠
Chang, Jer-Cherng
關鍵字: 鳥苷酸環化酵素;
出版社: 昆蟲學系所
引用: Aburaya, M., N. Minamino, K. Kangawa, K. Tanaka and H. Matsuo. 1989. Distribution and molecular forms of brain natriuretic peptide in porcine heart and blood. Biochem. Biophys. Res. Commun. 165: 872-879. Akai, H. 1992. Ultrastructure of epitracheal gland during larval-pupal molt of Bombyx mori. Cytologia 57: 195-201. Anand-Srivastava, M. B. and M. Cantin. 1986. Atrial natriuretic factor receptors are negatively coupled to adenylate cyclase in cultured atrial and ventricular cardiocytes. Biochem. Biophys. Res. Commun. 138: 427-436. Anand-Srivastava, M. B. and G. J. Trachte. 1993. Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol. Rev. 45: 455-497. Anand-Srivastava, M. B., J. Gutkowska and M. Cantin. 1991. The presence of atrialnatriuretic-factor receptors of Anf-R2 subtype in rat platelets. Coupling to adenylate cyclase/cyclic AMP signal-transduction system. Biochem. J. 278: 211-217. Anand-Srivastava, M. B., P. D. Sehl and D. G. Lowe. 1996. Cytoplasmic domain of natriuretic peptide receptor-C inhibits adenylyl cyclase. Involvement of a pertussis toxin-sensitive G protein. J. Biol. Chem. 271: 19324-19329. Aparicio, J. G. and M. L. Applebury. 1996. The photoreceptor guanylate cyclase is an autophosphorylating protein kinase. J. Biol. Chem. 271: 27083-27089. Arakane, Y., B. Li, S. Muthukrishnan, R. W. Beeman, K. J. Kramer and Y. Park. 2008. Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mech. Dev. 125: 984-995. Atarashi, K., P. J. Mulrow, R. Franco-Saenz, R. Snajdar and J. P. Rapp. 1984a. Inhibition of aldosterone production by an atrial extract. Science 224: 992-994. Atarashi, K., R. Franco-Saenz, P. J. Mulrow, R. M. Snajdar and J. P. Rapp. 1984b. Inhibition of aldosterone production by atrial natriuretic factor. J. Hypertens. Suppl. 2: S293-S295. Ayoob, J. C., H.-H. Yu, J. R. Terman and A. L. Kolodkin. 2004. The Drosophila receptor guanylyl cyclase Gyc76C is required for semaphorin-1a-plexin A-mediated axonal repulsion. J. Neurosci. 30: 6639-6649. Bakalyar, H. A. and R. R. Reed. 1990. Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250: 1403-1406. Behrends, S., C. Harteneck, G. Schultz and D. Koesling. 1995. A variant of the α2 subunit of soluble guanylyl cyclase contains an insert homologous to a region within adenylyl cyclases and functions as a dominant negative protein. J. Biol. Chem. 270: 21109-21113. Belluscio, L., G. H. Gold, A. Nemes and R. Axel. 1998. Mice deficient in G(olf) are anosmic. Neuron 20: 69-81. Bicker, G. 2001. Sources and targets of nitric oxide signalling in insect nervous systems. Cell Tissue Res. 303: 137-146. Braughler, J. M., C. K. Mittal and F. Murid. 1979. Purification of soluble guanylate cyclase from rat liver. Proc. Natl. Acad. Sci. U.S.A. 76: 219-222. Bredt, D. S. and S. H. Snyder. 1994. Nitric oxide: a physiologic messenger molecule. Ann. Rev. Biochem. 63: 175-195. Buechler, W. A., M. Nakane and F. Murad. 1991. Expression of soluble guanylate cyclase activity requires both enzyme subunits. Biochem. Biophys. Res. Commun. 174: 351-357. Canfield, W. M., K. F. Johnson, R. D. Ye, W. Gregory and S. Kornfeld. 1991. Localization of the signal for rapid internalization of the bovine cation-independent mannose 6-phosphate/insulin-like growth factor-II receptor to amino acids 24-29 of the cytoplasmic tail. J. Biol. Chem. 266: 5682-5688. Chen, Y. H. 2002. Cloning, Characterization, and developmental expression of a membrane form guanylyl cyclase gene in the oriental fruit fly, Bactrocera dorsalis (Hendel). Chinkers, M. and E. M. Wilson. 1992. Ligand-independent oligomerization of natriuretic peptide receptors. Identification of heteromeric receptors and a dominant negative mutant. J. Biol. Chem. 267: 18589-18597. Chinkers, M., D. L. Garbers, M.-S. Chang, D. G. Lowe, H. Chin, D. V. Goeddel and S. Schulz. 1989. A membrane form of guanylyl cyclase is an atrial natriuretic peptide receptor. Nature 338: 78-83. Chiu, H. T. 1978. Studies on the improvement of mass rearing for oriental fruit flies. Plant Prot. Bull. 20: 87-92. (In Chinese) Chrisman, T. D. and D. L. Garbers. 1999. Reciprocal antagonism coordinates C-type natriuretic peptide and mitogen-signaling pathways in fibroblasts. J. Biol. Chem. 274: 4293-4299. Chrisman, T. D., D. L. Garbers, M. A. Parks and J. G. Hardman. 1975. Characterization of particulate and soluble guanylate cyclases from rat lung. J. Biol. Chem. 250: 374-381. Clark, A. C., M. L. del Campo and J. Ewer. 2004. Neuroendocrine control of larval ecdysis behavior in Drosophila: complex regulation by partially redundant neuropeptides. J. Neurosci. 24: 4283-4292. Collier, J. and P. Vallance. 1989. Second messenger role for NO widens to nervous and immune systems. Trends Pharmacol. Sci. 10: 427-431. Cottrell, C. B. 1962. The imaginal ecdysis of blowflies. Detection of the blood-borne darkening factor and the determination of some of its properties. J. Exp. Biol. 39: 413-430. Crane, J. K. and K. L. Shanks. 1996. Phosphorylation and activation of the intestinal guanylyl cyclase receptor for Escherichia coli heat-stable toxin by protein kinase C. Mol. Cell Biochem. 165: 111-120. Craven, P. A. and F. R. DeRubertis. 1978. Restoration of the responsiveness of purified guanylate cyclase to nitrosoguanidine, nitric oxide, and related activators by heme and hemeproteins. Evidence for involvement of the paramagnetic nitrosyl-heme complex in enzyme activation. J. Biol. Chem. 253: 8433-8443. Craven, P. A. and F. R. DeRubertis. 1983. Requirement for heme in the activation of purified guanylate cyclase by nitric oxide. Biochim. Biophys. Acta 745: 310-321. Currie, M. G., K. F. Fok, J. Kato, R. J. Moore, F. K. Hamra, K. L. Duffin and C. E. Smith. 1992. Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 89: 947-951. Davis, N. T., U. Homberg, H. Dircksen, R. B. Levine and J. G. Hildebrand. 1993. Crustacean cardioactive peptide‐immunoreactive neurons in the hawkmoth Manduca sexta and changes in their immunoreactivity during postembryonic development. J. Comp. Neurol. 338: 612-627. de Bold, A. J. 1985. Atrial natriuretic factor: A hormone produced by the heart. Science 230: 767-770. de Bold, A. J., H. B. Borenstein, A. T. Veress and H. Sonnenberg. 1981. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci. 28: 89-94. De Léan, A., N. McNicoll and J. Labrecque. 2003. Natriuretic peptide receptor A activation stabilizes a membrane-distal dimer interface. J. Biol. Chem. 278: 11159-11166. Dessauer, C. W. and A. G. Gilman. 1997. The catalytic mechanism of mammalian adenylyl cyclase. Equilibrium binding and kinetic analysis of p site inhibition. J. Biol. Chem. 272: 27787-27795. Dewey, E. M., S. L. McNabb, J. Ewer, G. R. Kuo, C. L. Takanishi, J. W. Truman and H. W. Honegger. 2004. Identification of the gene encoding bursicon, an insect neuropeptide responsible for cuticle sclerotization and wing spreading. Curr. Biol. 14: 1208-1213. Drewett, J. G., R. J. Ziegler and G. J. Trachte. 1992. Neuromodulatory effects of atrial natriuretic peptides correlate with an inhibition of adenylate cyclase but not an activation of guanylate cyclase. J. Pharmacol. Exp. Ther. 260: 689-696. Duda, T. and R. K. Sharma. 2008. ONE-GC membrane guanylate cyclase, a trimodal odorant signal transducer. Biochem. Biophys. Res. Commun. 367: 440-445. Duda, T., A. Jankowska, V. Venkataraman, R. G. Nagele and R. K. Sharma. 2001. A novel calcium-regulated membrane guanylate cyclase transduction system in the olfactory neuroepithelium. Biochemistry 40: 12067-12077. Elphick, M. R. and I. W. Jones. 1998. Localization of soluble guanylyl cyclase α- subunit in identified insect neuron. Brain Res. 800: 174-179. Ewer, J. 2005. Behavioral actions of neuropeptides in invertebrates: insights from Drosophila. Horm. Behav. 48: 418-429. Ewer, J. and J. W. Truman. 1996. Increase in cyclic 3'',5'' -guanosine monophosphate (cGMP) occur at ecdysis in an evolutionarily conserved crustacean cardioactive peptide-immunoreactive insect neuronal network. J. Comp. Neurol. 370: 330-341. Ewer, J. and J. W. Truman. 1997. Invariant association of ecdysis with increases in cyclic 3'',5'' -guanosine monophosphate immunoreactivity in a small network of peptidergic neurons in the hornworm, Manduca sexta. J. Comp. Physiol. 181: 319-330. Ewer, J., J. E. Vente and J. W. Truman. 1994. Neuropeptide induction of cyclic GMP increases in the insect CNS: resolution at the level of single identifible neurons. J. Neurosci. 14: 7704-7712. Ewer, J., S. C. Gammie and J. W. Truman. 1997. Control of insect ecdysis by a positive-feedback endocrine system: roles of eclosion hormone and ecdysis triggering hormone. J. Exp. Biol. 200: 869-881. Ewer, J., M. del Campo and J. Park. 2001. Neuroendocrine control of ecdysis. J. Neurogenet. 15: 19. Fülle, H. J., R. Vassar, D. C. Foster, R. B. Yang, R. Axel and D. L. Garbers. 1995. A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc. Natl. Acad. Sci. U.S.A. 92: 3571-3575. Fenrick, R., N. McNicoll and A. De Léan. 1996. Glycosylation is critical for natriuretic peptide receptor-B function. Mol. Cell. Biochem. 165: 103-109. Firestein, S. 2001. How the olfactory system makes sense of scents. Nature 413: 211-218. Fleischman, D. and M. Denisevich. 1979. Guanylate cyclase of isolated bovine retinal rod axonemes. Biochemistry 18: 5060-5066. Fleischman, D., M. Denisevich, D. Raveed and R. G. Pannbacker. 1980. Association of guanylate cyclase with the axoneme of retinal rods. Biochim. Biophys. Acta 630: 176-186. Foerster, J., C. Harteneck, J. Malkewitz, G. Schultz and D. Koesling. 1996. A functional heme-binding site of soluble guanylyl cyclase requires intact N-termini of α1 and β1 subunits. Eur. J. Biochem. 240: 380-386. Forte, L. R. 1999. Guanylin regulatory peptides: Structures, biological activities mediated by cyclic GMP and pathobiology. Regul. Pept. 81: 25-39. Foster, D. C., B. J. Wedel, S. W. Robinson and D. L. Garbers. 1999. Mechanisms of regulation and functions of guanylyl cyclases. Rev. Physiol. Biochem. Pharmacol. 135: 1-39. Franco, F., S. K. Dubois, R. M. Peshock and R. V. Shohet. 1998. Magnetic resonance imaging accurately estimates LV mass in a transgenic mouse model of cardiac hypertrophy. Am. J. Physiol. 274: H679-H683. Frankel, G. and C. Hsiao. 1962. Hormonal and nervous control of tanning in the fly. Science 138: 27-29. Fuller, F., J. G. Porter, A. E. Arfsten, J. Miller, J. W. Schilling, R. M. Scarborough, J. A. Lewicki and D. B. Schenk. 1988. Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J. Biol. Chem. 263: 9395-9401. Gammie, S. C. and J. W. Truman. 1997a. An endogenous elevation of cGMP increases the excitability of identified insect neurosecretory cells. J. Comp. Physiol. A 180: 329-338. Gammie, S. C. and J. W. Truman. 1997b. Neuropeptide hierarchies and the activation of sequential motor behaviors in the hawkmoth, Manduca sexta. J. Neurosci. 17: 4389-4397. Gammie, S. C. and J. W. Truman. 1999. Eclosion hormone provides a link between ecdysis-triggering hormone and crustacean cardioactive peptide in the neuroendocrine cascade that controls ecdysis behavior. J. Exp. Biol. 202: 343-352. Garbers, D. L. 1979. Purification of soluble guanylate cyclase from rat lung. J. Biol. Chem. 254: 240-243. Gerzer, R., F. Hofmann and G. Schultz. 1981a. Purification of a soluble, sodiumnitroprusside-stimulated guanylate cyclase from bovine lung. Eur. J. Biochem. 116: 479-486. Gerzer, R., E. W. Radany and D. L. Garbers. 1982. The separation of the heme and apoheme forms of soluble guanylate cyclase. Biochem. Biophys. Res. Commun. 108: 678-686. Gerzer, R., E. Böhme, F. Hofmann and G. Schultz. 1981b. Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Lett. 132: 71-74. Gerzer, R., F. Hofmann, E. Böhme, K. Ivanova, C. Spies and G. Schultz. 1981c. Purification of soluble guanylate cyclase without loss of stimulation by sodium nitroprusside. Adv. Cyclic Nucleotide Res. 14: 255-261. Gigliotti, S., V. Cavaliere, A. Manzi, A. Tino, F. Graziani and C. Malva. 1993. A membrane guanylate cyclase Drosophila homolog gene exhibits maternal and zygotic expression. Dev. Biol. 59: 450-461. Giuili, G., U. Scholl, F. Bulle and G. Guellaën. 1992. Molecular cloning of the cDNAs coding for the two subunits of soluble guanylyl cyclase from human brain. FEBS Lett. 304: 83-88. Goeddel, D. V. 1991. Natriuretic peptide receptor guanylyl cyclases. In: Peptide Regulation of Cardiovascular Function (Imura, H., H. Matsuo and T. Masaki, eds.). pp. 91-99. Academic Press, Inc., Tokyo. Guarino, A., M. Cohen, M. Thompson, K. Dharmsathaphorn and R. Giannella. 1987. T84 cell receptor binding and guanyl cyclase activation by Escherichia coli heat-stable toxin. Am. J. Physiol. 253: G775-G780. Gudermann, T., B. Nürnberg and G. Schultz. 1995. Receptors and G proteins as primary components of transmembrane signal transduction. Part 1. G-protein-coupled receptors: Structure and function. J. Mol. Med. 73: 51-63. Gupta, G., M. Azam, L. Yang and R. S. Danziger. 1997. The β2 subunit inhibits stimulation of the α1/β1 form of soluble guanylyl cyclase by nitric oxide. Potential relevance to regulation of blood pressure. J. Clin. Invest. 100: 1488-1492. Hakki, S., M. Crane, M. Hugues, P. O''Hanley and S. A. Waldman. 1993. Solubilization and characterization of functionally coupled Escherichia coli heat-stable toxin receptors and particulate guanylate cyclase associated with the cytoskeleton compartment of intestinal membranes. Int. J. Biochem. 25: 557-566. Hallem, E. A. and P. W. Sternberg. 2008. Acute carbon dioxide avoidance in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U.S.A. 105: 8038-8043. Hamra, F. K., L. R. Forte and S. L. Eber. 1993. Uroguanylin: structure and activity of a second endogenous peptide that stimulates intestinal guanylyl cyclase. Proc. Natl. Acad. Sci. U.S.A. 90: 10464-10468. Hanks, S. K., A. M. Quinn and T. Hunter. 1988. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241: 42-52. Hardman, J. G. and E. W. Sutherland. 1969. Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3'',5''-monophosphate from guanosine trihosphate. J. Biol. Chem. 244: 6363-6370. Harteneck, C., D. Koesling, A. Söling, G. Schultz and E. Böhme. 1990. Expression of soluble guanylyl cyclase. Catalytic activity requires two enzyme subunits. FEBS Lett. 272: 221-223. Harteneck, C., B. Wedel, D. Koesling, J. Malkewitz, E. Böhme and G. Schultz. 1991. Molecular cloning and expression of a new α-subunit of soluble guanylyl cyclase. Interchangeability of the α-subunits of the enzyme. FEBS Lett. 292: 217-222. Hasegawa, M., Y. Kawano, Y. Matsumoto, Y. Hidaka, J. Fujii, N. Taniguchi, A. Wada, T. Hirayama and Y. Shimonishi. 1999. Expression and characterization of the extracellular domain of guanylyl cyclase C from a baculovirus and Sf21 insect cells. Protein Expr. Purif. 15: 271-281. Hewes, R. S. and J. W. Truman. 1991. The roles of central and peripheral eclosion hormone release in the control of ecdysis behavior in Manduca sexta. J. Comp. Physiol. 168A: 697-707. Hille, R., J. S. Olson and G. Palmer. 1979. Spectral transitions of nitrosyl hemes during ligand binding to hemoglobin. J. Biol. Chem. 254: 12110-12120. Horodyski, F. M., J. Ewer, L. M. Riddiford and J. W. Truman. 1993. Isolation, characterization and expression of the eclosion hormone gene of Drosophila melanogaster. Eur. J. Biochem. 215: 221-228. Hu, J., C. Zhong, C. Ding, Q. Chi, A. Walz, P. Mombaerts, H. Matsunami and M. Luo. 2007. Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317: 953-957. Ignarro, L. J., K. S. Wood and M. S. Wolin. 1982a. Activation of purified soluble guanylate cyclase by protoporphyrin IX. Proc. Natl. Acad. Sci. U.S.A. 79: 2870-2873. Ignarro, L. J., B. Ballot and K. S. Wood. 1984. Regulation of soluble guanylate cyclase activity by porphyrins and metalloporphyrins. J. Biol. Chem. 259: 6201-6207. Ignarro, L. J., J. N. Degnan, W. H. Baricos, P. J. Kadowitz and M. S. Wolin. 1982b. Activation of purified guanylate cyclase by nitric oxide requires heme. Comparison of hemedeficient, heme-reconstituted and heme-containing forms of soluble enzyme from bovine lung. Biochim. Biophys. Acta 718: 49-59. Ikeda, E. 1913. Experimental Anatomy and Physiology of Bombyx mori, Ikeda, E. edn. Meibundo, Tokyo. 242-243 pp. Isales, C. M., J. A. Lewicki, J. J. Nee and P. Q. Barrett. 1992. ANP-(7-23) stimulates a DHP-sensitive Ca2+ conductance and reduces cellular cAMP via a cGMP-independent mechanism. Am. J. Physiol. 263: C334-C342. Itakura, M., M. Iwashina, T. Mizuno, T. Ito, H. Hagiwara and S. Hirose. 1994. Mutational analysis of disulfide bridges in the type C atrial natriuretic peptide receptor. J. Biol. Chem. 269: 8314-8318. Ivens, K., H. Gazzano, P. O''Hanley and S. A. Waldman. 1990. Heterogeneity of intestinal receptors for Escherichia coli heat-stable enterotoxin. Infect. Immun. 58: 1817-1820. Iwashina, M., T. Mizuno, S. Hirose, T. Ito and H. Hagiwara. 1994. His145-Trp146 residues and the disulfide-linked loops in atrial natriuretic peptide receptor are critical for the ligand-binding activity. J. Biochem. (Toyko) 115: 563-567. Jewett, J., K. J. Koller, D. V. Goeddel and D. G. Lowe. 1993. Hormonal induction of low affinity receptor guanylyl cyclase. EMBO J. 12: 769-777. John, S. W., J. H. Krege, P. M. Oliver, J. Hagaman, J. B. Hodgin, S. C. Pang, T. G. Flynn and O. Smithies. 1995. Genetic decreases in atrial natriuretic peptide and saltsensitive hypertension. Science 267: 679-681. John, S. W. M., A. T. Veress, U. Honrath, C. K. Chong, L. Peng, O. Smithies and H. Sonnenberg. 1996. Blood pressure and fluid-electrolyte balance in mice with reduced or absent ANP. Am. J. Physiol. 271: R109-R114. Johnson, K. F., W. Chan and S. Kornfeld. 1990. Cation-dependent mannose 6-phosphate receptor contains two internalization signals in its cytoplasmic domain. Proc. Natl. Acad. Sci. U.S.A. 87: 10010-10014. Jones, D. T. and R. R. Reed. 1989. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244: 790-795. Jones, W. D., P. Cayirlioglu, I. G. Kadow and L. B. Vosshall. 2007. Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445: 86-90. Juilfs, D. M., A. Z. Zhao, M. D. Houslay, D. L. Garbers, J. A. Beavo and H. J. Fülle. 1997. A subset of olfactory neurons that selectively express cGMPstimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc. Natl. Acad. Sci. U.S.A. 94: 3388-3395. Kamisaki, Y., S. Saheki, M. Nakane, J. A. Palmieri, T. Kuno, B. Y. Chang, S. A. Waldman and F. Murad. 1986. Soluble guanylate cyclase from rat lung exists as a heterodimer. J. Biol. Chem. 261: 7236-7241. Kataoka, H., R. G. Troetschler, S. J. Kramer, B. J. Cesarin and D. A. Schooley. 1987. Isolation and primary structure of the eclosion hormone of the tobacco hornworm, Manduca sexta. Biochem. Biophys. Res. Commun. 146: 746-750. Kim, Y. J., D. Žitňan, C. G. Galizia, K. H. Cho and M. E. Adams. 2006. A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Curr. Biol. 16: 1395-1407. Kim, Y. J., I. Spalovská-Valachová, K. H. Cho, I. Žitňanová, Y. Park, M. E. Adams and D. Žitňan. 2004. Corazonin receptor signaling in ecdysis initiation. Proc. Natl. Acad. Sci. U.S.A. 101: 6704-6709. Kimura, H., C. K. Mittal and F. Murad. 1976. Appearance of magnesium guanylate cyclase activity in rat liver with sodium azide activation. J. Biol. Chem. 251: 7769-7773. Kingan, T. G. and M. E. Adams. 2000. Ecdysteroids regulate secretory competence in Inka cells. J. Exp. Biol. 203: 3011-3018. Kingan, T. G., R. A. Cardullo and M. E. Adams. 2001. Signal transduction in eclosion hormone-induced secretion of ecdysis-triggering hormone. J. Biol. Chem. 276: 25136-25142. Kingan, T. G., W. Gray, D. Žitňan and M. E. Adams. 1997. Regulation of ecdysis-triggering hormone release by eclosion hormone. J. Exp. Biol. 200: 3245-3256. Kishimoto, I., S. K. Dubois and D. L. Garbers. 1996. The heart communicates with the kidney exclusively through the guanylyl cyclase-A receptor: Acute handling of sodium and water in response to volume expansion. Proc. Natl. Acad. Sci. U.S.A. 93: 6215-6219. Klein, C., H. G. Kallenborn and C. Radlicki. 1999. The ‘Inka cell' and its associated cells: ultrastructure of the epitracheal glands in the gypsy moth, Lymantria dispar. J. Insect Physiol. 45: 65-73. Knighton, D. R., J. H. Zheng, L. F. Ten Eyck, V. A. Ashford, N. H. Xuong, S. S. Taylor and J. M. Sowadski. 1991. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253: 407-414. Koesling, D., C. Harteneck, P. Humbert, A. Bosserhoff, R. Frank, G. Schultz and E. Böhme. 1990. The primary structure of the larger subunit of soluble guanylyl cyclase from bovine lung. Homology between the two subunits of the enzyme. FEBS Lett. 266: 128-132. Koesling, D., J. Herz, H. Gausepohl, F. Niroomand, K. D. Hinsch, A. Mülsch, E. Böhme, G. Schultz and R. Frank. 1988. The primary structure of the 70 kDa subunit of bovine soluble guanylate cyclase. FEBS Lett. 239: 29-34. Koller, K. J., M. T. Lipari and D. V. Goeddel. 1993. Proper glycosylation and phosphorylation of the type A natriuretic peptide receptor are required for hormonestimulated guanylyl cyclase activity. J. Biol. Chem. 268: 5997-6003. Koller, K. J., F. J. de Sauvage, D. G. Lowe and D. V. Goeddel. 1992. Conservation of the kinaselike regulatory domain is essential for activation of the natriuretic peptide receptor guanylyl cyclases. Mol. Cell Biol. 12: 2581-2590. Koller, K. J., D. G. Lowe, G. L. Bennett, N. Minamino, K. Kangawa, H. Matsuo and D. V. Goeddel. 1991. Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science 252: 120-123. Kono, T., H. Nagasawa, A. Isogai, H. Fugo and A. Suzuki. 1987. Amino acid sequence of eclosion hormone of the silkworm Bombyx mori. Agr. Biol. Chem. 51: 2307-2308. Kostron, B., U. Kaltenhauser, B. Seibel, P. Bräunig and H. W. Honegger. 1996. Localization of bursicon in CCAP‐immunoreactive cells in the thoracic ganglia of the cricket Gryllus bimaculatus. J. Exp. Biol. 199: 367-377. Krupinski, J., F. Coussen, H. A. Bakalyar, W. J. Tang, P. G. Feinstein, K. Orth, C. Slaughter, R. R. Reed and A. G. Gilman. 1989. Adenylyl cyclase amino acid sequence: Possible channel- or transporter-like structure. Science 244: 1558-1564. Kyte, J. and R. F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132. Labrecque, J., N. McNicoll, M. Marquis and A. De Le´an. 1999. A disulfide-bridged mutant of natriuretic peptide receptor-A displays constitutive activity. Role of receptor dimerization in signal transduction. J. Biol. Chem. 274: 9752-9759. Leinders-Zufall, T., R. E. Cockerham, S. Michalakis, M. Biel, D. L. Garbers, R. R. Reed, F. Zufall and S. D. Munger. 2007. Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc. Natl. Acad. Sci. U.S.A. 104: 14507-14512. Leitman, D. C., J. W. Andresen, R. M. Catalano, S. A. Waldman, J. J. Tuan and F. Murad. 1988. Atrial natriuretic peptide binding, cross-linking, and stimulation of cyclic GMP accumulation and particulate guanylate cyclase activity in cultured cells. J. Biol. Chem. 263: 3720-3728. Lemmon, M. A. and D. M. Engelman. 1994. Specificity and promiscuity in membrane helix interactions. FEBS Lett. 346: 17-20. Lemmon, M. A., H. R. Treutlein, P. D. Adams, A. T. Brünger and D. M. Engelman. 1994. A dimerization motif for transmembrane α-helices. Nat. Struct. Biol. 1: 157-163. Levine, S. N., A. L. Steiner, H. S. Earp and G. Meissner. 1979. Particulate guanylate cyclase of skeletal muscle: Effects of Ca2+ and other divalent cations on enzyme activity. Biochim. Biophys. Acta 566: 171-182. Lewicki, J. A., H. J. Brandwein, S. A. Waldman and F. Murad. 1980. Purified guanylate cyclase: Characterization, iodination and preparation of monoclonal antibodies. J. Cyclic Nucleotide Res. 6: 283-296. Liu, W., J. Moon, M. Burg, L. Chen and W. L. Pak. 1995. Molecular characterization of two Drosophila guanylyl cyclases expressed in the nervous system. J. Biol. Chem. 270: 12418-12427. Liu, Y., A. E. Ruoho, V. D. Rao and J. H. Hurley. 1997. Catalytic mechanism of the adenylyl and guanylyl cyclases: Modeling and mutational analysis. Proc. Natl. Acad. Sci. U.S.A. 94: 13414-13419. Loi, P. K., S. A. Emmal, Y. Park and N. J. Tublitz. 2001. Identification, sequence and expression of a crustacean cardioactive peptide (CCAP) gene in the moth Manduca sexta. J. Exp. Biol. 204: 2803-2816. Lopez, M. J., S. K. Wong, I. Kishimoto, S. Dubois, V. Mach, J. Friesen, D. L. Garbers and A. Beuve. 1995. Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature 378: 65-68. Lowe, D. G. and B. M. Fendly. 1992. Human natriuretic peptide receptor-A guanylyl cyclase. Hormone cross-linking and antibody reactivity distinguish receptor glycoforms. J. Biol. Chem. 267: 21691-21697. Lowe, D. G., T. R. Camerato and D. V. Goeddel. 1990. cDNA sequence of the human atrial natriuretic peptide clearance receptor. Nucleic Acids Res. 18: 3412. Lowe, D. G., M.-S. Chang, R. Hellmiss, E. Chen, S. Singh, D. L. Garbers and D. V. Goeddel. 1989. Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J. 8: 1377-1384. Lucas, K. A., G. M. Pitari, S. Kazerounian, I. Ruiz-Stewart, J. Park, S. Schulz, K. P. Chepenik and S. A. Waldman. 2000. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol. Rev. 52: 375-413. Luo, C. W., E. M. Dewey, S. Sudo, J. Ewer, S. Y. Hsu, H. W. Honegger and A. J. Hsueh. 2005. Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein‐coupled receptor LGR2. Proc. Natl. Acad. Sci. U.S.A. 102: 2820-2825. Marcil, J., E. L. Schiffrin and M. B. Anand-Srivastava. 1996. Aberrant adenylyl cyclase/cAMP signal transduction and G protein levels in platelets from hypertensive patients improve with antihypertensive drug therapy. Hypertension 28: 83-90. Marti, T., K. Takio, K. A. Walsh, G. Terzi and J. W. Truman. 1987. Microanalysis of the amino acid sequence of the eclosion hormone from the tobacco hornworm, Manduca sexta. FEBS Lett. 219: 415-418. McNeil, L., M. Chinkers and M. Forte. 1995. Identification, characterization and developmental regulation of a receptor guanylyl cyclase expressed during early stages of Drosophila development. J. Biol. Chem. 270: 7189-7196. Meyer, M. R., A. Angele, E. Kremmer, U. B. Kaupp and F. Muller. 2000. A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc. Natl. Acad. Sci. U.S.A. 97: 10595-10600. Mittal, C. K. and F. Murad. 1977. Formation of adenosine 3''-5''-monophosphate by preparations of guanylate cyclase from rat liver and other tissues. J. Biol. Chem. 252: 3136-3140. Miyagi, M. and K. S. Misono. 2000. Disulfide bond structure of the atrial natriuretic peptide receptor extracellular domain: conserved disulfide bonds among guanylate cyclase-coupled receptors. Biochim. Biophys. Acta 1478: 30-38. Moran, M. F., C. A. Koch, I. Sadowski and T. Pawson. 1988. Mutational analysis of a phosphotransfer motif essential for v-fps tyrosine kinase activity. Oncogene 3: 665-672. Moriwaki, Y., Y. Kamisaki, T. Itoh, M. Nagata and A. Tamai. 1998. Cyclic 3'',5''-guanosine monophosphate synthesis induced by atrial natriuretic peptide, C-type natriuretic peptide, and nitric oxide in the rat retina. Jpn. J. Ophthalmol. 42: 269-274. Morton, D. B. 1996. Neuropeptide-stimulated cyclic guanosine monophosphate immunoreactivity in the neurosecretory terminals of a neurohemal organ. J. Neurobiol. 29: 341-353. Morton, D. B. and M. A. Giunta. 1992. Eclosion hormone stimulates cyclic GMP levels in Manduca sexta nervous tissue via arachidonic acid metabolism with little or no contribution from the production of nitric oxide. J. Neurochem. 59: 1522-1530. Morton, D. B. and P. J. Simpson. 1995. Eclosion hormone-stimulated cGMP levels in the central nervous system of Manduca sexta: inhibition by lipid metabolism blockers, increase in (1,4,5) trisphosphate and further evidence against the involvement of nitric oxide. J. Comp. Physiol. 165B: 417-427. Morton, D. B. and P. J. Simpson. 2002. Cellular signaling in eclosion hormone action. J. Insect Physiol. 48: 1-13. Morton, D. B. and A. Nighorn. 2003. MsGC-II, a receptor guanylyl cyclase isolated from the CNS of Manduca sexta that is inhibited by calcium. J. Neurochem. 84: 363-372. Morton, D. B. and E. J. Anderson. 2003. MsGC-β3 forms active homodimers and inactive heterodimers with NO-sensitive soluble guanylyl cyclase subunits. J. Exp. Biol. 206: 937-947. Murthy, K. S. and G. M. Makhlouf. 1998. Differential regulation of phospholipase A2 (PLA2)-dependent Ca2+ signaling in smooth muscle by cAMP- and cGMP-dependent protein kinases. Inhibitory phosphorylation of Pla2 by cyclic nucleotidedependent protein kinases. J. Biol. Chem. 273: 34519-34526. Murthy, K. S. and G. M. Makhlouf. 1999. Identification of the G protein-activating domain of the natriuretic peptide clearance receptor (NPR-C). J. Biol. Chem. 274: 17587-17592. Nakane, M., S. Saheki, T. Kuno, K. Ishii and F. Murad. 1988. Molecular cloning of a cDNA coding for 70 kilodalton subunit of soluble guanylate cyclase from rat lung. Biochem. Biophys. Res. Commun. 157: 1139-1147. Nakane, M., K. Arai, S. Saheki, T. Kuno, W. Buechler and F. Murad. 1990. Molecular cloning and expression of cDNAs coding for soluble guanylate cyclase from rat lung. J. Biol. Chem. 265: 16841-16845. Nighorn, A., K. A. Byrnes and D. B. Morton. 1999. Identification and characterization of a novel β subunit of soluble guanylyl cyclase that is active in the absence of a second subunit and is relatively insensitive to nitric oxide. J. Biol. Chem. 274: 2525-2531. O''Brien, M. A. and P. H. Taghert. 1998. A peritracheal neuropeptide system in insects: release of myomodulin-like peptides at ecdysis. J. Exp. Biol. 201: 193-209. Ohlstein, E. H., K. S. Wood and L. J. Ignarro. 1982. Purification and properties of heme-deficient hepatic soluble guanylate cyclase: Effects of heme and other factors on enzyme activation by NO, NO-heme, and protoporphyrin IX. Arch. Biochem. Biophys. 218: 187-198. Okamoto, T. and I. Nishimoto. 1991. Analysis of stimulation-G protein subunit coupling by using active insulin-like growth factor II receptor peptide. Proc. Natl. Acad. Sci. U.S.A. 88: 8020-8023. Okamoto, T., T. Katada, Y. Murayama, M. Ui, E. Ogata and I. Nishimoto. 1990. A simple structure encodes G protein-activating function of the Igf-II/mannose 6-phosphate receptor. Cell 62: 709-717. Pace, U., E. Hanski, Y. Salomon and D. Lancet. 1985. Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature 316: 255-258. Park, J. H., A. J. Schroeder, C. Helfrich‐Forster, F. R. Jackson and J. Ewer. 2003. Targeted ablation of CCAP neuropeptide‐containing neurons of Drosophila causes specific defects in execution and circadian timing of ecdysis behavior. Development 130: 2645-2656. Park, Y., D. Žitňan, S. S. Gill and M. E. Adams. 1999. Molecular cloning and biological activity of ecdysis-triggering hormones in Drosophila melanogaster. FEBS Lett. 463: 133-138. Park, Y., V. Filippov, S. S. Gill and M. E. Adams. 2002. Deletion of the ecdysis-triggering hormone gene leads to lethal ecdysis deficiency. Development 129: 493-503. Parkinson, S. J., A. Jovanovic, S. Jovanovic, F. Wagner, A. Terzic and S. A. Waldman. 1999. Regulation of nitric oxide-responsive recombinant soluble guanylyl cyclase by calcium. Biochemistry 38: 6441-6448. Pedram, A., M. Razandi, R. M. Hu and E. R. Levin. 1997. Vasoactive peptides modulate vascular endothelial cell growth factor production and endothelial cell proliferation and invasion. J. Biol. Chem. 272: 17097-17103. Potter, L. R. and D. L. Garbers. 1992. Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization. J. Biol. Chem. 267: 14531-14
本研究主旨為分析一鳥苷酸環化酵素基因BdmGC-1於東方果實蠅(Bactrocera dorsalis (Hendel))(果實蠅科:雙翅目)之生理作用機制。試驗結果指出,此基因至少具兩個不同之異位截切之轉譯子(alternative splicing variants),分別命名為BdmGC-1與BdmGC-1B。而此二轉譯子所對應之蛋白質序列,顯示均具膜蛋白型鳥苷酸環酵素之特性,即由蛋白質N端往C端分別為訊息蛋白(signal peptide)、膜外受體區(extra-cellular ligand binding domain)、穿膜區域(transmembrane region)、類蛋白激酶調控區(regulatory kinase-homology domain)與鳥苷酸環化酵素活化位(cyclase catalytic region)。但此二蛋白有些許差異處,如BdmGC-1B於膜外受體區多了46個胺基酸之插入序列;而BdmGC-1則多出C端之尾部。當BdmGC-1於293T細胞表現,如預測顯示,其為膜外表現之糖基化蛋白,並明顯具鳥苷酸環化酵素特性;但BdmGC-1對已知鳥苷酸環化酵素配體(ligand)並無明顯反應。在基因表現上,BdmGC-1主要於蟲體發育期表達,而成蟲並無明顯表現。後續研究以蟲體進行專一性免疫標定與核酸原位雜合,BdmGC-1被發現於蟲體氣管上之氣門內腺(epitracheal gland)表達。而以羽化激素(eclosion hormone)分別對表現BdmGC-1或BdmGC-1B之細胞進行測試,得知表現BdmGC-1之細胞群對低濃度之蛻皮激素有強烈反應;而表現BdmGC-1B之細胞群僅對高濃度之蛻皮激素有反應。此結果顯示此二蛋白於東方果實蠅生理上所扮演之角色有所不同。

Two novel guanylyl cyclases BdmGC-1 and its spliced variant BdmGC-1B were isolated from the oriental fruit fly, Bactrocera dorsalis (Hendel) (Tephritidae: Diptera), and proposed to possess all the characteristics of receptor GC, i.e. a signal peptide, an extracellular ligand binding domain (ECD), a transmembrane region, a regulatory kinase-homology domain, and a core cyclase catalytic region. Notably, the spliced variant BdmGC-1B possesses an additional 46 amino acid insertion in the extracellular domain but lacks the C-terminal tail of BdmGC-1. In heterogeneous expression, BdmGC-1 is manifested as a cell-surface glycoprotein with marked cGMP-generating activity, but unresponsive to ligands for mammalian receptor GCs. The mRNAs of BdmGC-1 were found highly expressed in all of the developmental stages, i.e., embryo, larva and pupa, but found quite low or no expression in adult tissues. Immunolabeling and in situ hybridization revealed that BdmGC-1s are expressed in Inka cells of epitracheal glands. Heterologous expression of BdmGC-1 in HEK-293T cells leads to robust increases in cGMP following exposure to low picomolar concentrations of eclosion hormone (EH). The B-isoform responds to higher EH concentrations, suggesting different physiological roles of these two cyclases. BdmGC-1 and BdmGC-1B are proposed as high- and low-affinity EH receptors, respectively.
其他識別: U0005-1908200910424500
Appears in Collections:昆蟲學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.