Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30747
標題: Effects of methyl jasmonate application on induced resistance of different plant species and on performance and oviposition preference of Spodoptera litura
甲基茉莉花酸對不同作物誘導之防禦反應及其對斜紋夜蛾生長表現與產卵偏好之影響
作者: Lo, Ju-Che
羅儒哲
關鍵字: http://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-2708200915260200;蛋白酶抑制劑;多酚氧化酵素;胰蛋白酶抑制劑;斜紋夜蛾;相對生長速率;產卵偏好
出版社: 昆蟲學系所
引用: 王雪香、杜德一。1999。葉菜類-非十字花科。蔬菜病蟲害綜合防治專輯。台灣省政府農林廳。436頁。 江書雅。2007。茉莉酸甲酯及施肥對番茄誘導防禦反應及對番茄夜蛾生長之影響。中興大學昆蟲系碩士論文。36頁。 林建宗、賴婉綺、蕭文鳳、王升陽。2007。柳杉心材精油對衣魚之忌避與致死活性之研究。中華林學季刊。40: 251-260。 高穗生。1995。昆蟲之大量飼育。藥試所專題報導。37: 1-8。 許秀慧。2002。植物保護技術專刊.4, 蕹菜篇。農委會動植物防檢局。P.2。 張玉珍。1971。斜紋夜盜與玉米穗蟲蛹之雌雄鑑定。植物保護學會會刊。13: 72-74. 楊偉正。1992。台灣現有作物栽培品種名錄 (茄科篇)。農業試驗所特刊:第38號。台灣省農業試驗所、中國種苗改進協會。P.53。 費雯綺、王喻其。2007。植物保護手冊-蔬菜篇。行政院農業委員會農業藥物毒物試驗所。229頁。 蕭吉雄、黃維東、周明燕。2002。番茄品種特性與栽培技術全輯。行政院農委會種苗改良繁殖場。78頁。 譚景文。2007。聲音與肥料處理之甘藍對斜紋夜盜與紋白蝶表現的影響。中興大學昆蟲系論文。82頁。 Agrawal, A. A. 1999. Induced responses to herbivory in wild radish: effects on several herbivores and plant fitness. Ecology 80: 1713-1723. Arimura, G. I., C. Kost, and W. Boland. 2005. Herbivore-induced, indirect plant defences. Biochim. Biophys. Acta. 1734: 91-111. Bhonwong, A., M. J. Stout, J. Attajarusit, and P. Tantasawat. 2009. Defensive role of tomato polyphenol oxidase against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J. Chem. Ecol. 35: 28-38. Black, C. A., R. Karban, L. D. Godfrey, J. Granett, and W. E. Chaney. 2003. Jasmonic acid: a vaccine against leafminers (Diptera: Agromyzidae) in celery. Environ. Entomol. 32: 1196-1202. Boland, W., J. Hopke, J. Donath, J. Nüske, and F. Bublitz. 1995. Jasmonic acid and coronatin induce odor production in plants. Angew. Chem. Int. Ed. ENgl. 34: 1600-1602. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 284-285. Bruinsma M., N. M. V. Dam, J. J. A. V. Loon, M. Dicke. 2007. Jasmonic acid-induced changes in Brassica oleracea affect ovipostion preference of two specialist herbivores. J. Chem. Ecol. 33: 655-668. Cipollini, D. F., Jr. and A. M. Redman. 1999. Age-dependent effects of jasmonic acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomato. J. Chem. Ecol. 25: 271-281. Cipollini, D. F., and M. L. Sipe. 2001. Jasmonic acid treatment and mammakian herbivory differentially affect chemical defenses and growth of wild mustard (Brassica kaber). Chemoecology 11: 137-143. Constabel, C. P., and C. A. Ryan. 1998. A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry 47: 507-511. Constabel, C. P., D. R. Bergey, and C. A. Ryan. 1995. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc. Natl. Acad. Sci. USA 92: 407-411. Cooper, W. R., and F. L. Goggin. 2005. Effects of jasmonate-induced defenses in tomato on the potato aphid, Macrosiphum euphorbiae. Entomol. Exp. Appl. 115: 107-115. Délano-Frier, J. P., N. A. Martínez-Gallardo, O. Martínez-De La Vega, M. D. Salas-Araiza, E. R. Barbosa-Jaramillo, A. Torres, P. Varges, and A. Borodanenko. 2004. The effects of exogenous jasmonic acid on induced resistance and productivity in Amaranth (Amaranthus hypochondriacus) is influenced by environmental conditions. J. Chem. Ecol. 30: 1001-1034. De Moraes, C. M., M. C. Mescher, and J. H. Tumlinson. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410: 577-580. Deng, C., X. Zhang, W. Zhu, and J. Qian. 2004. Gas chromatography-mass spectrometry with solid-phase microextraction method for determination of methyl salicylate and other volatile compounds in leaves of Lycopersicon esculentum. Anal. Bioanal. Chem. 378: 518-522. Dicke, M. 2000. Chemical ecology of host-plant selection by herbivorous arthropods: A multitrophic perpective. Biochem. Syst. Ecol. 28: 601-618. Dicke, M., R. Gols, D. Ludeking, and M. A. Posthumus. 1999. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J. Chem. Ecol. 25: 1907-1922. Doares, S. H., T. Syrovets, E. W. Weiler, and C. A. Ryan. 1995. Oligogalaturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Pro. Natl. Acad. Sci. USA 92: 4095-4098. Engelberth, J., H. T. Alborn, E. A. Schmelz, and J. H. Tumlinson. 2004. Airborne signals prime plants against insect herbivore attack. Pro. Natl. Acad. Sci. USA 101: 1781-1785. Erb, Matthias., J. Ton, J. Degenhardt, and T. C. J. Turlings. 2008. Interactions between arthropods-induced aboveground and belowground defenses in plants. Plant Physiol. 146: 867-874. Farmer, E. E., and C. A. Ryan. 1990. Interplant communication: airbone methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Pro. Natl. Acad. Sci. USA 87: 7713-7716. Farmer, E. E., and C. A. Ryan. 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4: 129-134. Farmer, E. E., R. R. Johnson, and C. A. Ryan. 1992. Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol. 98: 995-1002. Farrar, R. R. Jr., J. D. Barbour, and G. G. Kennedy. 1989. Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 82: 593-598. Felton, G. W. 2005. Indigestion is a plant’s best defense. Proc. Natl. Acad. Sci. USA 102: 18771-18772. Felton, G. W., K. K. Donato, R. M. Broadway, and S. S. Duffey. 1992. Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore, Spodoptera exigua. J. Insect. Physiol. 38: 277-285. Gols, R., M. A. Posthumus, and M. Dicke. 1999. Jasmonic acid induces the production of gerbera volatiles that attract the biological control agent Phytoseiulus persimilis. Entomol. Exp. Appl. 93: 77-86. Gols, R., M. Roosjen, H. Dijkman, and M. Dicke. 2003. Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities or a combination of jasmonic acid treatment and spider mite infestation. J. Chem. Ecol. 29: 2651-2666. Gomez, J. M., and R. Zamora. 1994. Top-down effects in a tritrophic system: parasitoids enhance plant fitness. Ecology 75: 1023-1030. Hopke, J., J. Donath, S. Blechert, and W. Boland. 1994. Herbivore-induced volatiles: The emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a β-glucosidase and jasmonic acid. FEBS Lett. 352: 146-150. Jongsma M. A., P. L. Bakker, J. Peters, D. Bosch, and W. J. Stiekema. 1995. Adaptation of Spodoptera exigua larvae to plant proteinase inhibitors by induction of proteinase activity insensitive of inhibition. Proc. Natl. Acad. Sci. USA 92: 8041-8045. Kessler, A., and I. T. Baldwin. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141-2144. Koiwa, H., R. A. Bressan, and P. M. Hasegawa. 1997. Regulation of protease inhibitors and plant defense. Trends Plant Sci. 2: 379-384. Lee, T. M., and Y. H. Lin. 1995. Trypsin inhibitor and trypsin-like protease activity in air- or ubmergence rice (Oryza sativa L.) coleoptiles. Plant Sci. 106: 43-54. Lu, Y. B., S. S. Liu, Y. Q. Liu, M. J. Furlong, and M. P. Zalucki. 2004. Contrary effects of jasmonate treatment of two closely related plant species on attraction of and oviposition by a specialist herbivore. Ecol. Lett. 7: 337-345. McCloud, E. S., and I. T. Baldwin. 1997. Herbivory and caterpillar regurgitants amplify the wound-induced increase in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203: 430-435. McConn, M., R. A. Creelman, E. Bell, J. E. Mullet, and J. Browse. 1997. Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 93: 5473-5477. McManus M. T., D. W. R. White, and P. G. McGregor. 1994. Accumulation of a chymotrypsin inhibitor in transgenic tobacco can affect the growth of insect pests. Transgenic Res. 3: 50-58. Moore, J. P., N. D. Paul, J. B. Whittakerand, and J. E. Taylor. 2003. Exogenous jasmonic acid mimics herbivore-induced systemic increase in cell wall bound peroxidase activity and reduction in leaf expansion. Funct. Ecol. 17: 549-554. Moura, D. S., and C. A. Ryan. 2001. Wound-inducible proteinase inhibitor in pepper. Differential regulation upon wounding, systemin, and methyl jasmonate. Plant Physiol. 126: 289-298. Omer, A. D., J. S. Thaler, J. Granett, and R. Karban. 2000. Jasmonic acid induced resistance in grapevines to a root and leaf feeder. J. Econ. Entomol. 93: 840-845. Omer, A. D., J. Granett, R. Karban, and E. M. Villa. 2001. Chemically-induced resistance against multiple pest in cotton. Int. J. Pest Manag. 47: 49-54. Ozawa, R., G. Arimura, J. Takabayashi, T. Shimoda, and T. Nishioka. 2000. Involvement of jasmonate- and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plant. Plant Cell Physiol. 41: 391-398. Ozawa, R., K. Shiojiri, M. W. Sabelis, G. I. Arimura, T. Nishioka, and J. Takabayashi. 2004. Corn plants treated with jasmonic acid attract more specialist parasitoids, thereby increasing parasitization of the common armyworm. J. Chem. Ecol. 30: 1797-1808. Paré, P. W., W. J. Lewis, and J. H. Tumlinson. 1999. Induced plant volatiles: biochemistry and effects on parasitoids. American Phytopathological Society Press. St. Paul, MN (USA). Induced plant defenses against pathogens and herbivores: biochemistry, ecology and agriculture. pp.167-180. Reinbothe, S., B. Mollenhauer, and C. Reinbothe. 1994. JIPs and RIPs: The regulation of plant gene expression by jasmonates in response to environment cues and pathogens. Plant Cell 6:1197-1209. Rodriguez-Saona, C., J. A. Chalmers, S. Raj, and J. S. Thaler. 2005. Induced plant responses to multiple damagers: differential effects on an herbivore and its parasitoid. Oecologia 143: 566-577. Ryan, C. A., P. Gregory, and W, Tingey. 1982. Phenolic oxidase activities in glandular trichomes of Solanum berthaultii. Phytochemistry 21: 1885-1887. Stout, M. J., K. V. Workman, and S. S. Duffey. 1996. Identity, spatial distribution and variability of induced chemical responses in tomato plants. Entomol. Exp. Appl. 79: 255-271. Stout, M. J., K. V. Workman, R. M. Bostock, and S. S. Duffey. 1998a. Specificity of induced resistance in the tomato, Lycopersicon esculentum. Oecologia 113: 74-81. Stout, M. J., K. V. Workman, R. M. Bostock, and S. S. Duffey. 1998b. Stimulation and attenuation of induced resistance by elicitors and inhibitors of chemical induction in tomato (Lycopersicon esculentum). Entomol. Exp. Appl. 86: 267-279. Soler, R., T. M. Bezemer, A. M. Cortesero, W. H. V. D. Putten, L. E. M. Vet, and J. A. Harvey. 2007. Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid. Oecologia 152: 257-264. Takabayashi, J., and M. Dicke. 1996. Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci. 1: 109-113. Tebayashi, S. I., Y. Horibata, E. Mikagi, T. Kashiwagi, D. B. Mekuria, A. Dekebo, A. Ishihara, and C. S. Kim. 2007. Induction of resistance against leafminer, Liriomyza trifolii, by jasmonic acid in sweet pepper. Biosci. Biotechnol. Biochem. 71: 1521-1526 Thaler, J. S. 1999a. Induced resistance in agricultural crops: Effect of jasmonic acid on herbivory and yield in tomato plant. Environ. Entomol. 28: 30-37. Thaler, J. S. 1999b. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399: 686-688. Thaler, J. S., M. J. Stout, R. Karban, and S. S. Duffey. 1996. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 22: 1767-1781. Thaler, J. S., M. J. Stout, R. Karban, and S. S. Duffey. 2001. Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol. Entomol. 26: 312-324. Thaler, J. S., M. A. Farag, P. W. Paré, and M. Dicke. 2002. Jasmonate-deficient plant have reduced direct and indirect defences against herbivores. Ecol. Lett. 5: 764-774. Theis, N., and M. Lerdau. 2003. The evolution of function in plant secondary metabolites. Int. J. Plant Sci. 164: 93-102. Turlings, T. C. J., J. H. Tumlinson, and W. J. Lewis. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250: 1251-1253. Van Dam, N. M., K. Hadwich, and I. T. Baldwin. 2000. Induced responses in Nicotiana attenuate affect behavior and growth of the specialist herbivore Manduca sexta. Oecologia 122: 371-379. Van Dam, N. M., M. Horn, M. Mareš, and I. T. Baldwin. 2001. Ontogeny constrains systemic protease inhibitor response in Nicotiana attenuate. J. Chem. Ecol. 27: 547-568. Van Dam, N. M., L. Witjes, and A. Svatos. 2004. Interactions between aboveground and belowground induction of glucosinolates in two wild Brassica species. New Phytol. 161: 801-810. Waldbauer, G. P. 1968. The consumption and utilization of food by insect. Adv.Insect Physiol. 5: 229-288.
摘要: 
Plant can increase the accumulation of endogenous jamonic acid (JA) after wounding by herbivore insect. The elevated JA can induce plants' anti-insect defensive proteins to affect herbivore performance and can also change the components of herbivore-induced plant volatiles to affect preference of female adults. During past three decades, various studies on plant induced defense found that application of exogenous JA can induce similar defensive responses with insect-wounding. Studies of the difference between induced defensive responses on different plant species pre-treated with insect-wounding (I), exogenous MeJA, (M) both treatments (MI) are lacking. Aims of this investigation are to compare induced response of polyphenol oxidase (PPO) and trypsin inhibitor (TI) activities on tomato, sweet pepper, water spinach and Chinese radish that pre-treated with different five treatments and to compare effects of different induced responses on the larva growth performance and adult oviposition preference of Spodoptera litura. Results indicate that induction of insect-wounding on tomato, sweet pepper and radish increase PPO activity 1.5 to 1.8-folds higher than that of control treatment and on water spinach can enhance TI activity up 1.2-folds. Induction of exogenous MeJA on tomato, sweet pepper and water spinach increase PPO activity 1.2 to 1.4-folds higher than that of control and TI activity increase on four different plants pre-treated MeJA significantly. However, induction of MI treatment on tomato and water spinach can enhance PPO activity up 1.2 to 1.4-folds higher than that of control and there is significant increasing of TI activity on four plant species with MI treatment. In addition, feeding on tomato with I, M and MI, sweet pepper with M and MI, and radish with M treatments, third instars larvae grew slower significantly. And there is no significant difference on oviposition preference between inductions of five treatments on different four plants. Base on the results, we conclude that the application of MeJA can induce various defensive responses on four different plant species. However, there are different induced defensive responses between insect-wounding and exogenous MeJA treatments on four plants. The combination treatment of insect-wounding and exogenous MeJA did not cause synergistic effects of defensive responses on these four plant species.

植物經昆蟲取食傷害後,可誘導體內茉莉花酸含量上升,使植物產生抗蟲防禦蛋白及改變揮發物質組成,藉此降低植食者幼蟲之生長表現與雌成蟲之產卵偏好 ( Oviposition preference ) 。而前人研究發現以外加的方式施用茉莉花酸於植物上,也可誘導出與昆蟲取食傷害相同的防禦反應。因過去研究鮮少同時探討不同植物種間,經昆蟲取食傷害、外施茉莉花酸與兩者同時進行的處理對植物之誘導防禦反應。本研究目的為瞭解植物經昆蟲取食傷害 ( I ) 、外施甲基茉莉花酸 ( M ) 、同時進行兩種處理 ( MI ) 以及兩種對照組,於番茄、青椒、蕹菜與蘿蔔等四種不同植物間誘導抗蟲蛋白之影響。另一目的為瞭解經不同處理誘導之植物,對斜紋夜蛾 ( Spodoptera litura ) 幼蟲生長表現與雌成蟲產卵偏好之影響。由試驗結果可知,經昆蟲取食傷害後可誘導番茄、青椒與蘿蔔之多酚氧化酵素 ( Polyphenol oxidase, PPO ) 活性顯著上升1.5-1.8倍,以及可誘導蕹菜之胰蛋白酶抑制劑 ( Trypsin inhibitor, TI ) 活性上升1.2倍。而經甲基茉莉花酸處理後,可誘導番茄、青椒與蕹菜之PPO活性上升1.2-1.4倍,以及誘導四種植物之TI活性顯著上升。此外同時經兩種處理之番茄與蕹菜其PPO活性顯著提升1.5倍,以及四種植物同時經兩種處理後,皆可顯著提升植物內TI活性。於幼蟲相對生長速率 ( Relative growth rate, RGR ) 結果方面,番茄經I、M及MI處理、青椒經M與MI處理、與蘿蔔經M處理下,皆能顯著降低幼蟲之RGR,而蕹菜於不同處理下對幼蟲RGR無顯著影響。青椒、蕹菜及蘿蔔於不同處理下對雌成蟲產卵偏好無顯著影響。因此由試驗結果可知,不同的植物經外施茉莉花酸處理後,對植物有不同的誘導防禦反應。而昆蟲取食傷害與外施茉莉花酸於不同植物上,所誘導之防禦反應也不盡相同,並發現同時進行兩種處理對於防禦反應並無加乘的效果。
URI: http://hdl.handle.net/11455/30747
其他識別: U0005-2708200915260200
Appears in Collections:昆蟲學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.