Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30748
標題: 埃及斑蚊對百滅寧及芬化利遺傳抗藥性之研究
Inheritance of resistance to permethrin and fenvalerate in Aedes aegypti
作者: Chung, Bing-jun
張秉鈞
關鍵字: http://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-2808200915103600;埃及斑蚊;合成除蟲菊;抗藥性;雜交;遺傳抗藥性
出版社: 昆蟲學系所
引用: 沈文凱。2008。南台灣埃及斑蚊對合成除蟲菊殺蟲劑抗藥性之研究。21-22頁。 林鶯熹、吳淑靜、徐爾烈、鄧華真、何兆美、白秀華等。2003。2002年台灣登 革熱流行區埃及斑蚊的抗藥性。台灣昆蟲。23:263-274。 疾病管制局。2006。國內重要疫情摘要報告。疫情報導。22:868-869頁。 疾病管制局。2007。國內重要疫情摘要報告。疫情報導。23:第742頁。 張念台。2003。屏東地區登革熱病媒蚊抗藥性及藥效評估。9-10頁。 潘銘正、劉振軒、張世忠。2007。媒介重要人畜傳染病的有害生物節肢動物篇。 67-72,219頁。 謝再添。2004。殺蟲劑化學分類及其特性。農藥及植物保護知能研習會。行政院 農委會藥毒所。2-12頁。 Albert B.S. 1952. Research on dengue during world war Ⅱ. American Journal of Tropically Medicine and Hygiene. 1: 30-50. Apperson C. S. and G. P. Georghiou. 1975. Inheritance of resistance to organophosphorus insecticide in Culex tarsalis Coquillet. WHO Bull. Vol. 52: 97-100. Asser-Kaiser, S., E. Fritsch, K. Undorf-Spahn, J. Kienzle, K. E. Eberle, N. A. Gund, A. Reineke, C. P. W. Zebitz, D. G. Henckel, J. Huber, J. A. Jehle.2007. Rapid emergence of Baculovirus resistance in coding moth due to dominant, sex-linked inheritance. Science 317: 1916-18. Brown, A.W.A. 1986. Insecticide in mosquitoes: a pragmatic review. J Am Mosquito Control Assoc 2: 123-140. Brengues, C., N. J. Hawkes, F. Chandre, L. McCarroll, S. Duchon, P. Guillet, S. Manguin, J. C. Morgen, and J. Hemingway. 2003. Pyrethroid and DDT cross- resistance in Aedes aegypti is correlated with novel mutation in the voltage-gated sodium channel gene. Med. Vet. Entomol. 17: 87-94. Brown, T.M., and W.G. Brogdon. 1987. Improved detection of insecticide resistance through conventional and molecular techniques. Ann. Rev. Entomol. 32:145-162. Cavalcanti L. P., F. J. de Paula, R. J. Pontes, J. Heukelbach, J. W. Lima. 2009. Survival of larvivorous fish used for biological control of Aedes aegypti larvae in domestic containers with different chlorine concentrations. J Med Entomol 46: 841-4. Chadwick, p. R., R. Slatter and M. J. Brown. 1984. Cross-resistance to pyrethroids and other insecticides in Aedes aegypti. Pestic. Sci. 15: 112-120. Chakravorthy BC, M. Kalyanasundaram. 1992. Selection of permethrin resistance in the malaria vector Anopheles stephensi. Indian J. Malariol 29: 161-165. Chandre F., F. Darriet, M. Darder, A. Cuany, J. M. C. Doanno, N. Pasteur and P. Guillet. 1998. Pyrethroid resistance in Culex quinquefasciatus from West Africa. Med. Vet. Entomol. 12: 59–366. Chaturvedi, UC, R. Shrivastava, R. Nagar. 2005. Dengue vaccines: problems and prospects. Indian J. Med. 621: 639-52. Chen S. T., Y. L. Lin, M. T. Huang, M. F. Wu, S. C. Cheng, H. Y. Lei, C. K. Lee, T. W. Chiou, C. H. Wong and S. L. Hsieh. 2008. CLEC5A is critical for dengue-virus-induced lethal disease. Nature 453: 672-676. Falconer, D. S. and T. F. C. Mackay. 1996. Introduction to quantitative genetics 4th edition. Federici B. A., H. W. Park, D. K. Bideshi, M. C. Wirth, J. J. Johnson, Y. Sakano, M. Tanq. 2007. Developing resombinant bacteria for control of mosquito larvae. J Am Mosq Control Assoc. 23: 164-75. Georghiou, G. P. 1969. Genetics of resistance to insecticide in houseflies and mosquitoes. Exp. Parasitol. 26:224-255. Georghiou, G. P., and C. E. Taylor. 1977. Operational influences in the evolution of insecticide resistance. J. Econ. Entomol. 70: 653-658. Gould E. A., Solomon T. 2008. Pathogenic flaviviruses. Lancet 371: 500-9. Halliday W. R. and G. P. Georghiou. 1985. Cross-resistance and dominance relationships of pyrethroids in a permethrin-selected strain of Culex quinquefasciatus ( Diptera: Culicidae ). J. Econ. Entomol. 78: 1227-1232. Halstead S. B. 2007. Dengue. Lancet 370: 1644-52. Hardstone, M. C., C. Leichter, L.C. Harrington, S. Kasai, T. Tomita, J. G. Scott. 2007. Cytochrome P450 monoxygenase-mediated permethrin resistance confers limited and larval specific cross-resistance in the southern house mosquito, Culex pipien quinquefasciatus. Pest. Biochem. Physiology 89: 175-184. Hemingway, J., and A. Callaghan, and A. M. Amin. 1990. Mechanisms of organophosphate and Carbamate resistance in Culex quinquefasciatus from Saudi Arabia. Med. Vet. Entomol. 4: 275–282. Hemingway, J., N.J. Hawkes, L. McCaroll, and H. Ranson. 2004. The molecular basis of insecticide resistance in mosquitoes. Insect. Biochem. Mol. Biol. 34: 653-665. Henchal, E. A., Putnak, J. R. 1990. The dengue viruses. Clin Microbiol Rev. 3: 376-396. Kay, B., V. S. Nam. 2005. New strategy against Aedes aegypti in Vietnam. Lancet 365: 613-7. Kouri, G., M. G. Guzman, J. Bravo. 1986. Hemorrhagic dengue in Cuba: history of an epidemic. Bull Pan Am Health Organ. 20: 24-30. Kumar, S., A. Thomas, A. Sahgal, A. Verma, T. Samuel, and M.K. K. Pillai. 2002. Effect of the synergist piperonyl butoxide, on the development of deltamethrin resistance in yellow fever mosquito, Aedes aegypti L. (Diptera:Culicidae). Arch. InsectBiochem. Physiol. 50: 1–8. Li, A.Y., R.B. Davey, R. J. Miller, F. D. Guerrero, and J. E. George. 2008. Genetics mechanisms of permethrin resistance in the Santa Luiza strain of Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 45: 427-438. Lumjaun, N., L. McCarroll, L. A. Prapanthadara, J. Hemingway, and H. Ranson. 2005. Elevated activity of an Epsilon class glutathione transferase confers DDT resistance in the dengue vector, Aedes aegypti. Insect Biochem. Mol. Biol. 35: 861–871. Martinez-Torres, D. F. Chandre, M. S. Williamson, F. Darriet, J. B. Berge, A. L. Devonshire, P. Guillet, and N. Pasteur. 1998. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol. Bio. 7: 179-184. Mekuria T., TA Gwinn, DC Williams, MA Tidwell. 1991. Insecticide susceptibility of Aedes aegypti from Santo Domingo, Dominican Republic. J. Am. Mosq. Control Assoc. 7: 69–72. Monath, T.P. 1994. Dengue: the risk to developed and developing countries. Proc. Natl. Acad. Sci. 91: 2395-2400. Nauen R. 2007. Perspective insecticide resistance in disease vectors of public health importance. Pest. Manag. Sci. 63: 628–633. Oppenoorth, F.J. 1985. Biochemistry and Physiology of resistance. In: G.A. KerKut and L.I. Gilbert, editors, Comprehensive insect physiology, biochemistry and pharmacology, Vol. 12. Oxford: Pergamon. Pp. 731-773. Pelizza S. A., C. C. Lastra, A. Macia, V. Bisaro, J. J. Garcia. 2009. Effect of water quality in mosquito breeding sites on the pathogenicity and infectivity of zoospores from the fungus Leptolegnia chapmanii (Straminipila: Peronosporomycetes). Rev Biol Trop 57: 371-80. Peiris, H. T. R. and J. Hemingway. 1990. Temephos resistance and associated cross-resistance spectrum in a strain of Culex quinquefascistus Say ( Diptera: Culicidae ) from Peliyagoda, Sri Lanka. Bull. Entomol. Res. 80: 49-55. Ping, L. T., R. Yatiman, and L. P. Gek. 2001. Susceptibility of adult field strains of Aedes aegypti and Aedes albopictus in Singapore to pyrimiphos-methyl and permethrin. J. Am. Mosq. Control Assoc. 17: 144-146. Pothikasikorn J., M. J. Banqs, T. Chareonviriyaphap, K. Roonqruanqchai, J. Roonqruanqchai. 2007. Comparison of blood feeding response and infection of Aedes aegypti to Wuchereria bancrofti using animal membranes and direct host contact. J Am Mosq Control Assoc. 23: 294-8. Prapanthadara, L., N. Promtet, S. Koottathep, P. Somboon, W. Suwonkerd, L. McCarroll, and J. Hemingway. 2002. Mechanisms od DDT and permethrin resistance in Aedes aegypti from Chiang Mai, Thailand. Dengue Bull. 26: 185-189. Priester T. M. and G. P. Georghiou. 1978. Induction of high resistance to permethrin in Culex pipien quinquefasciatus. J. Econ. Entomol. 71: 197-200. Priester T. M. and G. P. Georghiou. 1979. Inheritance of resistance to permethrin in Culex pipiens quinquefasciatus. J. Econ. Entomol. 72: 124-127. Roush R. T., R. L. Combs, T. C. Randolph, J. Macdonald, and J. A. Hawkins. 1986. Inheritance and effective dominance of pyrethroid resistance in the horn fly (Diptera: Muscidae). J. Econ. Entomol. 79: 1178-1182. Samlaska C. P. 1994. Viral hemorrhagic fevers. In: James W.D., editor. Military dermatology. Washingtons. pp. 197-212 Shono T., J. G. Scott. 1990. Autosomal sex-associated pyrethroid resistance in a strain of house fly (Diptera: Muscidae) with a male-determining Factor on Chromosome Three. J. Econ. Emtomol. 83: 686-689. Vaughan, A., D. D. Chadee, and R. efrrench-Constant. 1998. Biochemical monitoring of organophosphorus and carbamate insecticide resistance in Aedes aegypti mosquitoes from Trinidad. Med. Vet. Entomol. 12: 318–321. Wilkinson, C. F. 1983. Role of mixed-function oxidases in insecticides resistance. In “Pest Resistance to Pesticides” (G..P. Georghiou and T.Saito Eds.) Plenum Press. New York. World Health Organism. 2005. Dengue, dengue hemorrhagic fever and dengue shock syndrome in the context of the integrated management of childhood illness. World Health Organism. 2007. Containment of Malaria Multi-Drug Resistance on the Cambodia-Thailand Border. WHO Tech. p13. Zhang L., J. Shi, X. Gao. 2008. Inheritance of β-cypermethrin resistance in the housefly Musca domestica (Diptera: Muscidae). Pest Manaq. Sci. 64: 185-90.
摘要: 
The purpose of this study is to investigate the distribution of Aedes aegypti in Tainan during 2007 and in Kaohsiung during 2008, and monitor the insecticide resistance of Ae. Aegypt. Furthermore, the inheritances of permethrin and fenvalerate resistance in Ae. Aegypt were investigated by crossing of NS susceptible strain with Per-R47 resistance strain. In the result, Ae. aegypti collected from Tainan and Kaohsiung showed more than 10-fold resistance to pyrethroid insecticide comparing with laboratory susceptible strain (NS strain), but no noticeable resistance to carbamate ( propoxur ) and organophosphorus ( temephos and pirimiphos-methyl ) ( resistance ratio less than four times ). The reciprocal cross of NS susceptible strain and Per-R47 resistance strain shows that the permethrin and fenvalerate resistances of Ae. aegypti are inherited as multiple, autosomal and incomplete recessive factors. Permethrin resistance is mainly caused by kdr mutation, while fenvalerate resistance is not only conferred by both kdr mutation, and detoxification.


Keyword: Aedes aegypti, pyrethroids, resistance, inheritance

此實驗的目的為調查埃及斑蚊於2007年台南市及2008年高雄縣市部份行政區的分布情形,進行埃及斑蚊抗藥性的監測,並進一步的使用感性NS品系及抗性Per-R47品系進行互交,以探討埃及斑蚊對百滅寧及芬化利的遺傳抗藥性。實驗結果發現台南與高雄地區的埃及斑蚊對常用合成除蟲菊藥劑與實驗室感性品系的結果比較,顯示有抗藥性的情形產生(抗性比皆高於10倍),但對胺基甲酸鹽藥劑的安丹、有機磷類藥劑的亞培松和亞特松與實驗室感性品系比較的結果並未發現明顯的抗藥性情形(抗性比皆低於4倍)。而雜交實驗的結果顯示,埃及斑蚊對百滅寧及芬化利的遺傳特性皆屬於多因子不完全隱性的體染色體遺傳。其中對百滅寧的抗性主要是由於kdr基因突變所導致,對芬化利的抗性則不僅牽涉kdr基因突變,解毒酵素的作用也扮演一個重要的角色。
URI: http://hdl.handle.net/11455/30748
其他識別: U0005-2808200915103600
Appears in Collections:昆蟲學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.