Please use this identifier to cite or link to this item:
標題: Pathogenic mechanism of Nomuraea rileyi SH1 cultured fluid against Galleria mellonella and development of a molecular technique for its diagnosis
作者: 曾羽凱
Tseng, Yu-Kai
出版社: 昆蟲學系所
引用: 白志方。2004。蟲生線蟲 (Steinernema abbasi) 感染寄主之特性,在土壤中之特效力及其田間應用之研究。國立中興大學昆蟲學系博士論文。163pp. 朱耀沂、歐陽盛芝。1988。以人工飼料累代飼育斜紋夜蛾 (Spodoptera litura (F)) 生長之比較。中華昆蟲 8: 143-150. 張家瑜。2000。隨機增幅核酸多型性技術鑑別綠殭菌分離株及菌體內病毒之偵測。國立中興大學昆蟲學系碩士論文。76 pp. 施淑蓮。2005。綠殭菌毒素對斜紋夜蛾幼蟲之影響。國立中興大學昆蟲學系碩士論文。59 pp. 曾羽凱、侯豐男。2010。大蠟蛾幼蟲血液對綠殭菌感染寄主之抑制作用。台灣昆蟲。(已接受) Abbasi, P. A., S. A. Miller, T. Meulia, H. A. Hoitink, and J. Kim. 1999. Precise detection and tracing of Trichoderma hamatum 382 in compost-amended potting mixes using molecular markers. Appl. Environ. Microbiol. 65: 5421–5426. Agusti, N., M. C. de Vicente, and R. Gabarra. 2000. Developing scar markers to study predation on Trialeurodes vaporariorum. Insect Mol. Biol. 9: 264-268. Ahmad, M., S. M. Srinivasula, L. J. Wang, G. Litwack, T. Fernandes-Alnemri, and E. S. Alnemri. 1997. Spodoptera frugiperda caspase-1, a novel insect death protease that cleaves the nuclear immunophilin FKBP46, is the target of the beculovirus antiapoptotic protein p35. J. Biol. Chem. 272: 1421-1424. Benedict, C. A., P. S. Norris, and C. F. Ware. 2002. To kill or be killed: viral evasion of apoptosis. Nature Immunol. 3: 1013-1018. Bidochka, M. J., M. A. McDonald, R. J. St. Leger, and D. W. Roberts. 1994. Differentiation of species and strains of entomopathogenic fungi by random amplification of polymorphic DNA (RAPD). Curr. Genet. 25: 107-113. Black, W. C., IV. 1993. PCR with arbitary primers: approach with care. Insect Mol. Biol. 2:1-6. Boucias, D, G., and J. P. Latge. 1988. Nonspecific induction of germination of Conidiobolus obscurus and Nomuraea rileyi with host and non-host cuticle extracts. J. Invertebr. Pathol. 51: 168-171. Boucias, D. G., and J. Pendland. 1991. Attachment of mycopathogens to cuticle: the initial event of mycosis in arthropod hosts. The Fungal Disease Initiation in Plants and Animals (eds. by G. T. Cole, and H. C. Hoch), pp. 101-128. Plenum, New York. Boucias, D, G., D. L. Bradford, and C. S. Barfield 1984. Susceptibility of the velvetbean caterpillar and soybean looper (Lepidoptera: Noctuidae ) to Nomuraea rileyi: Effects of pathotype, dosage, temperature and host age. J. Econ. Entomol. 77: 247-253. Boucias, D. G., E. A. Schoborg, and G. E. Allen. 1982. The relative susceptibility of six noctuid species to infection by Nomuraea rileyi isolated from Anticarsa gemmatalis. J. Invertebr. Pathol. 39: 238-240. Campos, M. R., M. Russo, E. Gomes, and S. R. Almeida. 2006. Stimulation, inhibition and death of macrophages infected with Trichophyton rubrum. Microb. Infect. 8: 372-379. Castrillo, L. A., B. M. Wiegmann, and W. M. Brooks. 1999. Genetic variation in Beauveria bassiana populations associated with the darkling beetle, Alphitobius diaperinus, in poultry houses. J. Invertebr. Pathol. 73: 269–275. Castrillo L. A., J. D. Vandenberg, and S. P. Wraight. 2003. Strain-specific detection of introduced Beauveria bassiana in agricultural fields by use of sequence-characterized amplified region markers. J Invertebr Pathol 82: 75-83. Ding H. M., Z. S. Ding, H. B. Li, and N. P. Chen. 2008. Application of SCAR molecular marker technology in identification of Monascus strains. Zhong Yao Za Zhi. 33: 359-362. (in Chinese) Dumas, C., V. Matha, J. M. Quiot, and A. Vey. 1996. Effects of destruxins, cyclic depsipeptide mycotoxins, on calcium bablance and phosphorylation of intracellular proteins in lepidopteran cell lines. Comp. Biochem. Physiol. 114C: 213-219. Ernst, J. D. 2000. Bacterial inhibition of phagocytosis. Cell. Microbiol. 2: 379-386. Fegan, M., J. M. Manner, D. J. Maclean, J. A. G. Irwin, K.D. Z. Samules, D. G. Holdom, and D. P. Li. 1993. Random amplified polymorphic DNA markers reveal a high degree of genetic diversity in the entomopathogenic fungus Metarhizium anisopliae var. anisopliae. J. Gen. Microbiol. 139: 2075-2081. Filler, S. G., and D. C. Sheppard. 2006. Fungal invasion of normally non-phagocytic host cells. PLoS Pathogens 2: 1099-1105. Ganassi, S., A. Moretti, A. M. B., Pagliai, A. Logrieco, and M. A. Sabatini. 2002. Effects of beauvericin on Schizaphis graminum (Aphididae). J. Invertebr. Pathol. 80: 90-96. Gao, L. Y., and Y. A. Kwaik. 1999. Apoptosis in macrophages and alveolar epithelial cells during early stages of infection by Legionella pneumophila and its role in cytopathogenicity. Infect. Immun. 67: 862-870. Götz, P. 1991. Invertebrate immune response to fungal cell wall components. Fungal Cell and Immune Response (eds. by J. P. Latge, and D. G.. Boucias), pp. 317-330. NATO ASI Series, Series H: Cell Biology, Vol. 53. Spring Verlag, Berlin. Götz, P., V. Matha, and A. Vilcinskas. 1997. Effects of the entomopathogenic fungus Metarhizium anisopliae and its secondary metabolites on morphology and cytoskeleton of plasmatocytes isolated from the greater wax moth, Galleria mellonella. J. Insect Physiol. 43: 1149-1159. Greenstone, M. H., C. M. Ignoffo, and R. A. Samson. 1987. Susceptibility of spider species to the fungus, Nomuraea atypicola. J. Arachnol. 15: 266-268. Griesch, J. and A. Vilcinskas. 1998. Protease released by entomopathogenic fungi impair phagocytic activity, attachment and spreading of plasmatocytes isolated from haemolymph of the great wax moth Galleria mellonella. Biol. Sci. Technol. 8: 517-531. Grosch R., J. H. Schneider, A. Peth, A. Waschke, P. Franken, A. Kofoet, and S. H. Jabaji-Hare. 2007. Development of a specific PCR assay for the detection of Rhizoctonia solani AG1-IB using SCAR primers. J. Appl. Microbiol. 102: 806-819. Grove, J. F., and M. Pole. 1980. The insecticidal activity of beauvericin and the enniatin complex. Mycopathologia 70: 103-105. Gupta, S., S. B. Krasnoff, N. L. Underwood, J. A. Renwich, and D. W. Roberts. 1991. Isolation of beauvericin as an insect toxin from Fusarium semitectum and Fusarium moniliforme var. subglutinans. Mycopathologia 115: 185-189. Hall, R. A. 1982. Control of whitelfly, Trialeurodes vaporariorum and cotton aphid, Aphid gosypii in glasshouse by two isolates of the fungus, Verticillium lecanii. Ann. Appl. Biol. 101: 1-11. Hayek, A. E., and R. J. St. Leger. 1994. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 39: 293-322. Hinaje, M., M. Ford, L. Banting, S. Arkle, and B. Khambay. 2002. An investigation of the ionophoric characteristics of destruxin A. Arch. Biochem. Biophy. 405: 73-77. Hocking, A. D. 1977. Nomuraea animonoides sp. Nov. from Austrralian soil. Trans. Brit. Mycol. Soc. 69: 511-513. Hodge, K. T., A. J. Swyer, and R. A. Humber.1995. RAPD-PCR for identification of Zoophthora radicans isolates in biological control of the potato leafhopper. J. Invertebr. Pathol. 65: 1-9. Holdom, D. G., and G. van de Klashorst. 1986. Inexpensive culture media and methods for Nomuraea rileyi. J. Invertebr. Pathol. 48: 264-248. Huxham, I. M., K. D. Z. Samuels, and J. B. Heale. 1989. In vivo and in vitro assays for pathogenicity of wildtype and mutant strains of Metarhiziam anisopliae for three insect species. J. Invertebr. Pathol. 53: 143-151. Ignoffo, C. M. 1981. The fungus Nomuraea rileyi as a microbial insecticide. Microbial Control of Pest and Plant Diseases (Ed. by H. D. Burges), pp. 513-537. AcademicPress, New York. Ignoffo, C. M., and C. Garcia. 1989. Relative virulence of Nomuraea spp. (N. rileyi, N. atpicola, N. anemonoides) originally isolated from an insect, a spider and soil. J. Invertebr. Pathol. 54: 373-378. Ignoffo, C. M., B. Puttler , D. L. Hostetter, and W. A. Dickerson. 1976. Susceptibility of the cabbage looper, Trichoplusia ni and the velvetbean caterpillar, Anticarsia gemmatalis, to several isolates of the entomopathogenic fungus Nomuraea rileyi. J. Invertebr. Pathol. 28: 259-262. James, E. R., and D. R. Green. 2004. Manipulation of apoptosis in the host-parasite interaction. Trends Parasitol. 20: 280-287. Jegorov A, B. Paizs, M. Kuzma, M. Zabka, Z. Landa, M. Sulc, M. P. Barrow, and V. Havlicek. 2004. Extraribosomal cyclic tetradepsipeptides beauverolides: profiling and modeling the fragmentation pathways. J. Mass Spectrom. 39: 949-960. Kish, L. P., R. A. Samson, and G. E. Allen. 1974. The genus Nomuraea Maublanc. J. Inverterbr. Pathol. 24: 154-158. Kiuchi, M., H. Yasui, S. Hayasaka, and M. Kamimura. 2003. Entomogenous fungus Nomuraea rileyi inhibits host insect molting by C22-oxidizing inactivation of hemolymph ecdysteroids. Arch. Insect Biochem. Physiol. 52: 35-44. Lamberty, M., S. Ades, J. S. Uttenweiler, G. Brookhart, D. Bushey, J. A. Hoffmann, and P. Bulet. 1999. Insect immunity: isolation from lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J. Biol. Chem. 274: 9320-9326. Lavine M. D., and M. R. Strand. 2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol. 32: 1295-1309. Lecomte, P., J. P. Peros, D. Blancard, N. Bastien, and C. Delye. 2000. PCR-assays that identify the grapevine dieback fungus Eutypa lata. Appl. Environ. Microbiol. 66: 4475–4480. Lee, J., H. J. Hong, J. K. Kim, J. S. Hwang, Y. Kim, and D. G.. Lee. 2009. A novel antifungal analog peptide derived from protaetiamycine. Mol. Cells 28: 473-477. Li, K. N., D. I. Rouse, E. J. Eyestone, and T. L. German. 1999. The generation of specific DNA primers using random amplified polymorphic DNA and its application to Verticillium dahliae. Mycol. Res. 103: 1361–1368. Lihua C., X. Shichang, L. Ruiming, L. Taiguo, and C. Wanquan. 2008. Early molecular diagnosis and detection of Puccinia striiformis f. sp. tritici in China. Lett. Appl. Microbiol. 46: 501-506. Lopez-Lastra, C. C., and D. G. Boucias. 1994. Studies on the cellular reactions of Spodoptera exigua larvae infected with the fungus Nomuraea rileyi. J. Invertebr. Pathol. 63: 101-102. Marmaras V. J., and M. Lampropoulou. 2008. Regulators and signalling in insect haemocyte immunity. Cell Signal. 21: 186-195. Maurer, P., Y. Couteaudier, P. A. Girard, P. D. Bridge, and G. Riba. 1997. Genetic diversity of Beauveria bassiana and relatedness to host insect range. Mycol. Res. 101: 159–164. Mazet, I., and A. Vey. 1995. Hirsutellin a, a toxic protein produced in vitro by hirsutella thompsomii. Microbiology 141: 1343-1348. Mazet, I., S. Y. Hung, and D. G. Boucias. 1994. Detection of toxic metabolites in the hemolymph of Beauveria bassiana infected Spodoptera exigua larvae. Expierentia 50: 142-147. Mikuni, T., and K. Kawakami. 1975. The effect of the product by Spicaria prasina Maublanc Sawada on the molting and metamorphosis of the silkworm, Bombyx mori L. Jpn. J. Appl. Entomol. Zool. 19: 203-207. (in Japanese) Nakajyo S, K. Shimizu, A. Kometani, A. Suzuki, H. Ozaki, and N. Urakawa. 1983. On the inhibitory mechanism of bassianolide, a cyclodepsipeptide, in acetylcholine-induced contraction in guinea-pig taenia coli. Jpn. J. Pharmacol. 33: 573-582. Nentwig, W. 1985. Parasitic fungi as a mortality factor of spiders. J. Arachnol. 13: 272-274. Onofre, S. B., R. R. Gonzalez, C. L. Messias, J. L. Azeedo, and N. M. de Barros. 2002. LC50 of the peptide produced by the entomopathogenic fungus Nomuraea rileyi (Falow) Samson active against third instar larvae of Anticarsia gemmetalis (Lep.: Noctuidae ). Brazilian Arch. Biol. Technol. 45: 269-275. Pedras, M. S. C., L. I. Zaharia, and D. E. Ward. 2002. The destruxins: synthesis, biosynthesis, biotransformation and biological activity. Phytochemistry 59: 579-596. Pendland, J. C., and D. G. Boucias. 1992. Ultrastructural location of carbohydrate in cell walls of the entomogenous hyphomycete Nomuraea rileyi. Can. J. Microbiol. 38: 377-386. Pendland, J. G., and D. G. Boucias. 1997. In vitro growth of the entomopathogenic hyphomycete Nomuraea rileyi. Mycologia 89: 66-71. Pendland, J. C., M. Heath, and D. G. Boucias. 1988. Function of a galactose-binding lectin from Spodoptera exigua larval haemolymph: opsonization of blastospores from entomogenous hyphomycete. J. Insect Physiol. 34: 533-540. Pendland J. C., S. Y. Hung, and D. G. Boucias. 1993a. Evasion of host defense by in vivo-produced protoplast-like cells of the insect mycopathogen Beauveria bassiana. J. Bacteriol. 175: 5962-5969. Pendland, J. C., D. Lopez-Lastra, and D. G. Boucias. 1993b. Laminarin-binding sites on cell walls of the entomopathogen Nomuraea rileyi associated with growth and adherence to host tissues. Mycologia 86: 327-335. Puttler, B., C. M. Ignoffo, and D. L. Hostetter. 1976. Relative susceptibility of nine caterpillar species to the fungus Nomuraea rileyi. J. Invertebr. Pathol. 27: 269-270. Quesada-Moraga, E., and A. Vey. 2004. Bassiacridin, a protein toxic for locusts secreted by the entomopathogenic fungus Beauveria bassiana. Mycol. Res. 108: 441-452. Ratcliffe, N. A. 1993. Cellular defense responses of insects: unresolved problem. Parasites and Pathogens of Insects. Volume 1: Parasites. (eds. by N. E. Beckage, S. N. Thompson, and D. A. Federici), pp. 267-304. Academic Press, London. Roberts, D. W. 1981. Toxins of entomopathogenic fungi. In Microbial Control of Pests and Plant Disease (Ed. by D. W. Burges), pp. 441-464. Academic Press, London and New York. Roberts, D. W., and R. A. Humber. 1981. Entompathogenic fungi. In Biology of Conidial Fungi. 1: 204-277. Roberts, D. W., and R. A. Humber. 1984. Entompathogenic fungi. In Infection Processes of Fungi (Eds. by D. W. Roberts and J. R. Aist), pp. 1-12. The Rockefeller Fundation. Rohloff, L, H. A. Wiesner, and P. Götz. 1994. A fluorescence assay demonstrating stimulation of phagocytosis by hemolymph molecules of Galleria mellonella. J. Insect Physiol. 40: 1045-1049. Rubio M. B., M. R. Hermosa, E. Keck, and E. Monte. 2005. Specific PCR assays for the detection and quantification of DNA from the biocontrol strain Trichoderma harzianum 2413 in soil. Microb. Ecol. 49:25-33. Samson, R. A. 1974. Paecilomyces and some allied Hyphomycetes . In “ Studies in Mycology No. 6.” Centraalbureau Voor Schimmelcultures, Baarn, The Netherlands. Samuels, R. I., S. E., Reynolds, and A. K. Charnley. 1988. Calcium channel activation of insect muscle by destruxins, insecticidal compounds produced by the entomopathogenic fungus Metarhizium anisopliae. Comp. Biochem. Physiol. 90C: 403-412. Schilling, A. G., E. M. Moller, and H. H. Geiger. 1996. Polymerase chain reaction based assays for species-specific detection of Fusarium culmorum, F. graminearum, and F. avenaceum. Phytopathology 86: 515–522. Schuhmann, B., V. Seitz, A. Vilcinskas, and L. Podsiadlowski. 2003. Cloning an expression of Gallermycin, an antifungal peptide expressed in immune response of great wax moth larvae, Galleria mellonella. Arch. Insect Biochem. Physiol. 53: 125-133. Tang, L .C., and R. F. Hou. 1998. Potential appliciation of the entomopathogenic fungus, Nomuraea rileyi, for control of the corn earworm, Helicoverpa armigera. Entomol. Exp. Appl. 88: 25-30. Tigano, M. S., and S. Aljanabi. 2000. RADP analysis of Nomuraea rileyi. J. Invertebr. Pathol. 75: 240-242. Tojo S, F. Naganuma, K. Arakawa, and S. Yokoo. 2000. Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J. Insect Physiol. 46: 1129-1135. Tseng, Y. K., Y. W. Tsai, M. S. Wu, and R. F. Hou. 2008a. Inhibition of phagocytic activity and nodulation in Galleria mellonella by the entomopathogenic fungus Nomuraea rileyi. Entomol. Exp. Appl. 129: 243-250. Tseng, Y. K., M. S. Wu, and R. F. Hou. 2008b. Induction of apoptosis in SF21 cell line by conditioned medium of the entomopathogenic fungus, Nomuraea rileyi, through sf-caspase-1 signaling pathway. Arch. Insect Biochem. Physiol. 68: 206-214. Tseng, Y. K., J. C. Y. Lu, M. S. Wu, and R. F. Hou. 2010. Development of a novel species-specific DNA marker for rapid detection of the entomopathogenic fungus, Nomuraea rileyi, in infected insects. Formosan Entomol. (accepted) Vilcinskas, A., V. Matha, and P. Götz. 1997a. Inhibition of phagocytic activity of plasmatocytes isolated from Galleria mellonella by entomogenous fungi and their secondary metabolites. J. Insect Physiol. 43: 475-483. Vilcinskas, A., V. Matha, and P. Götz. 1997b. Effect of entomopathogenic fungus Metarhizium anisopliae and its secondary metabolities and cytoskeleton of plasmatocytes isolated from the greater wax moth, Galleria mellonella. J. Insect Physiol. 43: 1149-1159. Vilcinskas, A., A. Jegorov, Z. Landa, P. Götz, and V. Matha. 1999. Effects of beauverolide L and cyclosporine A on humoral and cellular immune response of the greater wax moth, Galleria mellonella. Comp. Biochem. Physiol. 122C: 83-92. Wasti, S. S., and G. C. Hatmann. 1978. Host-parasites interactions between larvae of the gypsy moth, Lymantria dispar (L) (Lepidoptera: Lymantridae) and the entomogenous fungus, Nomuraea rileyi (Farlow) Samson (Moniliales: Moniliaceae). Appl. Entomol. Zool. 13: 23-28. West, E. J., and J. D. Briggs. 1968. In vitro toxin production by the fungus Beauveria bassiana and bioassay in greater wax moth larvae. J. Econ. Entomol. 61: 684-687. Welty, C., M. M. Elsner, A. Vilcinskas, V. Matha, and P. Götz. 1997. Effects of the entomopathogenic fungus Metarhizium anisopliae and its secondary metabolites on morphology and cytoskeleton of plasmatocytes isolated from the greater wax moth, Galleria mellonella. J. Insect Physiol. 43: 1149-1159. Williams, J. G.. K., A. R. Kubelik, K. J. Livak, J. K. Rafalski, and S. V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18: 6531-6535. Wojda, I., P. Kowalski, and T. Jakubowicz. 2009. Humoral immune response of Galleria mellonella larvae after infection by Beauveria bassiana under optimal and heat-shock conditions. J. Insect Physiol. 55: 525-531. Zhang, Z. T., and S. Y. Zhu. 2009. Drosomycin, an essential component of antifungal defence in Drosophila. Insect Mol. Biol. 18: 549-556. Zimmermann, G. 2007a. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biol. Sci. Technol. 17: 553-596. Zimmermann, G. 2007b. Review on safety of the entompathogenic fungus Metarhizium anisopliae. Biol. Sci. Technol. 17: 879-920. Zoog, S. J., J. J. Schiller, J. A.Wetter, N. Chejanovsky, and P. D. Friesen. 2002. Baculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo. EMBO J. 21: 5130-5140.
In this study, it was found that high larval mortalities of the greater wax moth, Galleria mellonella, occurred when treated with the cultured fluid of Nomuraea rileyi SH1 isolate. The insecticidal activity of the fungal cultured fluid initiated from the 7th day after culturing, resulting in ca. 24% larval mortality and reached 100% at the 11th day. In addition, the number of days causing 100% larval mortality decreased as elevated the fluid concentration, indicating a dose-dependent activity. When the cultured fluids were pretreated with proteinase K and heating at 100℃ to deprive the insecticidal activity, SF21 cell line showed growth inhibition and apoptosis at 18 h after treatment with N. rileyi cultured fluid, but it remained normal if treated with those of Beauveria bassiana or Metarhizium anisopliae. This indicates that toxic components inducing apoptosis are present only in N. rileyi. Furthermore, phagocytic rates of hemocytes decreased over 80% in G. mellonella larvae treated with N. rileyi cultured fluid, and the number of nodules containing conidia decreased 74.5% in both in vitro and in vivo tests. The inhibition of phagocytosis by this cultured fluid was also found in G. mellonella larvae against conidia of B. bassiana and M. anisopliae, and Escherichia coli, indicating its non-specificity of phagocytic inhibition to microbial invaders. The cultured fluid pretreated with proteinase K was deprived of the insecticidal activity and its impairment on cellular immunity of G. mallonella hemocytes, revealing that its active components seem to be proteinaceous substances. Therefore, N. rileyi SH1 isolate could secrete toxic proteinaceous components to cause mortality and impairment of cellular immunity in G. mellonella larvae, and apoptosis of SF21 cells. For developing a molecular diagnosis of N. rileyi, a 1.4 kb of DNA fragment specific to N. rileyi was amplified using a random primer, OPF18 (AACCCGGGTT). The 289 bp of DNA fragment was amplified using a pair of specific primers, NS1/NS2, designed from it. The predicted size of DNA fragment was able to be amplified from 17 domestic N. rileyi isolates and other two from the United States using NS1/NS2 primers pair, but was not from B. bassiana and M. anisopliae. In sensitivity and interference assays, a predicted amplicon could be detected using as low as 0.1 ng DNA template and was not disturbed with Spodoptera litura DNA. A 289 bp amplicon was detected from living and mummified S. litura larvae infected with N. rileyi isolates but was not with B. bassiana and M. anisopliae using this specific primers pair. This result indicates that diagnosis of insects infected with N. rileyi can be correctly carried out one day after infection using NS1/NS2 primers pair. Thus, the NS1/NS2 primers pair could extensively be utilized to precisely diagnose field samples infected with N. rileyi.

在綠殭菌 (Nomuraea rileyi) 培養液的殺蟲效果測試發現SH1分離株對大蠟蛾幼蟲 (Galleria mellonella) 造成高死亡率,而且在第七天的培養液開始有毒殺作用,引起24%死亡率,在第十一日達100%死亡率。另隨著培養液濃度的提升,毒殺幼蟲達100%死亡率的日數隨之遞減,顯示有劑量依變的特性。當經蛋白酶 (proteinase K) 及100℃熱處理過的綠殭菌培養液,則失去對大蠟蛾幼蟲的高死亡率。又以綠殭菌SH1培養液處理SF21細胞株,細胞生長受到明顯抑制並可在18小時開始產生細胞凋亡 (apoptosis) ,但黑殭菌 (Metarhizium anisopliae) 與白殭菌 (Beauveria bassiana) 的培養液則無此現象,顯示綠殭菌培養液的有毒成分與其他蟲生真菌所分泌者不同。此外,在in vitro及in vivo試驗發現綠殭菌SH1培養液,可以抑制大蠟蛾幼蟲血球80%以上之吞噬率與降低74.5%含有孢子之瘤結率;同時,也抑制血球對黑殭菌、白殭菌分生孢子與大腸菌的吞噬作用,顯示該細胞性免疫所受之抑制對微生物不具專一性。當經蛋白酶處理過的綠殭菌培養液,則喪失對大蠟蛾幼蟲的毒殺及細胞性免疫之抑制,顯示有毒物質具蛋白質成分。因此,綠殭菌SH1可分泌有毒的蛋白質成分,一方面造成大蠟蛾幼蟲的高死亡率,也可直接抑制大蠟蛾幼蟲之細胞性免疫;另一方面,也會引起細胞凋亡。在綠殭菌分子診斷技術的開發上,將OPF18 (AACCCGGGTT) 隨機引子增幅的綠殭菌專一性1.4 kb 之DNA片段,從中設計一對sequence characterized amplified region (SCAR) 的專一性引子對NS1/NS2,以此可對綠殭菌genomic DNA增幅約289 bp大小的片段。取十七種國內收集的綠殭菌分離株及二種美國的綠殭菌品系,均可利用NS1/NS2增幅出預期的DNA片段,但對白殭菌及黑殭菌均無任何增幅片段。另進行靈敏度與干擾測試,顯示只要0.1 ng genomic DNA即可被增幅出預期片段,而且不受斜紋夜蛾 (Spodoptera litura) DNA的干擾。進一步將受綠殭菌感染的斜紋夜蛾之活蟲或殭蟲,也發現可被此專一性引子對增幅289 bp的片段,但受白殭菌與黑殭菌感染的殭蟲,並無任何的增幅片段,顯示NS1/NS2引子對可以準確診斷出受綠殭菌感染的蟲體,而且在感染後的第一天即可被正確的診斷,因此將可廣泛應用於田間標本的診斷。
其他識別: U0005-1208201017262400
Appears in Collections:昆蟲學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.