Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30768
標題: Spatial Variation of Foliar Chemicals within Brassicaceae Radish Plant, Raphanus sativus L. and Its Effect on Performance of a Generalist Insect, Spodoptera litura Fab.
作者: 亞多夫
Yadav, Jitendra
關鍵字: Foliar chemicals;Spatial variation;Optimal defense theory;Performance;Raphanus sativus;Spodoptera litura;http://etds.lib.nchu.edu.tw/etdservice/view_metadata?etdun=U0005-2904201014310500
出版社: 昆蟲學系所
引用: Agrawal, A. A. 2000. Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars. Oikos 89: 493-500. Alonso, C., and C. M. Herrera. 2000. Seasonal variation in leaf characteristics and food selection by larval noctuids on an evergreen Mediterranean shrub. Acta Oecol. 21: 257-265. Arguedas, T. B., M. W., Horton, P. D., Coley, J., Lokvam, R. A., Waddell, B. E. M., Òmeara, and Kursar T. A. 2006. Contrasting mechanisms of secondary metabolite accumulation during leaf development in two tropical tree species with different leaf expansion strategies. Oecologia 149: 91-100. Behmer, S. T. 2009. Insect herbivore nutrition regulation. Annu. Rev. Entomol. 54: 165-187. Berenbaum, M. 1983. Coumarins and caterpillars - a case for coevolution. Evolution 37: 163-179. Bittencourt-rodrigues, R. S., and F. S. Zucoloto. 2005. Effect of host age on the oviposition and performance of Ascia monuste Godart (Lepidoptera: Pieridae). Neotrop. Entomol. 34: 169-175. Bluthgen, N., and A. Metzner. 2007. Contrasting leaf age preferences of specialist and generalist stick insects (phasmida). Oikos 116: 1853-1862. Boege, K., and R. J. Marquis. 2005. Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends Ecol. Evol. 20: 441-448. Boege, K., and R. J. Marquis. 2006. Plant quality and predation risk mediated by plant ontogeny: consequences for herbivores and plants. Oikos 115: 559-572. Bryant, J. P., F. S. III, Chapin, P. B., Reichardt, and T. P. Clausen. 1987. Response of winter chemical defense in Alaska paper birch and green alder to manipulation of plant carbon/nutrient balance. Oecologia 72: 510-514. Chen, Y., J. R., Ruberson, and D. M. Olson. 2008. Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton. Entomol. Exp. Appl. 126: 244-255. Coley, P. D., M. L., Bateman, and T. A. Kursar. 2006. The effects of plant quality on caterpillar growth and defense against natural enemies. Oikos 115: 219-228. Cornell, H. V., and B. A. Hawkins. 2003. Herbivore responses to plant secondary compounds: a test of phytochemical coevolution theory. Am. Nat. 161: 507-522. De Boer, N. J. 1999. Pyrrolizidine alkaloid distribution in Senecio jacobaea rosettes minimizes losses to generalist feeding. Entomol. Exp. Appl. 91: 169-173. Dodds, K. A., K. M., Clancy, K. J., Leyva, D., Greenberg, and. P. W. Price. 1996. Effects of foliage age class on western spruce budworm oviposition choice and larval performance. Great Basin Nat. 56: 135-141. Donaldson, J. R., M. T., Etevens, and R. L. Lindroth. 2006. Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). J. Chem. Ecol. 32: 1415-1429. Fahey, J. W., A. T., Zalcmann, and P. Talalay. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56: 5-51. Gabrys, B., and W. F. Tjallingii. 2002. The role of sinigrin in host plant recognition by aphids during initial plant penetration. Entomol. Exp. Appl. 104: 89-93. Gill, D. E., L., Chao, S. L., Perkins, and J. B. Wolf. 1995. Genetic mosaicism in plants and clonal animals. Annu. Rev. Ecol. Syst. 26: 423-444. Gols, R., C. E., Raaijmakers, N. M., Van dam, M., Dicke, T., Bukovinszky, and J. A. Harvey. 2007. Temporal changes affect plant chemistry and tritrophic interactions. Basic Appl. Ecol. 8: 421-433. Gols, R., R., Wagenaar, T., Bukovinszky, N. M., Van dam, M., Dicke, J. M., Bullock, and J. A. Harvey. 2008. Performance of generalist and specialist herbivores and their endoparasitoid differs on cultivated and wild Brassica populations. J. Chem. Ecol. 34: 132-43. Guillet, G., C., Podeszfinski, C., Regnault-roger, J. T., Arnason, and, B. J. R. Philogene. 2000. Behavioral and biochemical adaptations of generalist and specialist herbivorous insects feeding on Hypericum perforatum (Guttiferae). Environ. Entomol. 29: 135-139. Gupta, G. P., S., Rani, A., Birah, and M. Raghuraman. 2005. Improved artificial diet for mass rearing of the tobacco caterpillar, Spodoptera litura (Lepidoptera: Noctuidae). Int. J. Trop. Insect Sci. 25: 55-58. Hamilton, J. G., A. R., Zangerl, E. H., Delucia, and M. R. Berenbaum. 2001. The carbon- nutrient balance hypothesis: its rise and fall. Ecol. Letter. 4: 86-95. Harper, J. L. 1989. The value of a leaf. Oecologia 80: 53-58. Ikonen, A. 2002. Preferences of six leaf beetle species among qualitatively different leaf age classes of three Salicaceous host species. Chemoecology 12: 23-28. Jones, C. S. 1999. An essay on juvenility, phase change, and heteroblasty in seed plants. Int. J. Plant Sci. 160: S105-S111. Karban, R., and I. T. Baldwin. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago. Karban, R., A. A., Agrawal, and M. Mangel. 1997. The benefits of induced defenses against herbivores. Ecology 78: 1351-1355. Kessler, A., and I. T. Baldwin. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53: 299-328. Kogan, M., and E. F. Ortman. 1978. Antixenosis: a new term proposed to define painters nonpreference modality of resistance. Bull. Entomol. Soc. Am. 24: 175-76. Körner, C. 2003. Carbon limitation in trees. J. Ecol. 91: 4-17. Kursar, T. A., and P. D. Coley. 1991. Nitrogen-content and expansion rate of young leaves of rain-forest species-implications for herbivory. Biotropica 23: 141-150. Laitinen, M. L., R., Julkunen-tiitto, J., Tahvanainen, and M. Rousi. 2005. Variation in birch (Betula pendula) shoot secondary chemistry due to genotype, environment, and ontogeny. J. Chem. Ecol. 31: 697-717. Lambdon, P. W., and M. Hassal. 2005. How should toxic secondary metabolites be distributed between the leaves of a fast-growing plant to minimize the impact of herbivory? Funct. Ecol. 19: 299-305. Lang, C. A. 1958. Simple micro determination of Kjedahl nitrogen in biological materials. Anal. Chem. 30: 1692-1694. Leur, H. V., L. E. M., Vet, W. H. V. D., Putten, and N. M. Van dam. 2008. Barbarea vulgaris glucosinolate phenotypes differentially affect performance and preference of two different species of lepidopteran herbivores. J. Chem. Ecol. 34: 121-131. Li, Q., S. D., Eigenbrode, G. R., Stringham, and M. R. Thiagarajan. 2000. Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. J. Chem. Ecol. 26: 2401-2419. Liao, L. H. 2003. Nutritional adaptation of galling insects investigated by globular galls of Trioza shuiliensis (Yang) on Machilus japonica var. kusanoi (Hyata). MS thesis. Department of Entomology, National Chung Hsing University, Taiwan. Lindroth, R. L., M. T. S., Hsia, and J. M. Scriber. 1987. Seasonal patterns in the phytochemistry of three populus species. Biochem. Syst. Ecol. 15: 681-686. Madsen, J. D. 1997. Seasonal biomass and carbohydrate allocation in a southern population of Eurasian watermillfoil. J. Aquat. Plant Manage. 35: 15-21. Marschner, H. 1995. Mineral Nutrition of Higher Plant (2n ed). Academic Press, London. Martin, N. T. and C. Müller. 2008. Matching plant defence syndromes with performance and preference of a specialist herbivore. Funct. Ecol. 22: 1033-1043. Mattson, W. J. 1980. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11: 119-161. Mauney, J. R., G., Guinn, K. E., Fry, and J. D. Hesketh. 1979. Correction of photosynthetic carbon dioxide uptake and carbohydrate accumulation in cotton, soybean, sunflower, and sorghum. Photosynthetica 13: 260-266. Orians, C. M. and C. G. Jones. 2001. Plants as resource mosaics: a functional model for predicting patterns of within-plant resource heterogeneity to consumers based on vascular architecture and local environmental variability. Oikos 94: 493-504. Painter, R. H. 1941. The economic value and biologic significance of insect resistance in plants. J. Econ. Entomol. 34: 358-67. Parkinson, J. A., and S. E. Allen. 1975. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun. Soil Sci. Plant Anal. 6: 1-11. Pavia, H., G. B., Toth, and P. Aberg. 2002. Optimal defense theory: elasticity analysis as a tool to predict intraplant variation in defenses. Ecology 83: 891-897. Ralph, P. J., M. D., Burchett, and A. Pulkownik. 1992. Distribution of extractable carbohydrate reserves within the rhizome of the seagrass Posidonia australis Hook. f. Aquat. Bot. 42: 385-392. Raubenheimer, D., and S. J. Simpson. 1999. Integrating nutrition: a geometrical approach. Entomol. Exp. Appl. 91: 67-82. Reifenrath, K., and C. Müller. 2009. Larval performance of the mustard leaf beetle (Phaedon cochleariae, Coleoptera, Chrysomelidae) on white mustard (Sinapis alba) and watercress (Nasturtium officinale) leaves in dependence of plant exposure to ultraviolet radiation. Environ. Pollut. 157: 2053-2060. Rhoades, D. F. 1979. Evolution of plant chemical defense against herbivores, pp. 3-54, in G. A. Rosenthal and D. H. Janzen (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, Inc., New York. Riipi, M., V., Ossipov, K., Lempa, E., Haukioja, J., Koricheva, S., Ossipova, and. K. Pihlaja. 2002. Seasonal changes in birch leaf chemistry: Are there trade-offs between leaf growth, and accumulation of phenolics? Oecologia 130: 380-390. Schoonhoven, L. M., J. J. A., Van loon, and M. Dicke. 2005. Insect-Plant Biology (2n ed.).Oxford University Press, New York. Schultz, J. C. 1988. Many factors influence the evolution of herbivore diets, but plant chemistry is central. Ecology 69: 896-897. Scriber, J. M., and F. Slansky. 1981. The nutritional ecology of immature insects. Annu. Rev. Entomol. 26: 183-211. Shelton, A. L. 2000. Variable chemical defenses in plants and their effects on herbivore behavior. Evol. Ecol. Res. 2: 231-249. Shelton, A. L. 2005. Within-plant variation in glucosinolate concentrations of Raphanus sativus across multiple scales. J. Chem. Ecol. 31: 1711-1732. Shi, P. L., C., Körner, and G. Hoch. 2006. End of season carbon supply.status of woody species near the treeline in western China. Basic Appl. Ecol. 7: 370-377. Shields, V. D. C., and B. K. Mitchell. 1995. Sinigrin as a feeding deterrent in two crucifer-feeding, polyphagous lepidopterous.species and the effects of feeding stimulant mixtures on deterrency. Philos. Trans. R. Soc. B. 347: 439-446. Shofran, B. G., S. T., Purrington, F., Breidt, and H. P. Fleming. 1998. Antimicrobial properties of sinigrin and its hydrolysis products. J. Food Sci. 63: 621-624. Slansky, F. 1993. Nutritional ecology: the fundamental quest for nutrients, pp. 29-91, in N. E. Stamp, and T. M. Casey (Eds.). Caterpillars: Ecological and Evolutionary Constraints on Foraging. Chapman and Hall, New York. Stamp, N. 2003. Out of the quagmire of plant defense hypotheses. Q. Rev. Biol. 78: 23-55. Tabashnik, B. E., and F. Slansky. 1987. Nutritional ecology of forb foliage-chewing insects, pp. 71-103, in F. Slansky. and J.G. Rodriguez (eds.). Nutritional Ecology of Insects, Spiders and Related Invertebrates. Wiley-Interscience, New York. Tsao, R., Q., Yu, J., Potter, and M. Chiba. 2002. Direct and simultaneous analysis of sinigrin and allyl isothiocyanates in mustard samples by high-performance liquid chromatography. J. Agric. Food Chem. 50: 4749-4753. Tuskan, G. A., K. E., Francis, S. L., Russ, W. H., Romme, and. M. G. Turner. 1996. RAPD markers reveal diversity within and among clonal and seedling stands of aspen in Yellowstone National Park, U.S.A. Can. J. For. Res. 26: 2088-2098. Waldbauer, G. P. 1968. The consumption and utilization of food by insect. Adv. Insect Physiol. 5: 229-288.
摘要: 
Foliar chemicals are variable within a plant, which can affect plant-herbivore interactions. This study was carried out to quantify concentrations of primary and secondary substances (nitrogen, water, total nonstructural carbohydrates, and sinigrin) of young and old leaves of Brassicaceae plant, Raphanus sativus L. and evaluate performance and survival of a generalist herbivore Spodoptera litura Fab. on them. Forty to fifty-day-old R. sativus plants were used in both foliar chemical analysis and insect performance bioassays. Leaves located on the third to the sixth node from the base of the plant were defined as old leaves and the remaining leaves (from seventh node to the plant apex) of the plant were referred as young leaves in this study. All foliar chemicals except water differed significantly between young and old leaves. Moreover, young leaves were more nutritious but much more chemically defended than old leaves. Performance and survival of S. litura were reduced on young leaves as compared with old leaves. Male and female larval duration only differed significantly on young leaves. Female larval development time was longer than male development time on young leaves, but not on older leaves. In summary, this study supported the optimal defense theory and revealed that defenses in young leaves were stronger against female than male S. litura larvae.
URI: http://hdl.handle.net/11455/30768
其他識別: U0005-2904201014310500
Appears in Collections:昆蟲學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.