Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30786
標題: 台灣產虎頭蜂蜂毒胜肽(mastoparans)之生物特性
Biological characterization of mastoparans in the venoms of Vespa spp. in Taiwan
作者: 林峻賢
Lin, Chun-Hsien
關鍵字: 蜂毒胜肽;Vespa;mastoparans
出版社: 昆蟲學系所
引用: Aarestrup FM, Wegener HC. 1999. The effects of antibiotic usage in food animals on the development of antimicrobial resistance of importance for humans in Campylobacter and Escherichia coli. Microbes Infect 1: 639-644. Agerberth B, Lee J-Y, Bergman T, Carlquist M, Boman HG, Mutt V, Jörnvall H. 1991. Amino acid sequence of PR-39, isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem 202: 849-854. Argiolas A, Pisano JJ. 1983. Facilitation of phospholipase A2 activity by mastoparans, a new class of mast cell degranulating peptides from wasp venom. J Biol Chem 258: 13697-13702. Argiolas A, Pisano JJ. 1984. Isolation and characterization of two new peptides, mastoparan C and crabrolin, from the venom of the European hornet, Vespa crabro. J Biol Chem 259: 10106-10111. Belaaouaj A, Lapoumeroulie C, Caniça MM, Vedel G, Névot P, Krishnamoorthy R, Paul G. 1994. Nucleotide sequences of the genes coding for the TEM-like β-lactamases IRT-1 and IRT-2 (formerly called TRI-1 and TRI-2). FEMS Microbiol Lett 120: 75-80. Bissonnette L, Champetier S, Buisson JP, Roy PH. 1991. Characterization of the nonenzymatic chloramphenicol resistance (cmlA) gene of the In4 integron of Tn1696: similarity of the product to transmembrane transport proteins. J Bacteriol 173: 4493-4502. Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Micro 3: 238-250. Čeřovský V, Slaninová J, Fučík V, Hulačová H, Borovičková L, Ježek R, Bednárová L. 2008. New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides 29: 992-1003. Chen W, Yang X, Yang X, Zhai L, Lu Z, Liu J, Yu H. 2008. Antimicrobial peptides from the venoms of Vespa bicolor Fabricius. Peptides 29: 1887-1892. Chopra I, Roberts M. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65: 232-260. Chuang CC, Huang WC, Yu HM, Wang KT, Wu SH. 1996. Conformation of Vespa basalis mastoparan-B in trifluoroethanol-containing aqueous solution. Biochim Biophys Acta 1292: 1-8. Cirioni O, Giacometti A, Kamysz W, Silvestri C, Riva A, Vittoria AD, Abbruzzetti A, Łukasiak J, Scalise G. 2007. In vitro activities of tachyplesin III against Pseudomonas aeruginosa. Peptides 28: 747-751. Cirioni O, Giacometti A, Silvestri C, Della Vittoria A, Licci A, Riva A, Scalise G. 2006. In vitro activities of tritrpticin alone and in combination with other antimicrobial agents against Pseudomonas aeruginosa. Antimicrob Agents Chemother 50: 3923-3925. Dathe M, Wieprecht T. 1999. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462: 71-87. de Souza BM, da Silva AVR, Resende VMF, Arcuri HA, dos Santos Cabrera MP, Ruggiero Neto J, Palma MS. 2009. Characterization of two novel polyfunctional mastoparan peptides from the venom of the social wasp Polybia paulista. Peptides 30: 1387-1395. del Cerro A, Soto SM, Mendoza MC. 2003. Virulence and antimicrobial-resistance gene profiles determined by PCR-based procedures for Salmonella isolated from samples of animal origin. Food Microbiol 20: 431-438. Diamond G, Zasloff M, Eck H, Brasseur M, Maloy WL, Bevins CL. 1991. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sci USA 88: 3952-3956. dos Santos Cabrera MP, de Souza BM, Fontana R, Konno K, Palma MS, de Azevedo WF, Neto JR. 2004. Conformation and lytic activity of eumenine mastoparan: a new antimicrobial peptide from wasp venom. J Pept Res 64: 95-103. Enne VI, Cassar C, Sprigings K, Woodward MJ, Bennett PM. 2008. A high prevalence of antimicrobial resistant Escherichia coli isolated from pigs and a low prevalence of antimicrobial resistant E. coli from cattle and sheep in Great Britain at slaughter. FEMS Microbiol Lett 278: 193-199. Fluit AC, Visser MR, Schmitz FJ. 2001. Molecular detection of antimicrobial resistance. Clin Microbiol Rev 14: 836-871. Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI. 1985. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76: 1427-1435. Gazit E, Boman A, Boman HG, Shai Y. 1995. Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry 34: 11479-11488. Ghosh AK, Rukmini R, Chattopadhyay A. 1997. Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function. Biochemistry 36: 14291-14305. Giacometti A, Cirioni O, Del Prete MS, Barchiesi F, Fortuna M, Drenaggi D, Scalise G. 2000a. In vitro activities of membrane-active peptides alone and in combination with clinically used antimicrobial agents against Stenotrophomonas maltophilia. Antimicrob Agents Chemother 44: 1716-1719. Giacometti A, Cirioni O, Del Prete MS, Barchiesi F, Paggi AM, Petrelli E, Scalise G. 2000b. Comparative activities of polycationic peptides and clinically used antimicrobial agents against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. J Antimicrob Chemother 46: 807-810. Giacometti A, Cirioni O, Kamysz W, D''Amato G, Silvestri C, Del Prete MS, Licci A, Łukasiak J, Scalise G. 2005a. In vitro activity and killing effect of temporin A on nosocomial isolates of Enterococcus faecalis and interactions with clinically used antibiotics. J. Antimicrob. Chemother. 55: 272-274. Giacometti A, Cirioni O, Kamysz W, D''Amato G, Silvestri C, Licci A, Nadolski P, Riva A, Łukasiak J, Scalise G. 2005b. In vitro activity of MSI-78 alone and in combination with antibiotics against bacteria responsible for bloodstream infections in neutropenic patients. Int J Antimicrob Agents 26: 235-240. Giacometti A, Cirioni O, Kamysz W, Silvestri C, Del Prete MS, Licci A, D''Amato G, Łukasiak J, Scalise G. 2005c. In vitro activity of citropin 1.1 alone and in combination with clinically used antimicrobial agents against Rhodococcus equi. J. Antimicrob. Chemother. 56: 410-412. Giacometti A, Cirioni O, Kamysz W, Silvestri C, Licci A, Riva A, Lukasiak J, Scalise G. 2005d. In vitro activity of amphibian peptides alone and in combination with antimicrobial agents against multidrug-resistant pathogens isolated from surgical wound infection. Peptides 26: 2111-2116. Giacometti A, Cirioni O, Riva A, Kamysz W, Silvestri C, Nadolski P, Della Vittoria A, Łukasiak J, Scalise G. 2007. In vitro activity of aurein 1.2 alone and in combination with antibiotics against gram-positive nosocomial cocci. Antimicrob. Agents Chemother. 51: 1494-1496. Guardabassi L, Dijkshoorn L, Collard JM, Olsen JE, Dalsgaard A. 2000. Distribution and in-vitro transfer of tetracycline resistance determinants in clinical and aquatic Acinetobacter strains. J Med Microbiol 49: 929-936. Habermann E. 1972. Bee and wasp venoms. Science 177: 314-322. Hammerum AM, Heuer OE. 2009. Human health hazards from antimicrobial-resistant Escherichia coli of animal origin. Clin Infect Dis 48: 916-921. Hancock RE, Chapple DS. 1999. Peptide antibiotics. Antimicrob Agents Chemother 43: 1317-1323. Hancock REW. 1997. Peptide antibiotics. Lancet 349: 418-422. Hara S, Yamakawa M. 1995. Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J Biol Chem 270: 29923-29927. Harada K, Asai T, Kojima A, Ishihara K, Takahashi T. 2006. Role of coresistance in the development of resistance to chloramphenicol in Escherichia coli isolated from sick cattle and pigs. Am J Vet Res 67: 230-235. Hicks RP, Beard DJ, Young JK. 1992. The interactions of neuropeptides with membrane model systems: A case study. Biopolymers 32: 85-96. Hide I, Bennett JP, Pizzey A, Boonen G, Bar-Sagi D, Gomperts BD, Tatham PE. 1993. Degranulation of individual mast cells in response to Ca2+ and guanine nucleotides: an all-or-none event. J Cell Biol 123: 585-593. Hider RC. 1988. Honeybee venom: a rich source of pharmacologically active peptides. Endeavour 12: 60-65. Higashijima T, Burnier J, Ross EM. 1990. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J Biol Chem 265: 14176-14186. Higashijima T, Uzu S, Nakajima T, Ross EM. 1988. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J Biol Chem 263: 6491-6494. Hirai Y, Yasuhara T, Yoshida H, Nakajima T. 1981. A new mast cell degranulating peptide, mastoparan-M, in the venom of the hornet Vespa mandarinia. Biomed Res 2: 447-449. Hirai Y, Ueno Y, Yasuhara T, Yoshida H, Nakajima T. 1980. A new mast-cell degranulating peptide, polistes mastoparan, in the venom of Polistes jadwigae. Biomed Res 1: 185-187. Hirai Y, Kuwada M, Yasuhara T, Yoshida H, Nakajima T. 1979a. A new mast cell degranulating peptide homologous to mastoparan in the venom of Japanese hornet (Vespa xanthoptera). Chem Pharm Bull 27: 1945-1946. Hirai Y, Yasuhara T, Yoshida H, Nakajima T, Fujino M, Kitada C. 1979b. A new mast cell degranulating peptide "Mastoparan" in the venom of Vespula lewisii. Chem Pharm Bull 27: 1942-1944. Ho CL, Hwang LL. 1991. Structure and biological activities of a new mastoparan isolated from the venom of the hornet Vespa basalis. Biochem J 274: 453-456. Hsueh P-R, Teng L-J, Chen C-Y, Chen W-H, Ho S-W, Luh K-T. 2002. Pandrug-resistant Acinetobacter baumannii causing nosocomial infections in a university hospital, Taiwan. Emerg Infect Dis 8: 827-832. Hultmark D, Steiner H, Rasmuson T, Boman HG. 1980. Insect immunity: purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem 106: 7-16. Jouini A, Vinue L, Slama KB, Saenz Y, Klibi N, Hammami S, Boudabous A, Torres C. 2007. Characterization of CTX-M and SHV extended-spectrum β-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. J. Antimicrob. Chemother. 60: 1137-1141. Konno K, Hisada M, Naoki H, Itagaki Y, Fontana R, Rangel M, Oliveira JS, Cabrera MPdS, Neto JR, Hide I and others. 2006. Eumenitin, a novel antimicrobial peptide from the venom of the solitary eumenine wasp Eumenes rubronotatus. Peptides 27: 2624-2631. Konno K, Hisada M, Naoki H, Itagaki Y, Kawai N, Miwa A, Yasuhara T, Morimoto Y, Nakata Y. 2000. Structure and biological activities of eumenine mastoparan-AF (EMP-AF), a new mast cell degranulating peptide in the venom of the solitary wasp (Anterhynchium flavomarginatum micado). Toxicon 38: 1505-1515. Konno K, Rangel M, Oliveira JS, dos Santos Cabrera MP, Fontana R, Hirata IY, Hide I, Nakata Y, Mori K, Kawano M and others. 2007. Decoralin, a novel linear cationic α-helical peptide from the venom of the solitary eumenine wasp Oreumenes decoratus. Peptides 28: 2320-2327. Kuroda Y, Yoshioka M, Kumakura K, Kobayashi K, Nakajima T. 1980. Effects of peptides on the release of catecholamines and adenine nucleotides from cultured adrenal chromaffin cells. Proc Jpn Acad Ser B 56: 660-664. Lee MT, Chen FY, Huang HW. 2004. Energetics of pore formation induced by membrane active peptides. Biochemistry 43: 3590-3599. Lee VSY, Tu WC, Jinn TR, Peng CC, Lin LJ, Tzen JTC. 2007. Molecular cloning of the precursor polypeptide of mastoparan B and its putative processing enzyme, dipeptidyl peptidase IV, from the black-bellied hornet, Vespa basalis. Insect Mol Biol 16: 231-237. Li ML, Liao RW, Qiu JW, Wang ZJ, Wu TM. 2000. Antimicrobial activity of synthetic all-D mastoparan M. Int J Antimicrob Agents 13: 203-208. Livermore DM. 1995. β-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8: 557-584. Matsuzaki K. 1999. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim Biophys Acta 1462: 1-10. Matsuzaki K, Sugishita K, Fujii N, Miyajima K. 1995. Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. Biochemistry 34: 3423-3429. Maynard C, Fairbrother JM, Bekal S, Sanschagrin F, Levesque RC, Brousseau R, Masson L, Larivière S, Harel J. 2003. Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149:K91 isolates obtained over a 23-year period from pigs. Antimicrob. Agents Chemother. 47: 3214-3221. Mazel D, Dychinco B, Webb VA, Davies J. 2000. Antibiotic resistance in the ECOR collection: integrons and identification of a novel aad gene. Antimicrob Agents Chemother 44: 1568-1574. McDermott PF, Walker RD, White DG. 2003. Antimicrobials: modes of action and mechanisms of resistance. Int J Toxicol 22: 135-143. McLean LR, Hagaman KA, Owen TJ, Krstenansky JL. 1991. Minimal peptide length for interaction of amphipathic α-helical peptides with phosphatidylcholine liposomes. Biochemistry 30: 31-37. Mendes MA, de Souza BM, Palma MS. 2005. Structural and biological characterization of three novel mastoparan peptides from the venom of the neotropical social wasp Protopolybia exigua (Saussure). Toxicon 45: 101-106. Mendes MA, de Souza BM, Marques MR, Palma MS. 2004. Structural and biological characterization of two novel peptides from the venom of the neotropical social wasp Agelaia pallipes pallipes. Toxicon 44: 67-74. Moore AJ, Beazley WD, Bibby MC, Devine DA. 1996. Antimicrobial activity of cecropins. J Antimicrob Chemother 37: 1077-1089. Murata K, Shinada T, Ohfune Y, Hisada M, Yasuda A, Naoki H, Nakajima T. 2006. Novel biologically active peptides from the venom of Polistes rothneyi iwatai. Biol Pharm Bull 29: 2493-2497. Murata K, Shinada T, Ohfune Y, Hisada M, Yasuda A, Naoki H, Nakajima T. 2009. Novel mastoparan and protonectin analogs isolated from a solitary wasp, Orancistrocerus drewseni drewseni. Amino Acids 37: 389-394. Naito A, Nagao T, Norisada K, Mizuno T, Tuzi S, Saitô H. 2000. Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state 31P and 13C NMR spectroscopy. Biophys J 78: 2405-2417. Nakajima T. 1984. Biochemistry of vespid venoms. In: Tu AT, editor. Handbook of Natural Toxins, vol. 2. New York: Marcel Dekker. p 109-133. Nazimov IV, Snezhkova LG, Miroshnikov AT. 1980. Structure and properties of mastoparan. II. An oligopeptide from the venom of Vespa orientalis hornet. Proc. 3d Symp. Chem. Pept. Prot. USSR FRG. Ng L-K, Mulvey MR, Martin I, Peters GA, Johnson W. 1999. Genetic characterization of antimicrobial resistance in Canadian isolates of Salmonella serovar Typhimurium DT104. Antimicrob Agents Chemother 43: 3018-3021. Odds FC. 2003. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52: 1. Palma MS. 2006. Insect venom peptides. In: Kastin AJ, editor. Handbooks of Biologically Active Peptides. Oxford: Academic Press. p 389-396. Park Y, Kim HJ, Hahm KS. 2004. Antibacterial synergism of novel antibiotic peptides with chloramphenicol. Biochem Biophys Res Commun 321: 109-115. Perreten V, Boerlin P. 2003. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrob Agents Chemother 47: 1169-1172. Pitout JD, Thomson KS, Hanson ND, Ehrhardt AF, Moland ES, Sanders CC. 1998. β-Lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrob Agents Chemother 42: 1350-1354. Rangel M, dos Santos Cabrera MP, Kazuma K, Ando K, Wang X, Kato M, Nihei K-i, Hirata IY, Cross TJ, Garcia AN and others. 2011. Chemical and biological characterization of four new linear cationic α-helical peptides from the venoms of two solitary eumenine wasps. Toxicon 57: 1081-1092. Reinhard V, Claudia U-U, Günther K, Anna-Maria F. 1983. Nucleotide sequence of cloned cDNA coding for honeybee prepromelittin. Eur J Biochem 135: 123-126. Sáenz Y, Briñas L, Domínguez E, Ruiz J, Zarazaga M, Vila J, Torres C. 2004. Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob Agents Chemother 48: 3996-4001. Selsted ME, Harwig SS, Ganz T, Schilling JW, Lehrer RI. 1985. Primary structures of three human neutrophil defensins. J Clin Invest 76: 1436-1439. Selsted ME, Novotny MJ, Morris WL, Tang YQ, Smith W, Cullor JS. 1992. Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J Biol Chem 267: 4292-4295. Sforça ML, Oyama SJ, Canduri F, Lorenzi CCB, Pertinhez TA, Konno K, Souza BM, Palma MS, Neto JR, Azevedo JWF and others. 2004. How C-terminal carboxyamidation alters the biological activity of peptides from the venom of the eumenine solitary wasp. Biochemistry 43: 5608-5617. Shai Y. 1995. Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci 20: 460-464. Smith MG, Jordan D, Chapman TA, Chin JJC, Barton MD, Do TN, Fahy VA, Fairbrother JM, Trott DJ. 2010. Antimicrobial resistance and virulence gene profiles in multi-drug resistant enterotoxigenic Escherichia coli isolated from pigs with post-weaning diarrhoea. Vet Microbiol 145: 299-307. Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT. 2007. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther 115: 246-270. Song DL, Chang GD, Ho CL, Chang CH. 1993. Structural requirements of mastoparan for activation of membrane-bound guanylate cyclase. Eur J Pharmacol 247: 283-288. Souza BM, Mendes MA, Santos LD, Marques MR, César LMM, Almeida RNA, Pagnocca FC, Konno K, Palma MS. 2005. Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista. Peptides 26: 2157-2164. Steward CD, Rasheed JK, Hubert SK, Biddle JW, Raney PM, Anderson GJ, Williams PP, Brittain KL, Oliver A, McGowan JE, Jr. and others. 2001. Characterization of clinical isolates of Klebsiella pneumoniae from 19 laboratories using the National Committee for Clinical Laboratory Standards extended-spectrum β-lactamase detection methods. J Clin Microbiol 39: 2864-2872. Suchanek G, Kreil G. 1977. Translation of melittin messenger RNA in vitro yields a product terminating with glutaminylglycine rather than with glutaminamide. Proc Natl Acad Sci USA 74: 975-978. Suchanek G, Kreil G, Hermodson MA. 1978. Amino acid sequence of honeybee prepromelittin synthesized in vitro. Proc Natl Acad Sci USA 75: 701-704. Sung I-H, Yamane S, Yamane S, Ho K-K. 2006. A new record of a hornet (Hymenoptera: Vespidae) from Taiwan. Formosan Entomol 26: 303-306. Tenover FC. 2006. Mechanisms of antimicrobial resistance in bacteria. Am J Infect Control 34: S3-S10. Ulvatne H, Karoliussen S, Stiberg T, Rekdal Ø, Svendsen JS. 2001. Short antibacterial peptides and erythromycin act synergically against Escherichia coli. J Antimicrob Chemother 48: 203-208. van de Klundert JAM, Vliegenthart JS. 1993. PCR detection of genes coding for aminoglycoside-modifying enzymes. In: Persing DH ST, Tenover FC et al., editor. Diagnostic molecular microbiology. Washington, DC: American Society for Microbiology. p 547-552. Vinué L, Sáenz Y, Somalo S, Escudero E, Moreno MÁ, Ruiz-Larrea F, Torres C. 2008. Prevalence and diversity of integrons and associated resistance genes in faecal Escherichia coli isolates of healthy humans in Spain. J. Antimicrob. Chemother. 62: 934-937. von Baum H, Marre R. 2005. Antimicrobial resistance of Escherichia coli and therapeutic implications. Int J Med Microbiol 295: 503-511. Walsh C. 2003. Antibiotics : actions, origins, resistance. Washington, DC: ASM Press. Wang G, Li X, Wang Z. 2009. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37: D933-D937. Wang Z, Wang G. 2004. APD: the Antimicrobial Peptide Database. Nucleic Acids Res 32: D590-D592. Wu M, Hancock REW. 1999. Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. J Biol Chem 274: 29-35. Xu X, Yang H, Yu H, Li J, Lai R. 2006a. The mastoparanogen from wasp. Peptides 27: 3053-3057. Xu X, Li J, Lu Q, Yang H, Zhang Y, Lai R. 2006b. Two families of antimicrobial peptides from wasp (Vespa magnifica) venom. Toxicon 47: 249-253. Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. 2001. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81: 1475-1485. Yasuhara T, Nakajima T, Erspamer V. 1983. Isolation and sequence analysis of peptides in the picomolar level. In: Sakakibara S, editor. Peptide chemistry. Osaka: Protein Research Foundation; 1982. p. 213-8. Yu K, Kim Y, Kang S, Park N, Shin J. 2000. Relationship between the tertiary structures of mastoparan B and its analogs and their lytic activities studied by NMR spectroscopy. J Pept Res 55: 51-62. Zasloff M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84: 5449-5453. Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.
摘要: 
虎頭蜂蜂毒胜肽 (mastoparans) 為蜂毒液中含量最高之小分子胜肽。本研究主要針對黃腰虎頭蜂 (Vespa affinis) 、擬大虎頭蜂 (Vespa analis) 、黑腹虎頭蜂 (Vespa basalis) 、雙金環虎頭蜂 (Vespa ducalis) 、中華大虎頭蜂 (Vespa mandarinia) 及黃腳虎頭蜂 (Vespa velutina) 等台灣產虎頭蜂mastoparans之生物特性進行探討。設計專一性引子對,利用PCR進行特定片段增幅,經選殖後可獲得六條具開放讀架之mastoparan前驅物cDNA序列,分別命名為Mastoparan-AF、Mastoparan-A、Mastoparan-B、Mastoparan-D、Mastoparan-M及Mastoparan-V,其中Mastoparan-D及Mastoparan-V為新發現之基因,經轉譯後,mastoparan前驅物組成包含N端訊號序列 (signal sequence) 、原序列 (prosequence) 、成熟胜肽 (mature peptide) 及C端附屬的glycine (appendix glycine) 。接續,以人工合成之mastoparans進行生物特性之探討,利用圓二色光譜儀 (circular dichroism, CD) 分析,mastoparans於無菌水中構型多呈不規則捲曲,但在8 mM sodium dodecyl sulfate (SDS) 及40% 2,2,2-trifluoroethanol (TFE) 溶液中,構型多呈α螺旋結構。肥大細胞去顆粒化活性試驗顯示,mastoparans皆可造成Sprague-Dawley (SD) 大鼠之肥大細胞去顆粒化;抗菌活性試驗結果顯示,mastoparans對於革蘭氏陽性菌與革蘭氏陰性菌皆具抗菌效能,其中又以mastoparan-AF抗菌效能較佳;細胞膜通透性試驗結果顯示,隨著mastoparan濃度增加,大腸桿菌BL21 (Escherichia coli BL21) 細胞膜通透性改變越劇烈。溶血活性試驗顯示,mastoparan在抗菌有效濃度下,僅對人與雞之紅血球造成輕微溶血現象,而對於山羊之紅血球則沒有影響。針對大腸桿菌臨床分離株進行抗菌效能試驗,結果顯示mastoparan-AF之抗菌活性較臨床上常用之抗生素佳,而mastoparan-AF與抗生素 (如:cephalothin或gentamicin) 合併使用對多重抗藥性大腸桿菌 (如:大腸桿菌PFH13) 亦能發揮抗菌協力作用,故不論mastoparan-AF單獨使用或與特定抗生素合併使用皆能發揮良好之抗菌活性,顯見mastoparan-AF具有開發成為抗生素之替代物,應用於抗菌醫療上具研發潛力。

Mastoparan is the most abundant peptide in the hornet venoms. The aim of this study is to investigate biological characteristics of mastoparans isolated from Vespa species in Taiwan, i.e., Vespa affinis, Vespa analis, Vespa basalis, Vespa ducalis, Vespa mandarinia and Vespa velutina. Using PCR to amplify mastoparans cDNA fragments with specific primers, six cDNA sequences encoding mastoparan precursors were cloned and named mastoparan-AF, mastoparan-A, mastoparan-B, mastoparan-D, mastoparan-M and mastoparan-V, respectively. Among six mastoparans, mastoparan-D and mastoparan-V are novel genes. After translation, the precursors of these mastoparans are composed of N-terminal signal sequence, prosequence, mature peptide and appendix C-terminal glycine residue. Subsequently, six mastoparans were synthesized for studying their biological characteristics. The circular dichroism spectra of mastoparans showed unordered random coil in water and a high content α-helical conformation in the presence of 8 mM sodium dodecyl sulfate (SDS) and 40% 2,2,2-trifluoroethanol (TFE). In mast cell degranulation assay, mastoparans caused mast cell degranulation in Sprague-Dawley (SD) rats. In antimicrobial activity assay, mastoparans exhibited antimicrobial activity against both Gram-positive and Gram-negative bacteria. Mastoparan-AF exhibited more potent antimicrobial activity than others. In membrane permeabilization, mastoparans caused dramatically membrane permeabilization on Escherichia coli BL21 with the increase of mastoparan concentrations. In hemolytic activity assay, mastoparans caused slight hemolysis on human and chicken erythrocytes but almost no hemolysis on goat erythrocytes at effective antimicrobial concentrations. Our results also showed that mastoparan-AF exhibited more potent antimicrobial activity than clinically used antibiotics against E. coli isolates. Furthermore, mastoparan-AF in combination with certain antibiotics, i.e., cephalothin or gentamicin, resulted in synergistic antimicrobial activity against multiple-antibiotic-resistant E. coli isolates, i.e., E. coli PFH13. As mentioned above, mastoparan-AF alone or in combination with antibiotic could exhibit antimicrobial activity. It is also revealed that mastoparan-AF could be an alternative for conventional antibiotics and is worth further developing as an antimicrobial medicine.
URI: http://hdl.handle.net/11455/30786
其他識別: U0005-1507201211163200
Appears in Collections:昆蟲學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.