Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30795
標題: 斜紋夜蛾(Spodoptera litura)在甘藍、芋頭及田菁上的族群介量與取食量
Population parameters and food consumption of Spodoptera litura (F.) (Lepidoptera: Noctuidae) on cabbage, taro, and sesbania
作者: 李念臻
Li, Nian-Jhen
關鍵字: 斜紋夜蛾;Spodoptera litura (Fabricius);取食量;生活史特性;族群參數;甘藍;芋頭;田菁;food consumption;life history traits;population parameters;cabbage;taro;sesbania
出版社: 昆蟲學系所
引用: Abarca M, Boege K. 2011. Fitness costs and benefits of shelter building and leaf trenching behaviour in a pyralid caterpillar. Ecological Entomology. 36: 564-573. Ahmad M, Arif M, Ahmad M. 2007. Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Protection. 26: 809-817. Arimura G, Kost C, Boland W. 2005. Herbivore-induced, indirect plant defences. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 1734: 91-111. Awmack CS, Leather SR. 2002. Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology. 47: 817-844. Barros EM, Torres JB, Ruberson JR, Oliveira MD. 2010. Development of Spodoptera frugiperda on different hosts and damage to reproductive structures in cotton. Entomologia Experimentalis et Applicata. 137: 237-245. Bartelt RJ, Mcguire MR, Black DA. 1990. Feeding stimulants for the european corn borer (Lepidoptera: Pyralidae): additives to a starch-based formulation for Bacillus thuringiensis. Environmental entomology. 19: 182-189. Behmer ST. 2008. Insect herbivore nutrient regulation. Annual Review of Entomology. 54: 165. Birch LC. 1948. The intrinsic rate of natural increase of an insect population. The Journal of Animal Ecology. 15-26. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 72: 248-254. Calvo D, Molina JM. 2008. Head capsule width and instar determination for larvae of Streblote panda (Lepidoptera: Lasiocampidae). Annals of the Entomological Society of America. 101: 881-886. Chen CN, Hsiao WF. 1984. Influence of food and temperature on life history traits and population parameters of Spodoptera litura Fabricius. Plant Protection Bulletin. (Taiwan, R.O.C.). 26: 219-229. Chen CN, Su WY. 1982. Influence of temperature on development and leaf consumption of three caterpillars on cauliflower. Plant Protection Bulletin. (Taiwan, R.O.C.). 24: 131-141. Chi H. 1988. Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental entomology. 17: 26-34. Chi H. 2009a. CONSUME-MSChart: a computer program for the age-stage, two-sex consumption rate analysis. http://140.120.197.173/Ecology/. National Chung Hsing University, Taichung, Taiwan. Chi H. 2009b. TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/. National Chung Hsing University, Taichung, Taiwan. Chi H, Liu H. 1985. Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica. 24: 225-240. Chi H, Yang TC. 2003. Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental entomology. 32: 327-333. Daly HV. 1985. Insect morphometrics. Annual Review of Entomology. 30: 415-438. Davidowitz G, D''Amico LJ, Nijhout HF. 2003. Critical weight in the development of insect body size. Evolution & development. 5: 188-197. Delbac L, Lecharpentier P, Thiery D. 2010. Larval instars determination for the european grapevine moth (Lepidoptera: Tortricidae) based on the frequency distribution of head-capsule widths. Crop Protection. 29: 623-630. Dyar HG. 1890. The number of molts of lepidopterous larvae. Phyche. 5: 420-422. Efron B, Tibshirani R. 1985. The bootstrap method for assessing statistical accuracy. DTIC Document. Fei WC, Wang YC, Chen FH, Lin HM, Li YH. 2010a. Plant Protection Manual (Food & Miscellanceous crops). TACTRI/COA. pp.98, pp.109-110, pp.296. Fei WC, Wang YC, Chen FH, Lin HM, Li YH. 2010b. Plant Protection Manual (Vegetables). TACTRI/COA. pp.97-100, pp.214. Garad G, Shivpuje P, Bilapate G. 1984. Life fecundity tables of Spodoptera litura (Fabricius) on different hosts. Proceedings: Animal Sciences. 93: 29-33. Goodman D. 1982. Optimal life histories, optimal notation, and the value of reproductive value. American Naturalist. 119: 803-823. Greenberg SM, Sappington TW, Legaspi BC, Liu TX, Setamou M. 2001. Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Annals of the Entomological Society of America. 94: 566-575. Hsu YT, Shen TC, Hwang SY. 2009. Soil fertility management and pest responses: a comparison of organic and synthetic fertilization. Journal of economic entomology. 102: 160-169. Huang YB, Chi H. 2011. Age‐stage, two‐sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age‐specific life tables to insect populations. Insect Science. 1-11. Huang YB, Chi H. 2012. Life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae): with a mathematical invalidation for applying the jackknife technique to the net reproductive rate. Available from Nature Precedings http://dx.doi.org/10.1038/npre.2012.7070.1. Hwang SY, Liu CH, Shen TC. 2008. Effects of plant nutrient availability and host plant species on the performance of two Pieris butterflies (Lepidoptera: Pieridae). Biochemical Systematics and Ecology. 36: 505-513. Irigaray FJs-d-c, Moreno F, Pérez-moreno I, Marco V. 2006. Larval growth and the effect of temperature on head capsule size in Lobesia botrana (Lepidoptera: Tortricidae). Environmental entomology. 35: 189-193. Jiang MY, Gao JH, Huang YB, Xie YS. 2010. The management of Spodoptera litura in green manure field. Technical services of TARI/COA. 82: 19-22. (in Chinese). Karban R, Agrawal AA, Thaler JS, Adler LS. 1999. Induced plant responses and information content about risk of herbivory. Trends in Ecology and Evolution. 14: 443-447. Karowe DN, Martin MM. 1989. The effects of quantity and quality of diet nitrogen on the growth, efficiency of food utilization, nitrogen budget, and metabolic rate of fifth-instar Spodoptera eridania larvae (Lepidoptera: Noctuidae). Journal of Insect Physiology. 35: 699-708. Lang CA. 1958. Simple microdetermination of Kjeldahl nitrogen in biological materials. Analytical Chemistry. 30: 1692-1694. Lee KP. 2007. The interactive effects of protein quality and macronutrient imbalance on nutrient balancing in an insect herbivore. Journal of Experimental Biology. 210: 3236-3244. Lee KP. 2010. Sex-specific differences in nutrient regulation in a capital breeding caterpillar, Spodoptera litura (Fabricius). Journal of Insect Physiology. 56: 1685-1695. Leslie PH. 1945. On the use of matrices in certain population mathematics. Biometrika. 33: 183-212. Lewis E. 1942. On the generation and growth of a population. Sankhyā: The Indian Journal of Statistics (1933-1960). 6: 93-96. Li Q, Eigenbrode SD, Stringam GR, Thiagarajah MR. 2000. Feeding and growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities. Journal of Chemical Ecology. 26: 2401-2419. Liao C-T, Chen CC. 1998. Distribution of Maruca testulalis Geyer (Lepidoptera: Pyralidae) eggs and larvae on Sesbania. Bull. Taichung DAIS. 59: 47-52. Lotka AJ. 1907. Studies on the mode of growth of material aggregates. American Journal of Science. 4: 199. Mattson WJ. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and systematics. 11: 119-161. Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 31: 426-428. Morita M, Tojo S. 1985. Relationship between starvation and supernumerary ecdysis and recognition of the penultimate-larval instar in the common cutworm, Spodoptera litura. Journal of Insect Physiology. 31: 307-313. Nijhout HF. 1975. A threshold size for metamorphosis in the tobacco hornworm, Manduca sexta (L.). Biological bulletin. 149: 214-225. Ou-Yang SC, Chu YI. 1989. Biology of the tobacco cutworm (Spodoptera litura (F.)) I. The eclosion and mating time of adult. Chinese Journal of Entomology. 9: 49-57. (in Chinese). Ou-Yang SC, Chu YI. 1990. Biology of the tobacco cutworm (Spodoptera litura (F.)) II. The longevity and mating ability of adult. Chinese Journal of Entomology. 10: 27-36. (in Chinese). Painter RH. 1951. Insect resistance in crop plants. Soil Science. 72: 481. Parkinson JA, Allen SE. 1975. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Communications in Soil Science and Plant Analysis. 6: 1-11. Prado FE, González JA, Boero C, Sampietro AR. 1998. A simple and sensitive method for determining reducing sugars in plant tissues. Application to quantify the sugar content in quinoa (Chenopodium quinoa Willd.) seedlings. Phytochemical Analysis. 9: 58-62. Pratissoli D, Zanúncio JC, Barros R, Oliveira HN. 2002. Leaf consumption and duration of instars of the cassava defoliator Erinnyis ello (L., 1758) (Lepidoptera, Sphingidae). Revista Brasileira de Entomologia. 46: 251-254. Ramana VV, Reddy GPV, Krishnamurthy MM. 1988. Synthetic pyrethroids and other bait formulation in the control of Spodoptera litura (Fab.) attacking rabi groundnut. Pesticides. 1: 522-524. Schoonhoven LM, Loon JJA, Dicke M. 2005. Insect-plant biology. Ed. 2: pp.101. Scriber JM. 1977. Limiting effects of low leaf-water content on the nitrogen utilization, energy budget, and larval growth of Hyalophora cecropia (Lepidoptera: Saturniidae). Oecologia. 28: 269-287. Scriber JM. 1979. Effects of leaf-water supplementation upon post-ingestive nutritional indices of forb-, shrub-, vine-, and tree-feeding lepidoptera. Entomologia Experimentalis et Applicata. 25: 240-252. Scriber JM, Slansky Jr F. 1981. The nutritional ecology of immature insects. Annual Review of Entomology. 26: 183-211. Shahout H, Xu J, Yao X, Jia Q. 2011. Influence and mechanism of different host plants on the growth, development and, fecundity of reproductive system of common cutworm Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Asian Journal of Agricultural Science. 3: 291-300. Shields VDC, Mitchell BK. 1995. Sinigrin as a feeding deterrent in two crucifer-feeding, polyphagous lepidopterous species and the effects of feeding stimulant mixtures on deterrency. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 347: 439-446. Simpson SJ, Raubenheimer D. 1993. The central role of the haemolymph in the regulation of nutrient intake in insects. Physiological Entomology. 18: 395-403. Simpson SJ, Simpson CL. 1990. The mechanisms of nutritional compensation by phytophagous insects. Insect-Plant Interactions (Edited by E. Bernays). 2: pp.111-160. Sokal RR, Rohlf FJ. 1995. Biometry, 3rd ed. W. H. Freeman, San Francisco, California, USA. Taylor MFJ. 1989. Compensation for variable dietary nitrogen by larvae of the salvinia moth. Functional Ecology. 3: 407-416. Telang A, Buck NA, Wheeler DE. 2002. Response of storage protein levels to variation in dietary protein levels. Journal of Insect Physiology. 48: 1021-1029. Tojo S, Hayakawa Y, Phaophan P. 2008. Strains in the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae) with differing host ranges. Applied entomology and zoology. 43: 491-496. Tuan SJ, Kao SS, Chao YC, Hou RF. 1997. Investigation of pathogenicity of AcMNPV to nine Lepidopteran pests in Taiwan. Chinese Journal of Entomology. 17: 209-225. (in Chinese). Wang RS. 2011. Evaluation of PGPR application as bioagent: The effects of Bacillus mycoides on plant growth and insect performance. Master''s degree thesis, NCHU. pp.12-13. White TCR. 1978. The importance of a relative shortage of food in animal ecology. Oecologia. 33: 71-86. Williams D, McDonald G. 1982. The duration and number of the immature stages of codling moth Cydia pomonella (L.) (Tortricidae: Lepidoptera). Australian Journal of Entomology. 21: 1-4. Xie JJ, Hu MY. 1999. Natural enemies and biological control of Spodoptera litura (Fabricius). Natural Enemies of Insects. 21: 82-92. (in Chinese). Xue M, Pang YH, Wang HT, Li QL, Liu TX. 2010. Effects of four host plants on biology and food utilization of the cutworm, Spodoptera litura. Journal of Insect Science. 10: 1-14. Yadav J, Tan CW, Hwang SY. 2010. Spatial variation in foliar chemicals within radish (Raphanus sativus) plants and their effects on performance of Spodoptera litura. Environmental entomology. 39: 1990-1996.
摘要: 
斜紋夜蛾(Spodoptera litura (Fabricius))為廣食性害蟲,可危害多種作物,研究其在不同作物上之生活史特徵、兩性生命表及取食量可對於其族群生態及在不同作物上的族群成長潛能有更廣泛的了解。本試驗於定溫25 ± 1ºC及相對濕度60 ± 10%的環境下,研究斜紋夜蛾在甘藍、芋頭及田菁三種不同作物上之取食量及生長繁殖,並分析三種作物在水、蛋白質、氮及非結構性碳水化合物之含量。營養分析結果顯示,甘藍除了含水量最高外,其他營養成分皆為最低。然而,幼蟲期取食量以取食甘藍者為最高,淨取食率為439.1 cm2,為取食田菁207.8 cm2及芋頭的141.7 cm2的2~3倍之多。因此,推測斜紋夜蛾幼蟲藉由補償取食作用使各齡期頭殼寬及體重皆以取食甘藍者為最佳。兩性生命表分析結果顯示,在甘藍上之淨增殖率(R0)、內在增殖率(r)及終極增殖率(λ)均為最高,分別為1893.1 offspring、0.2374 d-1及1.2679 d-1;田菁次之,分別為1420.1 offspring、0.2331 d-1及1.2624 d-1;而在芋頭上為最低,分別為1361.0 offspring、0.2298 d-1及1.2584 d-1;平均世代時間(T)則以甘藍上31.8 d為最長,田菁上之31.2 d為最短,具有顯著差異。結果顯示,斜紋夜蛾具有適應不同作物中不同營養含量及營養比例的能力。甘藍、芋頭以及田菁皆適合斜紋夜蛾之生長繁殖,其中又以甘藍最為適合。田菁為台灣重要的夏季綠肥之一,本試驗證實斜紋夜蛾在田菁上的生長繁殖潛能相當好。因田菁被廣為種植作為綠肥作物,以及斜紋夜蛾成蟲具有很強的遷飛能力,故針對田菁田擬定斜紋夜蛾的害蟲管理計畫是必要的。否則可能使田菁成為斜紋夜蛾之替代作物,進而遷飛到鄰近經濟作物或雜草上危害,增加斜紋夜蛾害蟲管理的困難。

Spodoptera litura (Fabricius) is a polyphagous insect that can damage numerous hosts. Investigations of their life history traits, life table, and food consumption can offer a comprehensive understanding of the population growth potential of S. litura on different plant species. In this study, the performance of S. litura reared on cabbage, taro, and sesbania was investigated in a walk-in growth chamber at 25 � 1ºC, 60 � 10% RH, and a photoperiod of 12:12 (L:D). The water, protein, nitrogen, and non-structural carbohydrate contents of these three hosts were analyzed. The nutrient analysis revealed that the protein, nitrogen, and total non-structural carbohydrate contents were much lower on cabbage, though the water content was not. However, the net consumption rate on cabbage was 439.1 cm2 and was 2 to 3 times higher than that for those fed on sesbania (207.8 cm2) and taro (141.7 cm2). Therefore, it might be due to the compensation effect that the results showed the largest head capsule width and heaviest body weight of larvae when the insects were reared on cabbage. The results of the age-stage, two-sex life table showed that the population parameters of net reproductive rate, intrinsic rate of increase, and finite rate of increase were all significantly highest on cabbage (1893.1 offsprings, 0.2374 d-1, 1.2679 d-1), followed by sesbania (1420.1 offspring, 0.2331 d-1, 1.2624 d-1), and lowest on taro (1361.0 offsprings, 0.2298 d-1, 1.2584 d-1). The mean generation time was the shortest on sesbania (31.2 d) and the longest on cabbage (31.8 d). S. litura showed the ability to adapt to varied nutrient contents in different hosts. Cabbage, taro, and sesbania were all suitable hosts for S. litura, but they performed the best on cabbage. S. litura also showed a high population potential on sesbania, which is a major green manure crop in the summer in Taiwan. Because sesbania is widely planted and S. litura can migrate long distances, an efficient pest management program aimed at S. litura in sesbania fields is necessary; otherwise, S. litura can build their population on sesbania and then migrate to adjacent economic crops or weeds, and increase the difficulty in pest management.
URI: http://hdl.handle.net/11455/30795
其他識別: U0005-2607201220265500
Appears in Collections:昆蟲學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.