Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30817
標題: 甲基茉莉花酸誘導大豆防禦反應對斜紋夜蛾及其寄生蜂馬尼拉小繭蜂之影響
The effects of exogenous methyl jasmonic acid application induced defense responses to Spodoptera litura and its parasitoid (Snellenius manila) in soybean
作者: 周舶皓
Chou, Po-Hao
關鍵字: 斜紋夜盜蛾(Spodoptera litura);Spodoptera litura;馬尼拉小繭蜂(Snellenius manilae);誘導防禦反應(Induced defense responses);甲基茉莉花酸(Methyl jasmonic acid, MeJA);大豆(Glycine max);Snellenius manila;induce defense response;methyl jasmonic acid (MeJA);Glycine max
出版社: 昆蟲學系所
引用: 邱瑞珍、周樑鎰。1976。斜紋夜盜蟲(Spodoptera litura Fab.)之寄生蜂。台灣省農業試驗所報告第七六七號。227-240頁。 高穗生。1995。昆蟲之大量飼育。中華農業研究。25: 227-241。 馬清華、吳昭慧、王添成、陳堅華、林梅瑛、蘇富正、尤吾興、蔡幸樺。2008。有機毛豆栽培。有機作物栽培技術研討會專刊。69-108頁。 張玉珍。1971。斜紋夜盜與玉米穗蟲蛹之雌雄鑑定。植物保護學會會刊。13:72-74。 費雯綺、王喻其。2007。植物保護手冊-蔬菜篇。行政院農業委員會農業藥物毒物試驗所。229 頁。 農業試驗所作物組。1998。台灣地區現有作物栽培品種名錄-豆科篇。農業試驗所特刊69號。1-100頁。 Ashmed, W. H. 1904. Descriptions of new genera and species of Hymenoptera from the Philippine Islands. Proceedings of the United States National Museum 28:127-158. Avdiushko, S. A., G. C. Brown, D. L. Dahlman, and D. F. Hildebrand. 1997. Methyl jasmonate exposure induced insect resistance in cabbage and tobacco. Environ. Entomol. 26: 642-654. Baldwin, I. T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc. Natl. Acad. Sci. USA. 95: 8113-8118. Bhonwong, A., M. J. Stout, J. Attajarusit, and P. Tantasawat. 2009. Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J. Chem. Ecol. 35: 28-38. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 284-285 Bruinsma, M., M. A. Posthumus, R. Mumm, M. J. Mueller, J. J. A. van Loon, and M. Dicke. 2009. Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. J. Exp. Bot. 60: 2575-2578. Camors, F. B., and T. L. Payne. 1972. Response of Heydenia unica (Hymenoptera: Pteromalidae) to Dendroctonus frontalisi (Coleoptera: Scolytidae) pheromones and a host-tree terpene. Ann. Entomol. Soc. Am. 65: 31-33. Campbell, B. C., and S. S. Duffey. 1979. Tomatine and parasitic wasps: potential incompatibility of plant antibiosis with biological control. Science 205: 700-702. Chou, L. Y. 1981. A preliminary list of Braconidae (Hymenoptera) of Taiwan. J. Agric. Res. China. 30: 71-88. Clancy, K. M., and P. W. Price. 1987. Rapid herbivore growth enhances enemy attack: sublethal plant defences remain a paradox. Ecology 68: 733-737. Constabel, C. P., and C. A. Ryan. 1998. A survey of wound and methyl jasmonate induced leaf polyphenol oxidase in crop plants. Phytochemistry 47: 507-511. Constabel, C. P., D. R. Bergey, and C. A. Ryan. 1995. Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via octadecanoid defense signaling pathway. Proc. Natl. Acad. Sci. USA. 92: 407-411. Cornelissen, T., and P. Stiling. 2006. Does low nutritional quality act as a plant defence? An experimental test of the slow-growth, high-mortality hypothesis. Ecol. Entomol. 31: 32-40. Costa, A., I. Ricard, A. C. Davison, and T. C. J. Turlings. 2010. Effects of rewarding and unrewarding experiences on the response to host-induced plant odors of the generalist parasitoid Cotesia marginiventris (Hymenoptera: Braconidae). J. Insect Behav. 23: 303-318. Dicke, M., R. Gols, D. Ludeking, and M. A. Posthumus. 1999. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants. J. Chem. Ecol. 25:1907-1992. Doares, S. H., T. Syrovets, E. W. Weiler, and C. A. Ryan. 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA. 92: 4095-4098. Farmaer, E. E., and C. A. Ryan. 1990. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA. 87: 7713-7716. Farmer, E. E., and C. A. Ryan. 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4: 129-134. Felton, G. W., K. K. Donato, R. M. Broadway, and S. S. Duffey. 1992. Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore, Spodoptera exigua. J. Insect. Physiol. 38: 277-285. Glawe, G. A., J. A. Zarala, A. Kessler, N. M. van Dam, and I. T. Baldwin. 2003. Ecological costs and benefits correlated with trypsin protease inhibitor production in Nicotiana attenuate. Ecology 84: 79-90. Gomez, J. M., and R. Zamora. 1994. Top-down effects in a tritrophic system: parasitoids enhance plant fitness. Entomol. Exp. Appl. 58: 1-14. Green, T. R., and C. A. Ryan. 1972. Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175: 776-777. Hassanein, R. A., A. A. Hassanein, A. B. El-din, M. Salama, and H. A. Hashem. 2009. Role of jasmonic acid and abscisic acid treatment in alleviating the adverse effects of drought stress and regulating trypsin inhibitor production in soybean plant. Aust. J. Basic. Appl. Sci. 3: 904-919. Haukjoja, E., and S. Neuvonen. 1985. Induced long-term resistance of birch foliage against defoliators: defensive or incidental ? Ecology 66: 1303-1308. Heil, M. 2004. Induction of two indirect defences benefits lima bean (Phaseolus lunatus, Fabaceae) in nature. J. Ecol. 92: 527-536. Heil, M., T. Koch, A. Hilpert, B. Fiala, W. Boland, and K. E. Linsenmair. 2001. Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid. Ecology 98: 1083-1088. Hoballah, M. E. F., and T. C. J. Turlings. 2001. Experimental evidence that plants under caterpillar attack may benefit from attracting parasitoids. Evol. Ecol. Res. 3: 553-565. Hoedjes, K. M., H. M. Kruidhof, M. E. Huigens, M. Dicke, L. E. M. Vet, and H. M. Smid. 2010. Natural variation in learning rate and memory dynamics in parasitoid wasps: opportunities for converging ecology and neuroscience. Proc. R. Soc. B. 278: 889-897. Horikoshi, M., J. Takabayashi, S. Yano, R. Yamaoka, N. Ohsaki, and Y. Sato. 1997. Cotesia glomerata female wasps use fatty acids from plant-herbivore complex in host searching. J. Chem. Ecol. 23: 1505-1515. Ikawa, T., and H. Okabe. 1985. Regulation of egg number per host to maximize the reproductive success in the gregarious parasitoid, Apanteles glomeratas. L. Appl. Ent. Zool. 20: 331-339. Jaiti, F., J. L. Verdeil, and I. E. Hadrami. 2009. Effect of jasmonic acid on the induction of polyphenoloxidase and peroxidase activities in relation to date palm resistance against Fusarium oxysporum f. sp. albedinis. Physiol. Mol. Plant Pathol. 74: 84–90. Linsenmair, K. E., M. Heil, W. M. Kaiser, B. Fiala, T. Koch, and W. Boland. 2001. Adaptations to biotic and Abiotic stress: Macaranga-ant plants optimize investment in biotic defence. J. Exp. Bot. 52: 2057-2065. Mathur, V., S. Ganta, C. E. Raaijmakers, A. S. Reddy, L. E.M. Vet, and N. M. van Dam. 2011. Temporal dynamics of herbivore-induced responses in Brassica juncea and their effect on generalist and spe cialist herbivores. Entomol. Exp. Appl. 139: 215-225. Meiners, T., and M. Hilker. 2000. Induction of plant synomones by oviposition of a phytophagous insect. J. Chem. Ecol. 26: 221-232. Moura, D. S., and C. A. Ryan. 2001. Wound-inducible proteinase inhibitors in pepper. Differential regulation upon wounding, systemin and methyl jasmonate. Plant physiol. 126: 289-298. Mueller, M. J., W. Brodschelm, E. Spannagl, and M. H. Zenk. 1993. Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc. Natl. Acad. Sci. USA. 90: 7490-7494. Ozawa, R., K. Shiojiri, M. W. Sabells, G. I. Arimura, T. Nishioka, and J. Takabayashi. 2004. Corn plants treated with jasmonic acid attract more specialist parasitoids, thereby increasing parasitization of the common armyworm. J. Chem. Ecol. 30:1797-1808. Papaj, D. R., and L. E. M. Vet. 1990. Odor learning and foraging success in the parasitoid, Leptopilina heterotoma. J. Chem. Ecol. 16:3137-3150. Pare, P. W., and J. H. Tumlinson. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121: 325-311. Pinto, D. M., A. M. Nerg, and J. K. Hologainen. 2007. The role of ozone-reactive compounds, terpens, and green leaf volatiles (GLVs), in the orientation of Cotesia plutellae. J. Chem. Ecol. 33: 2218-2228. Powell, W., F. Pennacchio, G. M. Poppy, and E. Tremblay. 1998. Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae). Biol. Control. 11: 104-112. Qiu, B. L., J. A. Harvey, C. E. Raaijmakers, L. E. M. Vet, and N. M. van Dam. 2009. Nonlinear effects of plant root and shoot jasmonic acid application on the performance of Pieris brassicae and its parasitoid Cotesia glomerata. Funct. Ecol. 23: 496-505. Rohwer, C. L., and J. E. Erwin. 2008. Horticultural applications of jasmonates: a review. J. Hortic. Sci. Biotechnol. 83: 283-304. Roth, S., C. Knorr, and R. L. Lindroth. 1997. Dietary phenolics affect performance of the gypsy moth (Lepidoptera: Lymantriidae) and its parasitoid Cotesia melanoscela (Hymenoptera: Braconidae). Environ. Entomol. 26: 668-671. Ryan, C. A., P. Gregory, and W. M. Tingey. 1982. Phenolic oxidase activities in glandular trichomes of Solanum berthaultii. Phytochemistry 21: 1885-1887. Sampedro, L., X. Moreira, and R. Zas. 2011. Resistance and response of Pinus pinaster seedlings to Hylobius abietis after induction with methyl jasmonate. Plant Ecology 212: 397-401. Schoonhoven, L. M., J. J. A. van Loon, and M. Dicke. 2005. Insect-plant biology. Ed2. Oxford University Press, Oxford. 421 pp. Steinberg, S., M. Dicke, L. E. M. Vet, and R. Wannigen. 1992. Response of the braconid parasitoid Cotesia (=Apanteles) glomerata to volatile infochemicals: effects of bioassay set-up, parasitoid age and experience and barometric flux. Entomol. Exp. Appl. 63: 163-175. Stout, M. J., and S. S. Duffey. 1996. Characterization of induced resistance in tomato plants. Entomol. Exp. Appl. 79: 273-283. Stout, M. J., M. R. Riggio, and Y. Yang. 2009. Direct induced resistance in Oryza sativa to Spodoptera frugiperda. Environ. Entomol. 38: 1174-1181. Takabayashi, J., Y. Sato, M. Horikoshi, R. Yamaoka, S. Yano, N. Ohsaki, and M. Dicke. 1998. Plant effects on parasitoid foraging: differences between two tritrophic systems. Biol. Control. 11: 97-103. Tan, C. W., J. C. Lo, J. Yadav, K. T. Ravuiwasa, and S. Y. Hwang. 2011. Methyl jasmonate induced responses in four plant species and its effect on Spodoptera litura Fab. performance. J. Asia-Pacific Entomol. 14: 263-269. Thaler, J. S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399: 686-688. Thaler, J. S. 2002. Effect of jasmonate-induced plant responses on the natural enemies of herbivores. J. Anim. Ecol. 71: 141-150. Thaler, J. S., M. J. Stout, R. Karban, and S. S. Duffey. 1996. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 22: 1767-1781. Thaler, J. S., M. J. Stout, R. Karban, and S. S. Duffey. 2001. Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol. Entomol. 26: 312-324. Thaler, J. S., M. A. Farag, P. W. Pare, and M. Dicke. 2002. Jasmonate-deficient plant have reduced direct and indirect defences against herbivores. Ecology Letters 5: 764-774. Tscharntke, T., S. Thiessen, R. Dolch, and W. Boland. 2001. Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochem. Syst. Ecol. 29:1025-1047. Turlings, T. C. J., J. H. Tumlinson, and W. J. Lewis. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250: 1251-1253. Turner, J. G., C. Ellis, and A. Devoto. 2002. The jasmonate signal pathway. Plant Cell 14: 153-164. Van Dam, N. M., K. Hadwich, and I. T. Baldwin. 2000. Induced responses in Nicotiana attenuata affect behavior and growth of the specialist herbivore Manduca sexta. Oecologia 122: 371-379. Van Poecke, R. M. P., and M. Dicke. 2002. Induced parasitoid attraction by Arabidopsis thaliana: involvement of the octadecanoid and the salicylic acid pathway. J. Exp. Bot. 375: 1793-1799. Vet, L. E. M., W. J. Lewis, and R. T. Carde. 1995. Parasitoid foraging and learning. 65 pp. In: R. T. Carde, and W. T. Bell (eds). Chemical Ecology of Insects 2. Chapman and Hall, London. Vos, M., S. M. Berrocal, F. Karamaouna, L. Hemerik, and L. E. M. Vet. 2001. Plant-mediated indirect effects and the persistence of parasitoid-herbivore communities. Ecology Letters 4: 38-45. Waldbauer, G. P. 1968. The consumption and utilization of food by insect. 229 pp. In: J. W. L. Beament (eds) . Advances in Insect Physiology 5. Academic press inc, New York.
摘要: 
植物遭受植食者取食後會被誘導產生防禦反應,以降低害蟲族群數量。這些反應包括藉由直接誘導防禦降低植食者生長表現,或是間接防禦反應吸引植食者的天敵以降低害蟲數量。而植食者密度減低、發育減緩、品質下降等情形,也會影響天敵的生長。茉莉花酸(JA)為一植物荷爾蒙,在許多植物遭受植食者攻擊所誘導的防禦路徑中扮演重要角色。前人研究指出外源施加甲基茉莉花酸(MeJA)可以誘導植物產生防禦反應,抵抗後來的植食者。本試驗為瞭解大豆施用甲基茉莉花酸後,對斜紋夜蛾(Spodoptera litura)以及其天敵馬尼拉小繭蜂(Snellenius manilae)的影響。本試驗包含三部分,第一部分為觀察大豆施用甲基茉莉花酸後,對斜紋夜蛾生長表現的影響,並測量植物防禦物質的變化。第二部分為評估取食甲基茉莉花酸施用葉片之斜紋夜蛾幼蟲對馬尼拉小繭蜂生長表現的影響。第三部分為觀察馬尼拉小繭蜂對施用甲基茉莉花酸之大豆的行為偏好表現。試驗結果發現大豆受甲基茉莉花酸誘導後對三齡斜紋夜蛾幼蟲生長產生負面影響,造成斜紋夜蛾幼蟲的食物消化率(AD)降低,雖然消化食物轉換率(ECD)會上升,但整體而言相對生長速率(RGR)約降低20%。對馬尼拉小繭蜂的生長表現除了幼蟲期延長約0.5天之外,在繭重以及成蟲壽命上皆無顯著差異。大豆葉片經甲基茉莉花酸誘導後48小時對馬尼拉小繭蜂具吸引力。本試驗發現大豆經MeJA誘導後會產生直接防禦反應,對斜紋夜蛾生長表現產生負面影響,此外也會產生間接防禦反應吸引馬尼拉小繭蜂。

Plants would produce induced defense responses when they are damaged by herbivores, and decrease populations of herbivores. Those responses that including direct defense which can decrease performance of herbivores or indirect defense which can attract the natural enemy that against pests. In addition, lower performance of herbivore would also affect performance of natural enemy. Jasmonic acid (JA) is a plant hormone, play an important role in defense pathway induced by herbivores in many plants. Previous studies have indicated that exogenous methyl jasmonic acid (MeJA) in plants can induce defense responses against herbivores. The objective of this study is to understand the effect of MeJA treated soybean on performance of the armyworm (Spdoptera litura) and its parasitoid wasp Snellenius manilae. Three main experiments are included in this study. First, we used soybean leaves that treated with MeJA and fed to armyworm and observe the performance of armyworm. Secondly, we observed the performance of wasp which parasitized the armyworm which fed soybean leaves treated with MeJA. In the final study, we observed the attraction of wasp to soybean leaves treated with MeJA. Results of this study suggests that soybean treated with MeJA would induced defense response to decrease the performance of armyworm decrease the approximate digestibility (AD) and relative growth rate (RGR). MeJA would increase the larvae stage of the Snellenius manilae, but have no significant different in cocoon weights and longevity. In addition, soybean leaves treated with MeJA after 48 hours demonstrated the attracting ability.
URI: http://hdl.handle.net/11455/30817
其他識別: U0005-2307201216024900
Appears in Collections:昆蟲學系

Files in This Item:
File Description SizeFormat Existing users please Login
nchu-101-7099036006-1.pdf1.36 MBAdobe PDFThis file is only available in the university internal network    Request a copy
Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.