Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3084
標題: 圓柱型庫耶特流動系統之奈米流體熱流數值模擬研究
Numerical Simulation on Thermal Convection of Nanofluid in Cylindrical Couette Flow
作者: 陳雅芳
Chen, Ya-Fang
關鍵字: 計算流體力學;CFD;圓柱形庫耶特流體流動;奈米流體;剪切應力;熱通量;Circular Couette flow;Nanofluid;Shear stress;Heat flux
出版社: 化學工程學系所
引用: [1]http://en.wikipedia.org/wiki/Nanofluid [2]Maxwell, J. C., “A Treatise on Electricity and Magnetism,” Clarendon Press, UK, 1881. [3]Choi, S., “Enhancing thermal conductivity of fluids with nanoparticles,” Developments and Applications of Non-Newtonian Flows, vol.231/MD-Vol. 66, pp.99-105, 1995. [4]Keblinski, P., Phillpot, S. R., and Choi, S., “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” International Journal of Heat and Mass Transfer, 45, pp.855–863, 2002. [5]Xuan, Y., and Li, Q., “Heat transfer enhancement of nanofluids,” International Journal of Heat and Fluid Transfer, 21, pp.58–64, 2000. [6]Lee, D., Kim, J. W., and Kim, B. G., “A new parameter to control heat transport in nanofluids: Surface charge state of the particle in suspension,” Journal of Physical Chemistry B, 110, no. 9, pp.4323–4328, 2006. [7]Putnam, S. A., Cahill, D. G., Braun, P. V., Ge, Z., and Shimmin, R. G., “Thermal conductivity of nanoparticle suspensions,” Journal of Applied Physics, 99, no. 8, pp.084308-084308-6, 2006. [8]Keblinski, P., Eastman, J. A., and Cahill, D. G., “Nanofluids for thermal transport,” Materials Today, 8, no. 6, pp.36–44, 2005. [9] http://zh.wikipedia.org/zh-tw/%E8%A8%88%E7%AE%97%E6%B5%81% E9%AB%94%E5%8A%9B%E5%AD%B8 [10]ANSYS FLUENT 12.0, User’s Guide, 2010. [11]GAMBIT, Guide Modeling, 2003. [12]Madan, M., and Mazumdar, D., “A computational assessment of viscosity measurement in rotating viscometers through detailed numerical simulation,” Metallurgical and Materials Transaction B,” vol. 35B, PP.805-809, 2004. [13]Wright, S., Zhang, L., Sun, S., and Jahanshahi, S., “Viscosity of a CaO-MgO-Al2O3-SiO2 melt containing spinel particles at 1646 K,” Metallurgical and Materials Transaction B, vol. 31B, pp.97-104, 2000. [14]Bianco, V., Chiacchio, F., Manca, O., and Nardini, S., “Numerical investigation of nanofluids forced convection in circular tubes,” Appl. Therm. Eng. 29, pp.3632–3642, 2009. [15]Lotfi, R., Saboohi, Y., and Rashidi, A. M., “Numerical study of forced convective heat transfer of nanofluids: Comparison of different approaches,” Int. Commun. Heat Mass Transfer, 37, pp.74–78, 2010. [16]Ghaffari, O., Behzadmehr, A., and Ajam, H., “Turbulent mixed convection of a nanofluid in a horizontal curved tube using a two-phase approach,” Int. Commun. Heat Mass Transfer, 37, pp.1551–1558, 2010. [17]Chen, H., Ding, Y., He, Y., and Tan, C., “Rheological behavior of nanofluid,” New Journal of Physics, 9, pp.367-390, 2007 [18]Chen, H., Ding, Y., He, Y., and Tan, C., “Rhelological behavior of ethylene glycol based titania nanofluids,” Chemical Physics Letters, 444, pp.333-337, 2007. [19]陳耀茂, 黃廷彬, “品質工程Excel應用手冊,” 聯經出版事業公司, 台灣, 2006. [20]劉漢容, “品質管制,” 台灣, 三民書局出版社, 2003. [21]Akoh, H., Tsukasaki, Y., Yatsuya, S., and Tasaki, A. “Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate,” Journal of Crystal Growth, vol.45, pp.495-500, 1978. [22]Wagener, M., Murty, B. S., and Gunther, B., “Preparation of metal nanosuspensions by high pressure DC-sputtering on running liquids,” Nanocrystalline and Nanocomposite Materials II, 457, pp.149–154, 1997. [23]Eastman, J. A., Choi, U. S., Li, S., Thompson, L. J., and Lee, S., “Enhanced thermal conductivity through the development of nanofluids,” Materials Research Society Symposium Proceedings, 457, pp.3–11, 1997. [24]Lee, S., Choi, S. U. S., Li, S., and Eastman, J. A., “Measuring thermal conductivity of fluids containing oxide nanoparticles,” Journal of Heat Transfer, 121, pp.280–289, 1999. [25]Murshed, S. M. S., Leong, K. C., and Yang, C., “Enhanced thermal conductivity of TiO2-Water based nanofluids,” International Journal of Thermal Sciences, 44, pp.367–373, 2005. [26]Kestin, J. and Wakeham, W. A., “A contribution to the theory of the transient hot-wire technique for thermal conductivity measurements,” Physica A, 92, pp.102–116, 1978. [27]Wang, X., Xu, X., and Choi, S. U. S., “Thermal conductivity of nanoparticle-fluid mixture,” Journal of Thermophysics and Heat Transfer, 13, pp.474–480,1999. [28]Das, S. K., Putta, N., Thiesen, P., and Roetzel, W., “Temperature dependence of thermal conductivity enhancement for nanofluids,” ASME Trans. J. Heat Transfer, 125, pp.567–574, 2003. [29]Hong, T. K., Yang, H. S., and Choi, C. J., “Study of the enhanced thermal conductivity of Fe nanofluids,” Journal of Applied Physics, 97, no. 6, pp.1–4, 2005. [30]Li, C. H. and Peterson, G. P., “Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), “Journal of Applied Physics,” 99, no.8, pp.084314-084314-8, 2006. [31]Das, S. K., Putra, N., and Roetzel, W., “Pool boiling characteristics of nano-fluids,” International Journal of Heat and Mass Transfer, 46, no. 5, pp.851–862, 2003. [32]Krieger, I. M., and Dougherty, T. J., “A mechanism for non-newtonian flow in suspensions of rigid spheres,” Trans. Soc. Rheology, 3, pp.137-52, 1959. [33]Bruggeman, D. A. G., “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen,” Annalen der Physik, vol.416, pp.665–679, 1935. [34]Chang, H., Jwo, C. S., Lo, C. H., Tsung, T. T., Kao, M. J., and Lin, H. M., “Rheology of CuO nanoparticle suspension prepared by ASNSS,” Reviews on Advanced Materials Science,” 10, pp.128-132, 2005. [35]Brinkman, H., “The viscosity of concentrated suspensions and solutions,” The Journal of Chemical Physics, vol.20, pp.571, 1952. [36]Abu-Nada, E., Chamkha, A. J., “Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO–EG–Water nanofluid,” International Journal of Thermal Sciences, 49, pp.2339-2352, 2010. [37]Vajjha, R. S., Das, D. K., Namburu, P. K., “Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator,” International Journal of Heat and Fluid Flow, 31, pp.613–621, 2010. [38]Sharjeel, T., and Manu, M., “Numerical investigation of laminar nanofluid developing flow and transfer in a circular channel,” Applied Thermal Engineering, 38, pp.8-14, 2012. [39]Pak, B., Cho, I., “Hydrodynamic and heat transfer study of dispersed fluids with sub-micron metallic oxide particles,” Experimental Heat Transfer, 11, pp.151–170, 1998. [40]Xuan, Y., and Roetzel, E., “Conceptions for heat transfer correlation of nanofluids,” International Journal of Heat and Mass Transfer, 43, pp.3701-3707, 2000. [41]Fard, M. H., Esfahany, M. N., and Talaie, M. R., “Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus singer-phase model,” International Communications in Heat and Mass Transfer, 37, pp.91-97, 2010. [42]http://en.wikipedia.org/wiki/Nusselt_number#Sieder-Tate_correlation [43] http://en.wikipedia.org/wiki/Hagen%E2%80%93Poiseuille_equation [44]Bird, R. B., Steeart, W. E., and Lightfoot, E. N., “Transport Phenomena,” John Wiley &Sons, New York, 2001. [45]Nielsen, L. E., 林健樑編譯, “流變學,” 復文圖書出版社, 台灣, 1987. [46]Mott, R. L., 徐貴新編譯, “流體力學,” 高立出版社, 台灣, 2005. [47]張祝新, 於雷, 齊中華, “對工程流體力學中臨界雷諾數使用的討論,” 潤滑與密封, 1期, pp.65, pp71, 2001. [48]朱紅鈞, 林元華, 謝龍漢, “FLUENT 12 流體分析及工程仿真,” 北京, 清華大學出版社, 2011. [49]http://en.wikipedia.org/wiki/Couette_flow [50]江帆, 黃鵬, “Fluent高級應用與實例分析,” 北京, 清華大學出版社, 2008. [51]Fourier, J. B. J., “Theorie analytique de la chaleur,” Chez Firmin Didot, French, 1822. [52]Welty, J. R., Wicks, C. E., Wilson, R. E., and Rorrer, G. L., “Fundamentals of Momentum, Heat, and Mass Transfer,” John Wiley &Sons, New York, 2007. [53]Patankar, S. V., and Spalding, D. B., “A calaclation procedure for heat,” International Journal of Heat and Mass Transfer, vol.15, pp.1787-1806, 1972. [54]Van Doormal, J. P., and Raithby, G. D., “Enhancements of the SIMPLE method for predicting incompressible fluid flows,” Numer. Heat Transfer, vol.7, pp.147-163, 1984. [55]Issa, R. I., “Solution of the implicitly discretized fluid flow equations by operator splitting,” J. Comput. Phys., vol.40, pp.40-65, 1986. [56]Wang, X. Q., and Mujumdar, A. S., “A review on nanofluids – part I: theoretical and numerical investigations,” Brazilian Journal of Chemical, vol.25, pp.613-630, 2008. [57]Wang, X. Q, and Mujumdar, A. S., “A review on nanofluids – part II: experiments and applications,” Brazilian Journal of Chemical, vol.25, pp.631-648, 2008. [58]Tseng, S. C., Lin, C. W., and Huang, K. “Heat transfer enhancement of nanofluids in rotary blade coupling of four-wheel-drive vehicles,” Acta Mechanica, 179, pp.11–23, 2005. [59]Tsai, C. Y., Chien, H. T., Ding, P. P., Chan, B., Luh, T. Y., and Chen, P. H., “ Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance,” Material Letters, 58, pp.1461–1465, 2004. [60]Nguyen, C. T., Roy, G., Gauthier, C., and Galanis, N., “Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system,” Applied Thermal Engineering, 27, no. 8-9, pp.1501–1506, 2007. [61]Vassallo, P., Kumar, R., and Amico, S. D., “Pool boiling heat transfer experiments in silica-water nanofluids,” International Journal of Heat and Mass Transfer, 47, pp.407–411, 2004. [62]Jordan, A., Scholz, R., Wust, P., Fahling, H., and Felix, R., “Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible super paramagnetic nanoparticles,” Journal of Magnetism and Magnetic Materials, 201, pp.413–419,1999. [63]Zhang, Z. and Que, Q., “Synthesis, structure and lubricating properties of dialkyldithiophosphate-modified Mo-S compound nanoclusters,” Wear, 209, pp.8–12, 1997.
摘要: 
奈米流體是指在基礎液體中含有100nm以下分散粒子的流體[1],此在熱傳、潤滑與醫療上都具有極大的應用價值,但當加入奈米流體可能面臨增加壁面剪切應力而磨損管線的問題。故本文嘗試建立一個暫態三維同心圓管庫耶特流動之計算流體力學架構,其中流體為乙二醇(EG)/二氧化鈦(TiO2)的奈米流體,分析系統變因對於剪切應力與熱通量之影響。本研究使用的變因為內管轉速、奈米流體粒子體積分率、奈米粒子聚集程度與壁面溫度。據此,利用L9(34)直交表配置實驗組合,並利用Chen等人[17, 18]所建立之黏度與熱傳導係數經驗式與Pak與Cho兩人[39]所提出之密度與比熱經驗式計算奈米流體性質;其次,運用有限體積法離散與隱式壓力速度耦合運算法求解體積分率和守恆方程式,以模擬奈米流體在圓形雙套管間隙中的流力與熱傳行為;最後,使用田口品質工程之靜態望小與靜態望大訊號/雜訊比分別獲得剪切應力與熱通量之因子效果。
藉由徑向之速度分布與剪切應力的比較得知,數值模擬與理論值極為吻合,此可驗證本研究之計算流體力學架構的信賴度。另外,利用田口品質工程之靜態望小及望大訊號/雜訊比的變因分析結果顯示,影響剪切應力的程度由大至小次序為內管轉速、粒子體積分率、粒子聚集程度、壁面溫度,其百分比分別為32%,27%,23%,及17%;而影響熱通量的程度由大至小次序為壁面溫度、粒子體積分率、粒子聚集程度、內管轉速,其百分比分別是52%,32%,9%,及7%。

Nanofluid is the base liquid containing dispersed particles which size is below 100nm, which have large application value of heat transfer, lubricants, and medical treatment. But we also need to face the problem that the shear stress would increase leading to wear pipeline in the same time when we added nanoparticles into the base fluid. Therefore we built an unsteady state and 3-D concentric Couette flow containing TiO2 nano-particles dispersing in the ethylene glycol fluid (EG) to analyze effects of parameters on the shear stress and the heat flux respectively. In this study, we took angular speed of the inner tube, volume fraction of particle, secondary average particle size, and wall temperature as the variables. We exploited L9(34) orthogonal array to design experiments, in which, the viscosity and thermal conductivity of nano-fluid were proposed by Chen et al [17, 18], and the density and specific heat capacity of nano-fluid were deduced by Pak and Cho [39]. The volume of fluid (VOF) and finite volume method (FVM) associated with pressure implicit with splitting of operators (PISO) were then applied to solve the volume fraction equation and conservation equations for simulating the momentum and heat transfer of nano-fluids in a gap between circular double pipes. Finally, we used static smaller-the-better ratio and static larger-the-better ratio of signal to noise (S/N ratio) in Taguchi method to obtain the factor effect on shear stress and heat flux respectively.
In comparison, the resulting velocity and shear stress profiles were consistent with the theoretical value in the radial direction, which may be used to improve the reliability of the computational fluid dynamics (CFD) in this work. Furthermore, as known from the analysis of S/N ratio in Taguchi method, it was found that influence degrees of angular speed of the inner tube, the particle volume fraction, the particle aggregation, and the wall temperature, are 32%, 27%, 23%, and 17% on the shear stress, as well as 7%, 32%, 9%, and 52% on the thermal flux, respectively.
URI: http://hdl.handle.net/11455/3084
其他識別: U0005-0108201315145300
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.