Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3089
標題: 外加應變對銀/錫界面反應之影響
The Effects of Applied Strains on the Ag/Sn Interfacial Reactions
作者: 曾玉如
Tseng, Yu-Ju
關鍵字: 應變;strain;銲料接點;銀;Ag3Sn;solder joint;silver;Ag3Sn
出版社: 化學工程學系所
引用: [1]許明哲,「先進微電子3D-IC構裝」,五南圖書出版公司,臺灣,第50頁 (2011)。 [2]田民波、顏怡文,「半導體電子元件構裝技術」,五南圖書出版公司,臺灣,第2-4頁 (2007)。 [3]http://www.ewh.ieee.org/soc/cpmt/press/pressimage.html. [4]G. Gore, “On the Properties of Electro-deposited Antimony,” Philosophical Transactions of the Royal Society of London, Vol. 148, pp. 185-197 (1858). [5]G. G. Stoney, “The Tension of Metallic Films Deposited by Electrolysis,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 82, pp. 172-175 (1909). [6]M. Ohring, “The Materials Science Of the Films,” Academic Press, London, pp. 414-415 (1992). [7]汪建民,「材料分析」,中國材料科學學會,台灣,第674-677頁 (2009)。 [8]J. Y. Song, J. Yu, and T. Y. Lee, “Analysis of Phase Transformation Kinetics by Intrinsic Stress Evolutions During the Isothermal Aging of Amorphous Ni(P) and Sn/Ni(P) Films,” Journal of Materials Research, Vol. 19, pp. 1257-1264 (2004). [9]J. Y. Huh and S. J. Moon, “Effect of Elastic Stresses on Solid-state Amorphization of Zr/Co Multilayers,” Thin Solid Films, Vol. 377–378, pp. 611-616 (2000). [10]S. L. Ngoh, W. Zhou, and J. H. L. Pang, “Effect of Stress State on Growth of Interfacial Intermetallic Compounds between Sn-Ag-Cu Solder and Cu Substrates Coated with Electroless Ni Immersion Au,” Journal of Eelectronic Materials, Vol. 37, pp. 1843-1850 (2008). [11]M. L. Bauccio, “ASM Metals Reference Book,” Asm International, pp. 500-501 (1993). [12]P. W. Atkins, “Elements of Physical Chemistry,” W H Freeman & Co, pp. 223-224 (2006). [13]C. P. Lin, C. M. Chen, C. H. Lin, and W. C. Su, “Interfacial Reactions of Sn/Ag/Cu Tri-layer on a Deformed Polyimide Substrate,” Journal of Alloys and Compounds, Vol. 502, pp. L17-L19 (2010). [14]J. Y. Song, J. Yu, and T. Y. Lee, “Effects of Reactive Diffusion on Stress Evolution in Cu–Sn Films,” Scripta Materialia, Vol. 51, pp. 167-170 (2004). [15]W. K. Liao, C. M. Chen, M. T. Lin, and C. H. Wang, “Enhanced Growth of the Ni3Sn4 Phase at the Sn/Ni Interface Subjected to Strains,” Scripta Materialia, Vol. 65, pp. 691-694 (2011). [16]T. C. Hu, F. C. Hsu, A. W. Huang, and M. T. Lin, “Influence of External Strain on the Growth of Interfacial Intermetallic Compounds between Sn and Cu Substrates,” Journal of Electronic Materials, Vol. 41, pp. 3309-3319 (2012). [17]H. A. Pan, C. P. Lin, and C. M. Chen, “Interfacial Reaction of Molten Sn on a Strained Cu Electroplated Layer,” Journal of Electronic Materials, Vol. 41, pp. 2470-2477 (2012). [18]J. F. Li, P. A. Agyakwa, and C. M. Johnson, “Interfacial Reaction in Cu/Sn/Cu System During the Transient Liquid Phase Soldering Process,” Acta Materialia, Vol. 59, pp. 1198-1211 (2011). [19]H. K. Kim and K. N. Tu, “Kinetic Analysis of the Soldering Reaction between Eutectic SnPb Alloy and Cu Accompanied by Ripening,” Physical Review B, Vol. 53, pp. 16027-16034 (1996). [20]M. O. T. I. T. W. U. Group, “iNEMI Recommendations on Lead-Free Finishes for Components Used in High-Reliability roducts,” U.S.A., pp. 6-7 (2005). [21]http://www.psdas.gov.hk/content/doc/2005-2-14/Bright_Tin_for_Connectors-Dr_Raymund_Kwork-2005-2-14.pdf [22]K. N. Tu and J. C. M. Li, “Spontaneous Whisker Growth on Lead-free Solder Finishes,” Materials Science and Engineering: A, Vol. 409, pp. 131-139 (2005). [23]T. L. Su, L. C. Tsao, S. Y. Chang, and T. H. Chuang, “Interfacial Reactions of Liquid Sn and Sn-3.5Ag Solders with Ag Thick Films,” Journal of Materials Engineering and Performance, Vol. 11, pp. 481-486 (2002). [24]T. Laurila, V. Vuorinen, and J. K. Kivilahti, “Interfacial Reactions between Lead-free Solders and Common Base Materials,” Materials Science and Engineering: R Reports, Vol. 49, pp. 1-60 (2005). [25]H. Zou, Q. Zhu and Z. Zhang, “Growth Kinetics of Intermetallic Compounds and Tensile Properties of Sn–Ag–Cu/Ag Single Crystal Joint,” Journal of Alloys and Compounds, Vol. 461, pp. 410-417 (2008). [26]劉培基,「錫鋅系銲錫與銀基材之界面反應」,碩士論文,國立成功大學材料科學及工程學系研究所,臺南 (2004)。 [27]李佳賢,「銅接點基材之覆晶封裝製程」,碩士論文,國立中山大學機械與機電工程學系研究所,高雄 (2003)。 [28]T. Siewert, S. Liu, D. R. Smith, and J. C. Madeni, “Database for Solder Properties with Emphasis on New Lead-free Solders,” Colorado, pp. 37-38 (2002). [29]J. W. Jang, C. Y. Liu, P. G. Kim, K. N. Tu, A. K. Mal, and D. R. Frear, “Interfacial Morphology and Shear Deformation of Flip Chip Solder Joints,” Journal of Materials Research, Vol. 15, pp. 1679-1687 (2000). [30]W. D. Callister and D. G. Rethwisch, “Materials Science and Engineering,” John Wiley & Sons, pp. 1 (2011). [31]V. I. Dybkov, “Solid State Reaction Kinetics,” IPMA publications, pp. 43-44 (2013). [32]M. O. Alam and Y. C. Chan, “Solid-state Growth Kinetics of Ni 3Sn4 at the Sn–3.5Ag Solder∕Ni Interface,” Journal of Applied Physics, Vol. 98, pp. 123527 (2005). [33]B. F.Dyson, “Diffusion of Gold and Silver in Tin Single Crystal,” Journal of Applied Physics, Vol. 37, pp. 2375 (1966). [34]T. Okabe, R. F. Hochman, and M. E. Mclain, “Tracer Diffusion of Silver and Tin in a Dental Alloy (Ag3Sn),” Journal of Biomedical Materials Research, Vol. 8, pp. 381-392 (1974). [35]K. N. Tu and R. Rosenberg, “Room Temperature Interaction in Bimetallic Thin Film Couples,” Japanese Journal of Applied Physics, Vol. 2, pp. 1 (1974). [36]V. Simić and Ž. Marinković, “Room Temperature Interactions in Ag-metals Thin Film Couples,” Thin Solid Films, Vol. 61, pp. 149-160 (1979). [37]S. K. Sen, A. Ghorai, A. K. Bandyopadhyay, and S. Sen, “Interfacial Reactions in Bimetallic Ag-SnThin Film Couples,” Thin Solid Films, Vol. 155, pp. 243-253 (1987). [38]Ž. Marinković and V. Simić, “Kinetics of Reaction at Room Temperature in Thin Silver-metal Couples,” Thin Solid Films, Vol. 195, pp. 127-135 (1991). [39]X. H. Wang and H. Conrad, “Kinetics of Wetting Ag Substrates by 60Sn40Pb,” Scripta Metallurgica et Materialia, Vol. 30, pp. 725-730 (1994). [40]C. M. Chen and S. W. Chen, “Electric Current Effects on Sn /Ag Interfacial Reactions,” Journal of Electronic Materials, Vol. 28, pp. 7 (1999). [41]V. Simć and Ž. Marinković, “Review Room-temperature Reactions in Thin Metal Couples,” Journal of Materials Science, Vol. 33, pp. 561-624 (1999). [42]K. Suzuki, S. Kano, M. Kajihara, N. Kurokawa, and K. Sakamoto, “Reactive Diffusion between Ag and Sn at Solid State Temperatures,” Materials Transactions, Vol. 46, pp. 969-973 (2005). [43]X. G. Li, J. Cai, Y. C. Sohn, Q. Wang, W. Kim, and S. D. Wang, “Microstructure of Ag-Sn Bonding for MEMS Packaging,” ICEPT 2007. 8th International Conference, pp. 1-5 (2007). [44]Q. S. Zhu, Z. F. Zhang, J. K. Shang, and Z. G. Wang, “Fatigue Damage Mechanisms of Copper Single Crystal/Sn–Ag–Cu Interfaces,” Materials Science and Engineering: A, Vol. 435–436, pp. 588-594 (2006). [45]S. Ishikawa, E. Hashino, T. Kono, and K. Tatsumi, “IMC Growth of Solid State Reaction between Ni UBM and Sn-3Ag-0.5Cu and Sn-3.5Ag Solder Bump Using Ball Place Bumping Method During Aging,” Materials Transaction, Vol. 46, pp. 2351-2358 (2005). [46]H. F. Zou and Z. F. Zhang, “Solid-state and Liquid-state Interfacial Reactions between Sn-based Solders and Single Crystal Ag Substrate,” Journal of Alloys and Compounds, Vol. 469, pp. 207-214 (2009). [47]X. Ma, F. Wang, Y. Qian, and F. Yoshida, “Development of Cu–Sn Intermetallic Compound at Pb-free Solder/Cu Joint Interface,” Materials Letters, Vol. 57, pp. 3361-3365 (2003). [48]湯文明、A. Q. He、Q. Liu、I. GD,「電沉積Ag/Sn偶界面反應及其動力學」,中國有色金屬學報,第十九卷,第五期,第930-935頁 (2009)。 [49]S. W. Chen and Y. W. Yen, “Interfacial Reactions in the Sn-Ag/Au Couples,” Journal of Electronic Materials, Vol. 30, pp. 1133-1137 (2001). [50]T. Takenaka, M. Kajihara, N. Kurokawa, and K. Sakamoto, “Reactive Diffusion between Ag–Au Alloys and Sn at Solid-state Temperatures,” Materials Science and Engineering: A, Vol. 427, pp. 210-222 (2006). [51]T. L. Su, L. C. Tsao, S. Y. Chang, and T. H. Chuang, “Morphology and Growth Kinetics of Ag3Sn During Soldering Reaction between Liquid Sn and an Ag Substrate,” Journal of Materials Engineering and Performance, Vol. 11, pp. 365-368 (2002). [52]H. F. Zou, H. J. Yang, J. Tan, and Z. F. Zhang, “Preferential Growth and Orientation Relationship of Ag3Sn Grains Formed between Molten Sn and (001) Ag Single Crystal,” Journal of Materials Research, Vol. 24, pp. 2141-2144 (2011). [53]H. F. Zou, H. J. Yang, and Z. F. Zhang, “Morphologies, Orientation Relationships and Evolution of Cu6Sn5 Grains Formed between Molten Sn and Cu Single Cystals,” Acta Materialia, Vol. 56, pp. 2649-2662 (2008). [54]R. W. Wu, L. C. Tsao, S. Y. Chang, C. C. Jain, and R. S. Chen, “Interfacial Reactions between Liquid Sn3.5Ag0.5Cu Solders and Ag Substrates,” Journal of Materials Science: Materials in Electronics, Vol. 22, pp. 1181-1187 (2010). [55]林吉甫,「銲點表面處理層之選擇與利用固態接合製程之界面反應」,博士論文,國立中興大學化學工程學系研究所,臺中 (2012)。 [56]X. Deng, M. Koopman, N. Chawla, and K. K. Chawla, “Young’s Modulus of (Cu, Ag)–Sn Intermetallics Measured by Nanoindentation,” Materials Science and Engineering: A, Vol. 364, pp. 240-243 (2004). [57]http://www.wesgometals.com/resources/mechanical-physical-properties/. [58]http://en.wikipedia.org/wiki/Yield_(engineering). [59]林東賢,「錫鬚生長與應力、溫度之關係」,碩士論文,國立中央大學機械工程研究所,桃園 (2007)。 [60]T. Takenaka and M. Kajihara, “Fast Penetration of Sn into Ag by Diffusion Induced Recrystallization,” Materials Transactions, Vol. 47, pp. 822-828 (2006). [61]http://en.wikipedia.org/wiki/Copper. [62]http://en.wikipedia.org/wiki/Nickel. [63]http://en.wikipedia.org/wiki/Silver. [64]C. C. Lee, P. J. Wang, and J. S. Kim, “Are Intermetallics in Solder Joints Really Brittle,” ECTC ''07. Proceedings. 57th, pp. 648-652 (2007). [65]P. F. Yang, Y. S. Lai, S. R. Jian, Y. S. Lai, and R. S. Chen, “Nanoindentation Identifications of Mechanical Properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 Intermetallic Compounds Derived by Diffusion Couples,” Materials Science and Engineering: A, Vol. 485, pp. 305-310 (2008). [66]H. T. Lee, M. H. Chen, “Influence of intermetallic compounds on the adhesive strength of solder joints,” Materials Science and Engineering: A, Vol. 333, pp. 24-34 (2002). [67]H. T. Lee, M. H. Chen, “Influence of intermetallic compounds on the adhesive strength of solder joints,” Materials Science and Engineering: A, Vol. 333, pp. 24-34 (2002). [68]http://hyperphysics.phy-astr.gsu.edu/hbase/tables/thrcn.html. [69]D. A. Porter, K. E. Easterling, and M. Y. Sherif, “Phase Transformations in Metals and Alloys,” CRC Press, pp. 120-121 (2009).
摘要: 
面對多功能化的電子產品,其製造與使用過程都有可能對材料產生破壞,像是機械性應變,這是材料間熱膨脹係數(coefficient of thermal expansion, CTE)差異所造成的影響,可能會影響銲料/基材間銲料接點(solder joints)的可靠性(reliability)。本實驗宗旨為模擬外加應變對Ag/Sn界面反應之影響進行探討,選擇矽、銀和錫分別作為基材、銲料與電鍍層,再利用黃銅模具施加外加應變在Ag/Sn界面反應,並觀察受壓縮、拉伸與不受應變之界面反應及介金屬化合物(intermetallic compound, IMC)Ag3Sn相之成長速率與形態。
固態界面反應樣品結構為20-μm-Sn/30-μm-Ag/400±50μm-Si,施加條件為受拉伸應變、受壓縮應變與不受應變,將樣品置於熱處理溫度為150℃、170℃和200℃下,分別熱處理時間為24、72、120、240、360和480小時。隨著熱處理時間增加,IMC厚度增厚且只生成一種介金屬化合物Ag3Sn相。實驗結果發現施加應變使Ag3Sn相成核速率加快,造成晶粒尺寸小且數量多,同時,生成Ag3Sn相所需克服的活化能也增加,造成其生長速率下降。除上述明顯變化的現象,另發現Ag3Sn相平均厚度竟沒有明顯的差異,考慮材料本身特性推測Ag擁有較小彈性模數和Ag3Sn相熔點低,容易釋放施加的應變,因此施加應變對Ag3Sn相厚度沒有影響。
液固界面反應樣品結構為1.3±0.07-mg-Sn銲料/30-μm-Ag/400±50-μm-Si,施加條件為受拉伸應變、受壓縮應變與不受應變,將樣品置於熱處理溫度為255℃下,分別迴銲時間為8、10、12、15、20和60分鐘,同樣只生成Ag3Sn相。Ag3Sn相晶粒成長的趨勢,循著wulff construction理論生長,呈現多面體狀,隨著熱處理時間增加,發生熟化反應使得晶粒尺寸增大。實驗結果發現,迴銲8和10分鐘,無論施加應變與否,晶粒尺寸和形態會有劇烈的變化;迴銲12、15、20和60分鐘,則晶粒形態全變成多面體狀且不再有尺寸上的變化。

Damages on material are unavoidable in the production process and application of electronic device. One of these damages is mechanical strain which is resulted from the difference between the coefficients of thermal expansion (CTE) of materials. It may affect the reliability of solder joints. The objective of this experiment is to simulate the effect of mechanical strain on Ag/Sn interfacial reaction. To investigate the effect of mechanical strain on solid-solid and solid-liquid Ag/Sn interfacial reactions, intermetallic compound the Ag3Sn phase growth rate and morphology were observed under applied compressive and tensile strain respectively and then compared with those on the reference sample with no strain.
To evaluate the solid-solid interfacial reaction, thermal aging test was carried out on 3 individual sets of samples, which were applied compressive, tensile strain and without strain, with the same structure of 20-μm-Sn/30-μm-Ag/400±50-μm-Si. Aging temperatures in this experiment were set to be 150℃, 170℃ and 200℃ for the aging times of 24h, 72h, 120h, 240h, 360h and 480h. With the increasing aging time, the IMC thickness increased while the Ag3Sn phase was the only phase observed. From the results, it was that the applied strain enhanced the nucleation rate of the Ag3Sn phase to obtain grains in a smaller size and a larger amount. Thus, activation energy for the Ag3Sn grain growth under strain was increased and leaded to the decrease in growth rate. On the other hand, the application of strain showed no significant effect on the average thickness of the Ag3Sn phase. This can be explained by the rapid release of strain in the Ag3Sn phase due to its low melting point and small elastic modulus of silver.
Reflow soldering was also conducted on the samples which has a structure of 1.3±0.07-mg-Sn/30-μm-Ag/400±50-μm-Si, under strains and with no strain at 255℃ to examine the effect of mechanical strain on the solid-liquid Ag/Sn interfacial reactions. The reflowing times were set to be 8 min, 10 min, 12 min, 15 min, 20 min and 60min. The Ag3Sn phase was also found as the only phase. The grain morphology was proved to follow the Wulff construction theory. Drastic change in morphology and increase in grain size were showed all sets of samples with reflowing time of 8min and 10min. Crystal structure became faceted under strain and the grain size showed no change at reflowing time of 12min, 15min, 20min and 60min.
URI: http://hdl.handle.net/11455/3089
其他識別: U0005-1007201317022900
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.