Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30901
標題: 台灣目前栽培香菇品系與側耳屬特性之研究
Study on the characteristics of present cultural strains of Lentinula edodes and Pleurotus spp. in Taiwan
作者: 蘇秋建
Su, Chu-Chien
關鍵字: Lentinula edodes;香菇;Pleurotus spp.;側耳屬
出版社: 植物病理學系所
引用: 第一章 台灣目前栽培香菇菌株特性之研究 參考文獻 森喜作。1963。香菇栽培之研究。養賢堂出版。日本東京。 杜自彊。1977。食用菇栽培技術。豐年叢書 。豐年社。P 29-48。台灣。 陳隆鐘。1980。台灣香菇菌株特性之研究。國立中興大學植物病理學系第十屆碩士論文。台中市。 廖英明。1981。台灣原生香菇品系特性之初步觀察。中華農業研究。30 (1):63-70。 廖英明撰。鄭燮校閱。1985。香菇段木栽培經營技術。八萬農業建設大軍訓練教材。72 。 黃松根、謝瑞忠、孫正春。1987。香菇栽培之速生樹種。林業試驗所推廣專刊。 韓又新、鄭燮、杜金池、陳炳照、侯信雄。1976。香菇選種育種之研究。台灣區第五屆洋菇學術討論會報告。P.517-527。 韓又新、陳隆鐘。1979。激素處理香菇鋸屑培養材料對菇體生長之影響。台灣區第六屆洋菇學術討論會報告。P.261-265 羅信昌、李英波、施慶利。1995。分子生物學技術在菇類研究中的應用。食用菌學報 2(4): 1-10。 宋納福。1995。食用菇類研究。臺灣省農業試驗所一百年來之試驗研究專刊 l16-121。 廖英明。1996。鮮銷用香菇新品系「台農一號」之育成。農情專訊 161: 22-24。 陳明杰、潭琪、汪昭月。1997。應用RAPD技術對香菇融合菌絲進行遺傳鑑定。4 (4): 17-20。 張樹庭和林芳燦。1997。蕈菌遺傳與育種。186-224頁。北京:中國出版社。 廖英明。1998。鮮銷香菇。桃園區農業專訊 26: 20-21。 賈建航、李傳友、金德敏。1998。香菇空間誘變突變體的分子生物學鑑定研究。菌物系統 18(1): 20-24。 代江紅和林芳燦。2001。 香菇自然群體中個體間空間分布及其遺傳聯繫。菌物系統。20(1):100-106。 徐學鋒、李安政、程水明、林范學、林芳燦。2005。亞洲香菇Lentinula edodes 系統發育學地位的重新評估與遺傳多樣性分析。自然科學進展 15(10) : 1204-1210。 Aist, J. R., and Williams, P. H. 1972. Ultrastructure and time course of mitosis in the funus Fusarium oxysporum. J. Cell Biol. 55: 368-389. Bunyard, B. A., Chaichuchote, S., Nicholson, M. S., and Royse, D. J. 1996. Ribosomal DNA analysis for resolution of genotypic classes of Pleurotus. Mycol. Res. 100(2): 143-150. Bruns, T. D., Fohel, R., and Taylor, J. W. 1990. Amplification and sequencing of DNA from fungal hyrbarium specimens. Mycologia 82 (2): 175-184. Challen, M. P. and Elliott, T. J. 1986. Polypropylene straw ampoules for the storage of microorganisms in liquid nitrogen. J. Microb. Meth.5: 11. Chang, S. T. and Buswell, J. A. 1996. Mushroom nutriceuticals. W. J. of Microbiol. and Biotechnol. 12(5): 473-476. Chang, S. T. and Miles, P. G. 2004. Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC Press Boca Ratón. Crisan, E. V. and Sands, A. 1978. Nutritional value. In: Chang, S. T., Hayes, W.H.(eds) The biology and cultivation of edible fungi. Academic, New York. 137–168 Earle, F. S. 1909. The genera of North American gill-fungi. Bull New York Bio. Gard. 5: 373-451. Fang, D. Q. and Roose M. L. 1997. Identification of closely related citrus cultivars with inter-simple sequence repeat genetics. Theor. Appl. Genet. 95: 408–417. Garber, R. C. and Yoder, O. C. 1983. Isolation of DNA from filamentous fungi and separation into nuclear, mitochondrial, ribosomal, and plasmid component. Anal. Biochem. 135: 416-422. Hibbert, D. S., Fukumasa-Naki, Y., and Tsuneda, S. 1995. Phylogenetic diversity in shiitake inferred from nuclear ribosomal DNA sequence. Mycologia 87(5): 618-638. Hibbert, D. S, Hansen, K., and Donoghue, M. J. 1998. Phylogeny and biogeography of Lentinula inferred from an expanded rDNA dataset. Mycol. Res. 102(9): 1041-1049. Hibbert, D. S. 2001. Shiitake mushrooms and molecular clocks: Historical biogeography of Lentinula. Journal of biogeography. 28: 231-241 Ito, T. 1978. Cultivation of Lentinus edodes. The biology and cultivation of edible mushroom edited by Chang, S. T. and Hayes, W. A. 461-473。 Jacobsen, K.M., O. K. Miller, B.J., and Turner, J. 1993. Randomly amplified polymorphic DNA markers are superior to somatic incompatibility tests for discriminating genotypes in natural populations of the ectomycorrhizal fungus Suillus granulatus. Proceedings of the National Academy of Sciences of the United America. 90(19): 9159-9163. Kozak, M., and Krawczyk, J. 1999. Growing shiitake mushrooms in a continental climate. Field and Forest production, Peshtiga, Wisconsin. Kay, E.,and Vilgalys, R. 1992. Spatial distribution and genetic relationships among individuals in a natural population of the oyster mushroom Pleurotus ostreatus. Mycologia 84 (2): 173-182. Kozak, M. E., and Krawczyk, J. 1993. Growing shiitake mushroom in a continental climate. Marinette, Wisconsin. Kües, U., and Liu, Y. 2000. Fruiting body production in basidiomycetes. Appl. Microbiol. Biotechnol. 54: 141–152. Kulkarni, R. K. 1991. DNA polymorphisms in Lentinula edodes, the Shiitake Mushroom. Appl. Environ. Microbiol. 57: 1735–1739. Lane, E. B. 1981. Somatic incompatibility in Fungi and Myxomycetes. In: Gull, K., and Oliver, S. G (eds. ), The fungal nucleus. Cambridge: Cambridge University Press. 238-258. Lin, F. C., Yang, X. M., and Wang, Z. W. 2000. Cultivation of the black oak mushroom Lentinula edodes in China. Mushroom Sci. 15: 955–958 Luo, Z. C., Wang, D.L.,and Li, R. Y. 2000. Cloning and sequencing of the ITS in rDNA gene of Asperfillus fumigatus. (Abstract) Mycosystema 19(3) 336-341. Mata, J. L., Petersen, R. H., Hughes, K. W. 2001. The genus Lentinula in Americas. Mycologia 93(6) : 1102-1112. Mori, K. 1974. Mushrooms as heath foods, Japan Publication, Tokyo. May, G. 1988. Somatic incompatibility and individualism in the coprophilous basidiomycete, Coprinus cinerenus. Trans. Brit. Mycol. Soc. 91: 443-451. Marcais, B., Martin, F. and Delatour, C. 1998. Structure of Collybia fusipes population in two infected oak stands. Mycol. Res. 102: 361-365. Miles, P. G. and Chang, S. T. 1987. Fruiting of Lentinula edodes (shiitake) in liquid media, Mircen. J: 3-103 Pegler, D. N. 1983(a) The genus Lentinula edodes. A world monograph. Kew Bull Addit Ser Sydowia 36: 227-339. Pegler, D. N. 1983(b) The genus Lentinula edodes. Sydowia 36: 227-339. Przybylowicz, P., and Donoghue, J. 1990. Shiitake growers handbook. The art and science of mushroom cultivation. Kendall. Hunt, Dubuque. Qin, L. H., Zhang, H., Chen, M. J., Tan, Q. and Pan, Y. J. 2004. Microsatellite motif (TATG)n in Lentinula edodes. Acta. Microbiol. Sin. 44: 474–478. Rayner, A. D. M. 1991. The challenge of the individualistic mycelium. Mycologia 83: 48-71. Rogot, M., and Hoisington, D. A. 1993. Molecular markers for plant breeding: comparisons of RFLP and RAPD costs. Theor. Appl. Genet. 86: 975–984. Salimath, S. S., Oliverira, A. C., Godwin, I. D., and Bennetzen, J. L. 1995. Assessment of genomic origins and genetic diversity in the genus Eleusine with DNA markers. Genome 38: 757–763. Saito, T., Tanaka, N., and Shinozawa, T. 2002. Characterization of subrepeat regions within rDNA intergentic spacers of the edible basidiomycete Lentinula edodes. Biosci. Biotechnol. Biochem. 66 (10): 2125-2133. Savoie, J. M., Delpech, P., Billete, C., and Mata, G. 2000. Inoculum adaptation changes the outcome of competition between Lentinula edodes and Trichoderma spp. during shiitake cultivation on pasteurized wheat straw. Mushroom Sci. 15: 667–674 Song, C. H., and Chow, K. Y. 1987. A synthetic medium from the production of submerged cultures of Lentinus edodes. Mycologia 79: 866–876 Sobata, C., and Nall, H.1994. Shiitake mushroom production on logs. Alabama Cooperative Extension Program, Alabama. Sun, Y., and Lin, F. C. 2003. Analysis of genetic diversity in natural germplasm of Lentinula edodes in China using RAPD technique. Mycosystema 22(3) : 387-393. Tanaka, A., Miyazaki, K., Murakami, H., and Shiraishi, S. 2004. Sequence characterized amplified region markers tightly linked to the mating factors of Lentinula edodes. Genome 47: 156-162. Terashima, K., Matsumoto, T., Hayashi, E., and Fukumasa-Nakai, Y. 2002. A genetic linkage map of Lentinula edodes (shiitake) based on AFLP markers. Mycol. Res.106: 911-917. Todd, N. K., and Rayner, A. D. M. 1980. Fungal individualism. In: Science progress. Oxford. 66: 331-354. Vilgalys, R., Moncalvo, J. M., Liou, S. R., and Volovcek, M. 1996. Recent advances in molecular systematics of the genus Pleurotus. In Mushroom biology and mushroom Products, pp. 91–102. Edited by Royse, D. J. PennState: PennState University. Vos, P., Hogers R., Bleeker M., et al. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23: 4407–4414. Wang, Y. C, Zhang, Z. G., Zheng, X.B., 2000. Use ITS regions of rDNA gene as an additional characteristic in identification of Phytophthora Boehmeriae and P.Cactorum. Mycosystema, ( abstract)19(4):485~491 White, T.J.,T, Bruns et al. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies, PCR Protocols, A Guide to Methods and Applications. William,A.M. 1909. Noteworthy additions to the mycological herbarium - A mushroom cultivated in Formosa. Mycologia 1(6): 274-275. Williams, J. G. K., Kubelik, A. R. K., Livak, J. L., Rafalski, J. A., and Tingey, S. V. 1990. DNA polymorphism amplified by random primers are useful as genetic markers. Nucleic Acid Res. 18: 6531-6535. Yoon, C. S., Glawe, D. A., and Shaw, P. D. 1990. A method for rapid small scale preparation of fungal DNA. Mycologia 83: 835-838. Zhang, Y., and Molina, F. I. 1995. Strain typing of Lentinula edodes by random amplified polymorphic DNA assay. FEMS Microbiol. Lett. 131: 17–20. Zietkiewicz, E., Rafalski, A., and Labuda, D. 1994. Genome fingerprinting by simple sequence repeats (SSR)-anchored PCR amplification. Genomics 20: 176–183. 第二章 台灣目前栽培側耳屬特性之研究 彭金騰、陳啟楨、華傑、許文輝。1990。鮑魚菇屬人工栽培彩色圖鑑。食品工業研究所編印。台灣。 上官舟建、謝寶貴、羅連忠等。 2005。不同杏鮑菇菌株的遺傳差異研究。中國菌物學報 24: 149-151。 鄭素月、張金霞。 2003。平菇近緣種的多相分類。中國食藥用菌 22(3)。 鄭素月。 2003。 中國栽培平菇近緣種及其遺傳多樣性研究。 中國農業大學碩士生論文。 Abdullan, N., Iqbal-Zafar, S. 1999. Lignocellulose biodegradation by white rot basidiomycetes. Int. J. Mush. Sci. 2: 59–78. Ásgeirsdóttir, S. A., Lasa, I., Culianez-Macia, F. A., Pisabarro, A. G.., Wessels, J. G. H., and Ramirez, L. 1998. Identification characterization and in situ detection of a fruit-body-specific hydrophobin of Pleurotus ostreatus. Appl. Environ. Microbiol 4: 4028-4034. Austin, A. T, Yahdjian, L., Stark, J. M., Belnap, J., Porporato, A., Norton, U., Ravetta, D. A., and Schaeffer, S. M. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141: 221–235. Bano, Z., and Rajarathnam,S. 1986. Vitamin values of Pleurotus mushrooms.Qualitas Plantarum Plant Foods for Human Nutrition. 369(1): 11-16. Blanchette, R. A. 1991. Delignification by wood-decay fungi. Ann. Rev. Phytopathol. 29:381–398 Buchanan, P. K. 1993. Identification, names and nomenclature of common ediblemushrooms. In: Mushroom Biology and Mushroom Production, Eds: Chang, S. T., Buswell, J. A., and Chiu., S. W. Hong Kong: The Chinese University Press:21-29. Bunyard, B. A., Chaichuchote, S., Nicholson, M. S., and Royse, D. J. 1996. Ribosomal DNA analysis for resolution of genotypic classes of Pleurotus. Mycol. Res.100(2):143-150. Challen, M. P. and Elliott, T. J. 1986. Polypropylene straw ampoules for the storage of microorganisms in liquid nitrogen. J. Microb. Meth.5: 11. Chang, S. T., Miles, P. G. 2004. Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC Press, Boca Ratón. Chomczynski, P., and Sacchi, N. 1987. Single-step method of RNA isolation byacid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159. Crisan, E. V., and Sands, A.1978. Nutritional value. In: Chang, S. T., Hayes, W. H. (eds) The biology and cultivation of edible fungi. Academic, New York. 137–168 Dagert, M., and Ehrlich, S.D. 1979. Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6: 23. Eger, G. 1978. Biology and breeding of Pleurotus. In the biology and cultivation of edible mushroom. Eds. Cheng, S. T. and Hayes,W. A. Academic, New York. 497-519. Endo, H., Kajiwara, S., Tsunoka, O., and Shishido, K. 1994. A novel Zn(II)2Cys6 zinc cluster DNA-binding motif derived from the basidiomycete Lentinus edodes. Gene 139: 117–121. Ergun, B., Huseyin, P., Mustafa, K. Y., and Ali, T. 2003. Cultivation of oyster mushroom on waste paper with some added supplementary materials. Bioresour. Technol. 89: 95–97. Garber, R. C., and Yoder, O. C. 1983. Isolation of DNA from filamentous fungi and separation into nuclear, mitochondrial, ribosomal, and plasmid component. Anal. Biochem. 135: 416-422. Guzman, G.. 2000. Genus Pleurotus (Jacq. : Fr. ) P. Kumm. (Agaricomycetideae ): Diversity, Taxonomic Problem, and Cultural and Traditional Medicinal Uses. Int. Journal of Medicinal mushrooms 2: 95-123. Hilber, O. 1989. Valid, invalid and confusing taxa of the genus Pleurotus. Mush. Sci. 12(2): 241-248. Kajiwara, S., Yamaoka, K., Hori, K., Miyazawa, H., Saito, T., Kanno, T., and Shishido, K. 1992. Isolation and sequence of a developmental regulated putative novel gene, priA, from the basidiomycete Lentinus edodes. Gene 114: 173–178. Lahman, O., Rinker, D. L. 2004. Mushroom practices and production in Latin America: 1994–2002. In: Rinker, D. L., Royse, D. J. (eds) Science and cultivation of edible and medicinal fungi. Penn State University Press, Pennsylvania, USA. 681–686. Lane, E. B. 1981. Somatic incompatibility in Fungi and Myxomycetes. In: Gull K., S. G. Oliver (eds. )., The fungal nucleus. Cambridge: Cambridge University Press. 238-258. Lewinsohn, D., and E. Nevo. 2001. Genetic diversity in populations of the Pleurotus eryngii complex in Israel. Mycol Res. 105(8): 941-951. Li, S. F., and Eger, G. 1979. Characteristics of some Pleurotus strains from Florida, their practical and taxonomical importance. Mush. Sci. 10(1): 155-169. Liang, P., Pardee, A.B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971. Lugones, L. G., Bosscher, J. S., Scholtmeyer, K., Vries, O. M. H., Wessels, J. G.. H. 1996. An abundant hydrophobin (ABH1) forms hydrophobic rodlet layers in Agaricus bisporus fruiting bodies. Microbiology 142: 1321-1329. Lugones, L. G., Wosten, H. A.B., and Wessels, J. G. H. 1998. A hydrophobin (ABH3) specifically secreted by vegetable growing hyphae of Agaricus bisporus (common white button mushroom). Microbiology 144: 2345-2353. Isikhuemhen, O. S., Moncalvo, J. M., Nerud, F., Vilgalys, R. 2000. Mating compatibility and phylogeography in Pleurotus tuberregium. Mycol. Res. 104: 732–737. Iracabal, B., Zervakis, G., and Labarere, J. 1995. Molecular syatematics of the genus Pleurotus analysis of restriction polymorphisms in ribosomal DNA. Microbiology 141: 1479-1490 Han, Y. H., Chen, K. M., and Cheng, S. 1974. Characteristics and cultivation of a new Pleurotus in Taiwan. Mush. Sci. 9: 167–174. Hilber, O. 1982. Die Gattung Pleurotus (Fr.) Kummer unter besonderer Beru¨ cksichtigung des Pleurotus eryngii–Formenkomplexes. Bibliotheca Mycologica 87. Vaduz: J. Cramer. Khan, P., Garcha, H. S. 1984. Pleurotus mushroom, A source of food protein. Mush. Newslett. Trop 4: 9–14. Ma, F.Y. & Luo, X.C. 2002. PCR based restriction analysis of internal transcribed spacers of nuclear ribosomal DNA in the genus Pleurotus spp. Mycosystema 21(3): 356-362 Marino, R. H., Eira, A. F., Kuramae, E. E. 2003. Morphomolecular characterization of Pleurotus ostreatus (Jacq. Fr. ) kummer strains in relation to luminosity and temperature of frutification. Sci. agric. (Piracicaba, Braz. ) 60(3) : 531-535. McGonigle, T. P. 1995. The significance of grazing on fungi in nutrient cycling. Canadian Journal of Botany-Revue Canadienne De Botanique 73: S1370–S1376, Suppl. 1 E-H. Miyazaki, Y., Nakamura, M., Babasaki, K. 2005. Molecular colning of development specific gene by representional difference analysis during the fruit body formation in the basidiomycete Lentinula edodes. F. G. B. 42:493-505. Ng, W. L., Ng, T. P., Kwan, H. S. 2000. Cloning and characterization of two hydrophobin genes differentially expressed during fruit body development in Lentinula edodes, FEMS. Microbiol. Lett. 185: 139–145. Peberdy, J. F., Hanifah,,A. M. and Jia, J. H. 1993. New perpectives on the genetic of Pleurotus. Pp.55-62. In: Mushroom Biology and Mushroom Production, Eds., Chang, S. T., Buswell, J.A. and Chiu, S. W. Hong Kong: The Chinese University Press. Penas, M. M., Asgeirsdóttir, S. A., Lasa, I., Culianez-Macia, F. A., Pisabarro, A. G., Wessels, J. G. and Ramirez, L. 1998. Identification, characterization, and in situ detection of a fruit-body-specific hydrophobin of Pleurotus ostreatus. Appl. Environ. Microbiol. 4: 4028-4034. Przybylowicz, P., and Donoghue, J. 1990. Shiitake growers handbook.The art and science of mushroom cultivation. Kendall/Hunt, Dubuque. Qiumio, T. H., Chang, S. T., and Royse, D. J. 1990. Technical Guidrlines for mushroom production in the Tropics, F. A. O. Plant Production and Protection Paper 106. Rajarathnam, S., and Bano, Z. 1987. Pleurotus mushrooms. Parte 1 A: Morfology, life cycle, taxonomy, breeding and cultivation. CRR Critical Recviews in Food Science. 26: 157-223. Royse, D. J. and Schisler, L. C. 1987. Yield and Size of Pleurotus ostreatus and Pleurotus sajor-caju as effected by delayed-release nutrient. Appl. Microbiol. and Biotechnol. Sánchez, A., Ysunza F., Beltrán-García M.J., Esqueda M. 2002. Biodegradation of viticulture wastes by Pleurotus: a source of microbial and human food and its potencial use in animal feeding. J. Agric Food Chem. 50: 2537–2542. Sánchez, JE, Royse D.J. 2002. La biologíayel cultivode Pleurotus spp. Limusa-Grupo Noriega Editores, México. Shlyakhovenko, V., Kosak V., Olishevsky S. 2006. Application of DNA from mushroom Pleurotus ostreatus for cancer biotherapy: a pilot study. (Abstract) Exp. Oncol. Shimomura, N., Hasebe, K., and Fukumasa-Naki, Y. 1992 Intercompatibility between geographically distant strains of shiitake, Peport of the Tottori Mycological Institute. 30: 26-29. Singer, R. 1986. The agaricales in modern taxonomy. J. Cramer. 4th edn.:174-178. Sunagawa, M., Magae, Y. 2005. Isolation of genes differentially expressed during the fruit body development of Pleurotus ostreatus by differential display of RAPD. FEMS. Microbiol Lett. 246(2): 279-84. Toyomasu, T. 1992. Restruction fragment length polymorphism of mitochondrial DNAs from the basidiomycete Pleurotus species. Biosci. Biotech. Biochem. 56(2): 359-361. Vilgalys, R. and Sun, B. L. 1994. Ancient snd recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogentic analysis of ribosomal DNA sequences. Vilgalys, R., Moncalvo, J. M., Liou, S. R., and Volovcek, M. 1996. Recent advances in molecular systematics of the genus Pleurotus. In Mushroom biology and mushroom Products, pp. 91–102. Edited by Royse.D.J. PennState: PennState University. Wessels, J. G.. H. 2000. Hydrophobins, unique fungal proteins. The Mycologist 14(4): 153-159. White, T. J., Bruns, T. D., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols a Guide to Methods and Applications, pp. 315–322. Edited by M. A. Innis, D.H. Gelfand, J.J. Sninsky & T.J. White. San Diego, CA.: Academic Press. Wu, L. M., Ni, Z. F., Meng, F. R., Lin, Z., and Sun, Q. X. 2003. Cloning and characterization of leaf cDNAs that are differentially expressed between wheat hybrids and their parents. Mol. Genet.Genomics. 270: 281–286. Yoon, C. S., Glawe, D. A., and Shaw, P. D. 1990. A method for rapid small scale preparation of fungal DNA. Mycologia 83: 835-838. Zadrazil, F., Chang, S. T., and Hayes, W. A. 1978. Cultivation of Pleurotus, in the biology and Cultivation of edible mushrooms. Academic Press. New York 521. Zervakis, G., Sourdis, J. and Balis, C. 1994. Genetic variability and systematics of eleven Pleurotus species based on isozyme analysis. Mycol. Res.98(3): 329-341 Zervakis, G. 1998. Mating competence and biological species within the subgenus Coremiopleurotus. Mycologia 90: 1063–1074. Zervakis, G., Venturella, G., Papadopoulou, K. 2001. Genetic polymorphism and taxonomic relationships of the Pleurotus eryngii species-complex as resolved through the analysis of random amplified DNA patterns, isozyme profiles and ecomorphological characters. Microbiology 147: 3183–3194. Zervakis, G.. I., Moncalvo, J. M., and Vilgaly, R. 2004. Molecular phylogeny, biogeography and speciation of the mushroom species Pleurotus cystidiosus and allied taxa. Microbiology 150: 715-726. Zeppa, S., Guidi, C., Zambonelli, A., Potenza, L., Vallorani, L., Pierleoni, R., Sacconi, C., and Stocchi, V. 2002. Identification of putative genes involved in the development of Tuber borchii fruit body by mRNA differential display in agarose gel, Curr. Genet. 42: 161–168.
摘要: 
第一章 台灣目前栽培香菇品系特性之研究
香菇是廣為世界栽培的主要菇類之一,亦為台灣主要栽培的食用菇,本研究收集目前台灣地區主要栽培品系計921、.922、721、271、白種及台灣各地分離的菌株48株菌株,進行其特性分析比較。綜合菌絲生長勢與生長速度,以玉米粉為較佳的添加培養基質,而適合之碳氮比為20/1~40/1,適合pH值生長以3.5~5.6,依其菌絲生長溫度測試將收集香菇菌株分為,高溫溫度A群(Group TA);中溫溫度B群(Group TB),低溫溫度C群(Group TC)。液態培養測試,菌絲量培養至第20天平均乾重達228~240mg為最高,依其菌株產生原基、褐化現象、產生菌絲團等特性分析,結果將其分為液態培養A群(Group LA)、液態培養B群(Group LB) 、液態培養C群(Group LC)及液態培養D群(GroupLD)。此外,為了解菌株間品系差異,運用培養形態觀察將其台灣主要栽培菌株分為固態培養A群(GroupMA)、固態培養B群(GroupMB)、固態培養C群(GroupMC)、固態培養D群(GroupMD)、固態培養E群(GroupME),在分群中固態培養MC群,而固態培養MA群和液態培養LA群菌落形態特性相近,在分析此群菌絲寬度與扣子體均為群1(Group1);固態培養MB群及液態培養LC群,而固態MD與液態培養LB群菌落形態特性相近,此群菌絲寬度與扣子體均為群2(Group2);固態培養ME與,與液態培養LD群菌落形態特性較無相似性,但是分析此群菌絲寬度與扣子體均為群3(Group3)。綜合培養條件,與固態菌落形態及液態培養菌落形態比較,A群(Group A)、F群(Group F)與J群(GroupJ)其分布於液態培養LA與LC群中,而I群因其溫度為中高溫而零星歸納在液態培養LA(GroupLA)、LB(GroupLB)、LC(GroupLC)中;而D群(GroupD)、E群(Group E)、H群(Gropu H)菌絲生長範圍較偏低溫與液態培養LD群相吻合,菌絲寬度與扣子體距離亦吻合,在固態培養呈現較多分群。爲了解菌株間歸類情形,亦運用體細胞不親和反應測試,依照其交接區的無菌絲帶寬窄,背面色素深淺及反應菌絲密度、寬度等不同,將其反應劃分為親和、微親和、間親和、不親和等四個等級,運用此篩選出21株香菇菌株,再進行更細微分子分析,並與10個國外香菇菌株與國內目前主要栽培香菇菌株比較,運用ITS4與ITS5序列分析其皆能增幅出約780 bp,而運用隨機擴增性DNA (RAPD),篩選出10個隨機引子都可以獲得穩定的RAPD譜帶,擴增片分子量在0.18 kb-2.52 kb之間,單引子可增幅DNA片段數目在7-19個之間,運用10個引子增幅結果應用電腦軟體NTSYS-pc依UPGMA分群法進行菌株遺傳差異比較,在0.68的DNA相似係數上將其歸類為三群而台灣主要集中在一群,部分菌株與國外菌株相近,在0.91的DNA相似係數上可分為七群,亦說明台灣栽培香菇遺傳背景廣泛,ITS序列分析結果台灣栽培香菇菌株存在著相當程度的差異在ITS2序列差異較大,針對部分台灣香菇菌株在ITS序列已登錄在NCBI以供提供研究學者參考且ITS區間分析結果可用於與國外菌株進行序列比對,值得深入研究探討。

第二章 台灣目前栽培側耳屬特性之研究
側耳屬(Pleurotus spp.)為林木的主要腐生菌,對木材具有強烈的分解能力,具有研究價值。側耳屬亦為全球主要栽培的食用菌之一,極具有商業及營養價值。全世界人工栽培種有12種以上,在台灣主要的人工栽培種為P. ostreaus, P. abalones, P. cystidisus, P. eryagii等,本研究收集台灣目前主要栽培的側耳屬菌株30株,運用形態鑑定、培養條件、體細胞不親和反應,ITS序列及隨機引子S23、S24、OPA1~OPW02與本實驗室篩選的Pleurotus sp. (P6)分析比較。除此,P6菌株,在培養基質容易產生菇體,菌株子實體味鮮美且具有特殊香味,孢子印為白色,其孢子接近紡錘型,5.5~7.4±10X3.0~4.7,出菇溫度為16~25℃,在體細胞不親和反應中其與杏鮑菇(P. eryagii)對峙培養為不親和反應,但與黑美人 (P. abalonus)對峙培養呈現微親和反應,其在培養基或木屑栽培上不會與黑美人一樣形成分生孢子,但可形成擔子梗束。運用ITS1與ITS4序列分析其皆能增幅出約680 bp,而運用隨機增幅性DNA (RAPD),篩選出4個隨機引子都可以獲得穩定的RAPD譜帶,擴增片分子量在0.25 kb-2.5 kb之間,單引子增幅DNA片段數目在2-8之間,運用RAPD結果顯示出不同側耳屬與地理分布,具有多態性,P6菌株與台灣P9菌株再RAPD分析結果較相近。針對側耳屬菌株進行真菌rDNA間隔區域限制性片段長度多態性分析,結果分為七大群,而秀珍菇與P6菌株有相近切位,此外亦區分開運用體細胞不親和反應的菌株P5與P9,結果可用於種內多樣性的研究,值得深入研究探討。此外位了解不同時期側耳屬基因的表現,篩選P6菌株,進行反轉錄聚合酵素連鎖反應,再進行cDNA之隨機引子擴增核酸多形性分析,選殖出A、E、F等基因片段,與NCBI上已登錄基因序列比較,發現其可能為此菌發育過程中重要基因,則有待更進一步的證明與研究。

Cheaper 1 Study on the characteristics of present cultural strains of Lentinula edodes in Taiwan

Lentinula edodes(Berk.) Pegler,the shiitake mushroom, is one of the most widely cultivated mushrooms worldwide. The study of the project is to investigate the characteristics of different isolates and cultivated strain 921,922,721,271 and white strain of the Lentinula edodes in Taiwn.The results indicate that the optimal medium was corn powder, the optimal C/N ratio was 20:1~40:1 and the optimal pH value was 3.5~5.6.Based on the temperature to mycelial growth, divided into high,middle,and low temperature group. In high temperature group include groupTA, in middle temperature group includes group TB, in low temperature group includes groupT C. Based on liquid cultural characteristics divided into GroupTA、TB、TC,and the optimal liquid culture medium was extract-peptone-dextrose.The optimal growth curve was twenty days and follow their characteristics of primordium, the appearance of browing and mycelium rounds. Based on the above characterization divided into GroupLA、GroupLB、GroupLC、GroupLD. Besides, in order to understand the differentence strains of L.edodes,using culture morphogenesis observation divided into GroupMA、GroupMB、GroupMC、GroupMD、GroupME. The solid culture group MA , and solid culture group MC is similar to colony morphology of liquid culture group LA . Analysis the width of mycelium and the distance of clamp connection this group is belong to group1. The solid culture group MD, liquid culture group LC, and the colony morphology character of solid culture MB group is similar to liquid culture group LD. Analysis the width of mycelium and the distance of clamp connection this group is belong to group2. The colony morphology of solid culture group ME and liquid culture group LD are not the same. Analysis the width of mycelium and the distance of clamp connection this group is belong to group3. In conclusion culture condition, comparing solid culture group and liquid culture group, we found groupA, groupF, groupJ are belong to liquid culture group LA and LC. Group I was dispersed to liquid culture group LA, LB and LC,but group D, groupE and group H are belong to LD. Analysis the width of mycelium and the distance of clamp connection are accord with before results. But the solid culture group are more complex. Becasue of the different environment affecting the morphogenesis of L.edode,somatic incompatility mating type analysis divided into compatilibity,slight compatilibity,intercompatilibity,incompatilibity etc. four level.Besides,in order to select the molecular mark to discriminate to forgein countries using DNA extraction to comparing with the strains of forgen and Taiwan strains.PCR products produced with primer ITS1 and ITS4 were visualized as a single band.The size of the PCR fragments was 720bp. Single 10-base primers were used to generate randomly amplified polymorphic DNA(RAPD) markers in the shiitake mushroom, Lentinula edodes. Ten primers produced polymorphisms in all 31 strains tested, producing 7-19 bands ranging from 0.18 to 2.52 kb.10 primers results from 27 primers RAPD profiles with amplification of 31 L.edodes isolates were select to analysis genetic similarity by UPGMA cluster analysis with computer software NTSYS-pc. We found that isolates of L. edodes have different genetic diversity. It indicated that 31 isolates of L.edodes could be divided into severn group under DNA similar coefficient of 0.68 mainly in Taiwan, some isolates is similar to foreigen countries. It indicated that 31 isolates of L.edodes could be divided into severn group under DNA similar coefficient of 0.91. It indicated that Taiwan cultivate L.edodes have rich genetic diversity.Internal transcribed spacer sequences analysis result Taiwan cultural L.edodes. and ITS2 region explose variability. Have already logged in for offering a researcher to consult in NCBI in ITS sequences to some isolates of L.edodes in Taiwan and worth further investigating.

Cheaper 2 Study on the characteristics of present cultural Pleurotus spp. in Taiwan

Pleurotus spp.is the main white rot fungi in forest.They have ability to decompose wood.There are about twelve varieties were cultivated worldwith. But in Taiwan,there are some varieties included P. ostreaus, P. abalones, P. cystidisus, P. eryngii were cultured. P6’s cap is 2~13.0cm across,convex at first,then becoming plane to broldly depressed when old. it’s surface dull, moist, smooth, glabrous, whitish to cream in colour. In the medium, it can form deerhorn hyphae and then form the fruit body.it’s spore elliiptical to subfusiform, smooth,about 5.5~7.4±10X3.0~4.7. The optimal fruiting temperature is 16~25℃. Somatic incompatility mating type analysis of that it was moer closed P. abalonus than P. eryngii. And the culture forms coremia , but do not form conidia on the medium or sawdust substrate.PCR products produced with primer ITS 1 and ITS 4 were visualized only a single band. The size of the PCR fragments was 680 bp. Single 10-base primers were used to generate randomly amplified polymorphic DNA (RAPD) markers in the P. spp. Four primers produced polymorphisms in all tested 30 strains, producing 2-8 bands ranging from 0.25 to 2.50 kb.Molecular genetic markers obtained with the RAPD assay can be used to differentiate isolates of P. spp. and have potential applications in mushroom breeding and strain improvement programs. Besides, we also analysis internal transcribed spacer of Pleurotus spp and login NCBI. The internal transcribed spacer explose variability in L. edodes and worth further investigating. We also used internal transcribed spacer- restriction fragment length polymorphism to analyze P. spp. It can distinguish P. spp. as seven groups and P.ostreatus(white) had the same DNA fragments with P6.Using ITS-RFLP analysis also could divide P9 and P5 into different group that we could not divide P9 and P5 into different group by somatic incompatility mating. To analysis genes involved in fruit body development of P6 , mRNA from three different developmental stages : vegetative mycelium, and fruit body. Twenty random PCR amplifications were performed with the cDNAs , whicg A, E, F, cDNA fragments from different developmental stage. Sequence analysis and database searches reveraled significant similarity with Ustilago maydis hyposis protein, Nurospora crassa filment H protein.
URI: http://hdl.handle.net/11455/30901
其他識別: U0005-2308200614361100
Appears in Collections:植物病理學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.