Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3095
標題: 從內函體回收N-胺甲醯基-L型-胺基酸胺基水解酵素
Recovery of N-carbamoyl-L-amino acid amidohydrolase from inclusion bodies
作者: 陳竑毅
Chen, Hong-Yi
關鍵字: N-胺甲醯基-L型-胺基酸胺基水解酵素;refolding;穀胱甘肽;N-carbamoyl-L-amino acid amidohydrolase;GSH;GSSG
出版社: 化學工程學系所
引用: [1] S. C. Lu and S. C. Lin, "Recovery of active N-acetyl-D-glucosamine 2-epimerase from inclusion bodies by solubilization with non-denaturing buffers," Enzyme Microb Technol, vol. 50, pp. 65-70, 2012. [2] M. M. Carrio and A. Villaverde, "Construction and deconstruction of bacterial inclusion bodies," J Biotechnol, vol. 96, pp. 3-12, 2002. [3] M. Merdanovic, T. Clausen, M. Kaiser, R. Huber, and M. Ehrmann, "Protein quality control in the bacterial periplasm," Annu Rev Microbiol, vol. 65, pp. 149-68, 2011. [4] A. Mitraki, B. Fane, C. Haase-Pettingell, J. Sturtevant, and J. King, "Global suppression of protein folding defects and inclusion body formation," Science, vol. 253, pp. 54-8, 1991. [5] M. Li, Z. G. Su, and J. C. Janson, "In vitro protein refolding by chromatographic procedures," Protein Expr Purif, vol. 33, pp. 1-10, 2004. [6] S. C. Lin, K. L. Lin, H. C. Chiu, and S. Lin, "Enhanced protein renaturation by temperature-responsive polymers," Biotechnol Bioeng, vol. 67, pp. 505-12, 2000. [7] B. Batas, C. Schiraldi, and J. B. Chaudhuri, "Inclusion body purification and protein refolding using microfiltration and size exclusion chromatography," J Biotechnol, vol. 68, pp. 149-58, 1999. [8] N. S. de Groot and S. Ventura, "Effect of temperature on protein quality in bacterial inclusion bodies," FEBS Lett, vol. 580, pp. 6471-6, 2006. [9] S. Jevsevar, V. Gaberc-Porekar, I. Fonda, B. Podobnik, J. Grdadolnik, and V. Menart, "Production of nonclassical inclusion bodies from which correctly folded protein can be extracted," Biotechnol Prog, vol. 21, pp. 632-9, 2005. [10] S. Peternel, J. Grdadolnik, V. Gaberc-Porekar, and R. Komel, "Engineering inclusion bodies for non denaturing extraction of functional proteins," Microb Cell Fact, vol. 7, p. 34, 2008. [11] M. C. Manning, K. Patel, and R. T. Borchardt, "Stability of protein pharmaceuticals," Pharm Res, vol. 6, pp. 903-18, 1989. [12] S. M. Singh, A. Sharma, A. K. Upadhyay, A. Singh, L. C. Garg, and A. K. Panda, "Solubilization of inclusion body proteins using n-propanol and its refolding into bioactive form," Protein Expr Purif, vol. 81, pp. 75-82, 2012. [13] D. Foguel, C. R. Robinson, P. C. de Sousa, Jr., J. L. Silva, and A. S. Robinson, "Hydrostatic pressure rescues native protein from aggregates," Biotechnol Bioeng, vol. 63, pp. 552-8, 1999. [14] B. Fischer, B. Perry, I. Sumner, and P. Goodenough, "A novel sequential procedure to enhance the renaturation of recombinant protein from Escherichia coli inclusion bodies," Protein Eng, vol. 5, pp. 593-6, 1992. [15] M. Hattori, K. Hiramatsu, T. Kurata, M. Nishiura, K. Takahashi, A. Ametani, and S. Kaminogawa, "Complete refolding of bovine beta-lactoglobulin requires disulfide bond formation under strict conditions," Biochim Biophys Acta, vol. 1752, pp. 154-65, 2005. [16] Y. Maeda, H. Koga, H. Yamada, T. Ueda, and T. Imoto, "Effective renaturation of reduced lysozyme by gentle removal of urea," Protein Eng, vol. 8, pp. 201-5, 1995. [17] E. De Bernardez Clark, D. Hevehan, S. Szela, and J. Maachupalli-Reddy, "Oxidative renaturation of hen egg-white lysozyme. Folding vs aggregation," Biotechnol Prog, vol. 14, pp. 47-54, 1998. [18] K. Tsumoto, D. Ejima, I. Kumagai, and T. Arakawa, "Practical considerations in refolding proteins from inclusion bodies," Protein Expr Purif, vol. 28, pp. 1-8, 2003. [19] T. Ono, M. Nagatomo, T. Nagao, H. Ijima, and K. Kawakami, "Nonaggregating refolding of ribonuclease A using reverse micellar dialysis," Biotechnol Bioeng, vol. 89, pp. 290-295, 2005. [20] X.-Y. Dong, X.-Y. Wu, and Y. Sun, "Refolding of denatured lysozyme assisted by artificial chaperones in reverse micelles," Biochemical Engineering Journal, vol. 31, pp. 92-95, 2006. [21] G. Lemercier, N. Bakalara, and X. Santarelli, "On-column refolding of an insoluble histidine tag recombinant exopolyphosphatase from Trypanosoma brucei overexpressed in Escherichia coli," Journal of Chromatography B, vol. 786, pp. 305-309, 2003. [22] D. Rozema and S. H. Gellman, "Artificial Chaperone-Assisted Refolding of Denatured-Reduced Lysozyme:  Modulation of the Competition between Renaturation and Aggregation+," Biochemistry, vol. 35, pp. 15760-15771, 1996. [23] J. L. Cleland, C. Hedgepeth, and D. I. Wang, "Polyethylene glycol enhanced refolding of bovine carbonic anhydrase B. Reaction stoichiometry and refolding model," J Biol Chem, vol. 267, pp. 13327-34, 1992. [24] I. Roy and M. N. Gupta, "pH‐responsive polymer‐assisted refolding of urea‐ and organic solvent‐denatured α‐chymotrypsin," Protein Eng, vol. 16, pp. 1153-1157, December 1, 2003. [25] Y. J. Chen, L. W. Huang, H. C. Chiu, and S. C. Lin, "Temperature-responsive polymer-assisted protein refolding," Enzyme Microb Technol, vol. 32, pp. 120-130, 2003. [26] 簡佩洵, "以連續式饋料法進行蛋白質復性之研究," 碩士, 化學工程學系, 國立中興大學, 台中市, 2005. [27] X. Fan, D. Xu, B. Lu, J. Xia, and D. Wei, "Improving the refolding of NTA protein by urea gradient and arginine gradient size-exclusion chromatography," J Biochem Biophys Methods, vol. 70, pp. 1130-8, 2008. [28] D. Samuel, T. K. Kumar, G. Ganesh, G. Jayaraman, P. W. Yang, M. M. Chang, V. D. Trivedi, S. L. Wang, K. C. Hwang, D. K. Chang, and C. Yu, "Proline inhibits aggregation during protein refolding," Protein Sci, vol. 9, pp. 344-52, 2000. [29] T. Arakawa, D. Ejima, K. Tsumoto, N. Obeyama, Y. Tanaka, Y. Kita, and S. N. Timasheff, "Suppression of protein interactions by arginine: a proposed mechanism of the arginine effects," Biophys Chem, vol. 127, pp. 1-8, 2007. [30] T. Arakawa and K. Tsumoto, "The effects of arginine on refolding of aggregated proteins: not facilitate refolding, but suppress aggregation," Biochem Biophys Res Commun, vol. 304, pp. 148-52, 2003. [31] H. Hamada and K. Shiraki, "L-argininamide improves the refolding more effectively than L-arginine," J Biotechnol, vol. 130, pp. 153-60, 2007. [32] M. W. Qoronfleh, L. K. Hesterberg, and M. B. Seefeldt, "Confronting high-throughput protein refolding using high pressure and solution screens," Protein Expr Purif, vol. 55, pp. 209-24, 2007. [33] A. K. Ahmed, S. W. Schaffer, and D. B. Wetlaufer, "Nonenzymic reactivation of reduced bovine pancreatic ribonuclease by air oxidation and by glutathione oxidoreduction buffers," J Biol Chem, vol. 250, pp. 8477-82, 1975. [34] 曾資棟, "差向異構酶包涵體復性最適化研究," 碩士, 化學工程學系, 國立中興大學, 台中市, 2003. [35] S. H. Lee, J. F. Carpenter, B. S. Chang, T. W. Randolph, and Y. S. Kim, "Effects of solutes on solubilization and refolding of proteins from inclusion bodies with high hydrostatic pressure," Protein Sci, vol. 15, pp. 304-13, 2006. [36] C. Wang, Q. Zhang, Y. Cheng, and L. Wang, "Refolding of denatured/reduced lysozyme at high concentrations by artificial molecular chaperone-ion exchange chromatography," Biotechnol Prog, vol. 26, pp. 1073-9, 2010. [37] S. Misawa and I. Kumagai, "Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies," Biopolymers, vol. 51, pp. 297-307, 1999. [38] H. Y. Hu, W. H. Hsu, and H. R. Chien, "Characterization and phylogenetic analysis of a thermostable N-carbamoyl- l-amino acid amidohydrolase from Bacillus kaustophilus CCRC11223," Arch Microbiol, vol. 179, pp. 250-7, 2003. [39] J. Ogawa, H. Miyake, and S. Shimizu, "Purification and characterization of N-carbamoyl-L-amino acid amidohydrolase with broad substrate specificity from Alcaligenes xylosoxidans," Appl Microbiol Biotechnol, vol. 43, pp. 1039-43, 1995. [40] S. Martinez-Rodriguez, M. Andujar-Sanchez, J. M. Clemente Jimenez, V. Jara-Perez, F. Rodriguez-Vico, and F. J. Las Heras-Vazquez, "Thermodynamic and mutational studies of l-N-carbamoylase from Sinorhizobium meliloti CECT 4114 catalytic centre," Biochimie, vol. 88, pp. 837-47, 2006. [41] Y. Mukohara, T. Ishikawa, K. Watabe, and H. Nakamura, "Molecular cloning and sequencing of the gene for a thermostable N-carbamyl-L-amino acid amidohydrolase from Bacillus stearothermophilus strain NS1122A," Biosci Biotechnol Biochem, vol. 57, pp. 1935-7, 1993. [42] B. Wilms, A. Wiese, C. Syldatk, R. Mattes, J. Altenbuchner, and M. Pietzsch, "Cloning, nucleotide sequence and expression of a new L-N-carbamoylase gene from Arthrobacter aurescens DSM 3747 in E. coli," J Biotechnol, vol. 68, pp. 101-13, 1999.
摘要: 
利用大腸桿菌生產N-胺甲醯基-L型-胺基酸胺基水解酵素時,會因大量表現而產生內函體。利用Tris buffer直接溶解內函體後即可得到活性蛋白。其中以pH 9.0所回收得來的蛋白比活性0.40 U/mg為最高,但還是不如native蛋白(pH 8.0下比活性為1.58 U/mg,pH 9.0下為1.31 U/mg)。將native蛋白加入DTT後可發現比活性迅速降低,顯示雙硫鍵對於比活性具有重大影響。而從內函體中回收的可溶蛋白不具有雙硫鍵結構,所以缺乏正確的雙硫鍵結構可能是導致活性不如native蛋白的原因。
由於雙硫鍵對於蛋白活性具有重大影響,故在後續進行復性實驗時加入GSH/GSSH以幫助雙硫鍵的形成。在復性緩衝溶液中添加總濃度[GSH]+2[GSSG]=10 mM,比例[GSH]/2[GSSG]=4的情況下,可將可溶蛋白回收率從80.0%提升10.3%至90.3%。添加總濃度[GSH]+2[GSSG]=10 mM,比例[GSH]/2[GSSG]=10或8的情況下,則可將總活性從0.021 U提升76%至0.037 U。
整體而言,添加GSH/GSSH可確實幫助N-胺甲醯基-L型-胺基酸胺基水解酵素提升復性產率。

Recombinant N-carbamoyl-L-amino acid amidohydrolase was over-expressed in Escherichia coli in the form of inclusion bodies. Active protein could be recovered from inclusion bodies by direct solubilization with Tris buffer. The largest specific activity of solubilized protein is 0.40 U/mg at pH 9.0, but it was still lower than native protein, 1.58 U/mg at pH 8.0 and 1.31 U/mg at pH 9.0. The result of adding DTT in native protein indicated that disulfide bond structures had significant impact on specific activity. The structures of solubilized proteins from inclusion bodies didn’t have disulfide bond structures, so lack of right disulfide bond structures may be the reason of lower specific activity.
Because of the significance of disulfide bond structures, GSH/GSSH was added into the refolding system to assist formation of disulfide bonds. Recovery of soluble protein could be increased by 10.3% from 80.0% to 90.3% when the refolding buffer contained 10 mM of a 4:1 ratio of [GSH]/2[GSSG]. Total activity could be increased by 76% from 0.021 U to 0.037 U when the refolding buffer contained 10 mM of a 10:1 or 8:1 ratio of [GSH]/2[GSSG].
Overall, adding GSH/GSSG could enhance refolding result of N-carbamoyl-L-amino acid amidohydrolase.
URI: http://hdl.handle.net/11455/3095
其他識別: U0005-1508201211095800
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.