Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30977
標題: 枯草桿菌 Bacillus subtilis WG6-14懸浮培養增量菌液製作及其病害管理之應用
Preparation of a massively amplified broth culture of Bacillus subtilis WG6-14 and its application as a functional nutritive formulation for disease management.
作者: 王淳禾
Wang, Chen-Her
關鍵字: Bacillus subtilis;枯草桿菌;functional nutritive formulation;biocontrol;compost tea;probiotic;功能性營養配方;生物防治;堆肥液;益生菌
出版社: 植物病理學系所
引用: 王詩雯. 2002. 拮抗性桿菌屬(Bacillus spp.)於水稻白葉枯病防治之應用及其作用機制. 國立中興大學植物病理學系碩士論文. 84 pp。 林俊義. 2001. 永續農業之理念與發展策略. 永續農業第一輯(作物篇). 2-10。 江志峰、王鐘和、黃維廷. 2002. 堆肥液在有機果菜栽培之應用. 作物合理化施肥技術研討會專刊. 105-114。 李雅惠. 2002. 拮抗性桿菌屬(Bacillus spp.)之分離、培養與抗生活性之改進以及病害防治之應用. 79 pp。 邱燕欣. 2004. 拮抗性桿菌 Bacillus subtilis WG6-14 菌株於柑橘潰瘍病防治應用.國立中興大學植物病理學系碩士論文. 92 pp。 孫守恭、黃振文. 1985. 土壤添加物防治鐮胞菌萎凋病之機制. 植保會刊. 27: 159-169。 黃振文. 1992. 利用合成植物營養液管理蔬菜種苗病蟲害 植保會刊. 34: 54-63。 曾德賜、葉瑩. 2003. 病害防治用微生物製劑之開發與應用. 植物保護管理永續發展研討會專刊. 221-238。 曾德賜、黃文的、柯欣志、葉瑩. 2003. 枯草桿菌作為益生性生物製劑之應用. 國際植物健康管理研討會專集. 186-206。 黨建章. 2005. 發酵技術概論. 新文京開發出版. 台北. 382 pp。 Arkhipova, T. N., Melentiev, A. I., Martynenko, E.V., and Kudoyarova, G. R. 2005. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil. 272: 201-209. Astrid, H., Fred, B. O. S., and Alexander, S. 2003. Conversion of the nitrogen content in liquid manure into biomass and polyglutamic acid by a newly isolated strain of Bacillus licheniformis. FEMS Microbiol. 218: 39-45. Bais, H. P., and Ravishankar, G. A. 2002. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tiss. Org. Cult. 69: 1-34. Cook, R. J. 1993. Making great use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31: 53-80. Dey, R., Pal, K. K., Bhatt, D. M., and Chauhan, S. M. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159: 371-394. Diánez, F., Santos, M., and Tello J.C. 2005. Suppression of soilborne pathogens by compost: suppressive effects of grape marc compost on phytopathogenic oomycetes. Acta Hort. (ISHS) 697: 441-460. http://www.actahort.org/books/697/697_57.htm Elsorra, E. I., Oliwia, M., Abdelazim, F, Kritin, R., Ralf, G., Helmut, B., Thomas, R. and Rainer, B. 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant- growth-promoting effect. Microbiology. 148: 2097-2109. Huang, J. W., Hsieh, T. F., and Sun, S. K. 2003 Sustainable management of soilborne vegetable crop disease. Advances in Plant disease management 107-119. Huynh, A. H., Le, H. D., and Simon, M. C. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29: 813-835. Jacobsen, B. J. Z. and Larson, B. J. 2004. The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology. 94: 1272-1275. Jansma, J. E., Keulen, H. and Zadoks, J.C. 1993. Crop protection in the year 2000: a comparison of current policies towards agrochemical usage in four West European countries. Crop Prot. 12: 483-489. José, L. B.,Ignacio, B., Imanol, R. Z., David, C., Daniel, V., and José, L. M. 2006. The role of probiotics in aquaculture. Veterinary Microbiol. 114: 173–186. Karen, A. K., Thomas, R., and Thomas, A. M. 1998. Final optical density and growth rate; effects of temperature and NaCl differ from acidity. Int. J. Food Microbiol. 43:195-203. Kishorel, G. K., and Podile, A.R. 2005. Phylloplane bacteria increase seedling emergence, growth and yield of field-grown groundnut (Arachis hypogaea L.). Letters in Appl. Microbiol., 40: 260-268. Koepf, H. H. 1992. Biodynamic farming: Principles and practice. Online Resources. http://www.attra.org/attra-pub/biodynamic.html Litterick, A. M., Harrier, L., Wallace, P., Watson, C. A., and Wood, M. 2004. The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production. Plant Sci. 23:453–479. Lopez-Lopez, E. V. C. H., Fernandez, S. P., and Torre, M. L. 2000. Fermentation processes for bioinsecticide production. An overview. World J. Microbiol. Biotechnol. 3: 1-20. Ma, L. P., Qiao, X. W., Gao, F., and Hao, B. Q. 2001. Control of sweet pepper fusarium wilt with compost extracts and its mechanism. Chin. J. Appl. Env. Biol. 7: 84–87. Marco, R. O., Annalisa, C., Anna, M. C., and Gianni, P. 2003. Bacillus spores for vaccine delivery. Vaccine. 21:96-101. Maria, R. S., Tiziana, B., Ezio, R., Maurilio, D. F., Lorenzo, M., Gianni, P., and Marco, R. O. 2000. On the fate of ingested Bacillus spores. Res. Microbiol. 151: 361–368. Massomo, S. M. S. M., Mabagala, C. N., Newman, R. B., and Hockenhull, M. A. J. 2004. Biological control of black rot (Xanthomonas campestris pv. campestris) of cabbage in Tanzania with Bacillus strains. Phytopathology. 152: 98-105. Mathre, D. E. C., Cook, R. J., and Callan, N. W. 1999. From discovery to use: traversing the world of commercializing biocontrol agents for plant disease control. Plant Dis. 83: 972-983. McSpadden Gardener, B. B., and Driks A. 2004. Overview of the nature and application of biocontrol microbes: Bacillus spp. Phytopathology. 94: 1244. McSpadden Gardener, B. B., and Fravel, D. R. 2002. Biological control of plant pathogens: research, commercialization, and application in the USA. APSNet feature article Online. Plant Health Progress doi: 10. 1094/PHP-2002-0510-RV. Nassar, A.H., Tarabily, K.A., and Sivasithamparam, E. K. 2003. Growth promotion of bean (Phaseolus vulgaris L.) by a polyamine-producing isolate of Streptomyces griseoluteus. Plant Growth. 40: 97-106. Pinar, C., Esra, B., G.uzide, C., and Tuncer, H. Ö. 2003. Bioreactor operation parameters as tools for metabolic regulations in fermentation processes: influence of pH conditions. Chem. Eng. Sci. 58: 759–766 Ryu, C. M., Chia, H. H., Robert, D. L., and Kloepper, J. W. 2005. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant and Soil. 268: 285-292. Sandra, M. M., Joao, J. C., Adriano, O. H., Rui, J. G., Manuel, J. C. and Antonio, E. C. 2005. A procedure for high-yield spore production by Bacillus subtilis. Biotechnol. Prog. 21: 1026-1031. Scheuerell, S. J. and Mahaffee,W. F. 2002. Compost tea: Principles and prospects for plant disease control. Comp. Sci. Util. 10: 313–338. Scheuerell, S. J. and Mahaffee, W. F. 2004. Compost tea as a container medium drench for suppressing seedling damping-off caused by Pythium ultimum. Phytopathology. 94: 1156-1163. Schisler, D. A. S., Behle, R.W., and Jackson, M.A. 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology. 94: 1267-1271. Sekowska, A., Bertin, P., and Danchin, A. 1998. Characterization of polyamine synthesis pathway in Bacillus subtilis 168. Mol. Microbiol. 29: 851-858. Sheng, X. F. 2005. Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol. Biochem. 37: 1918-1922. Steddom, K., Baker, O. and Menge, J. A. 2002. Repetitive application of the biocontrol agent Pseudomonas putida 06909-rif/nal and effects on population of Phytophthora parasitica in citrus orchards. Phytopathology. 92: 852-856. Stéphane, C., Brion, D., Jerzy, N., Cristophe, C., and Essaid, A. B. 2005. Use of plant growth-promoting bacteria for biocontrol of plant dieases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959. Tang, W., and Newton, R. J. 2005. Polyamines promote root elongation and growth by increasing root cell division in regenerated Virginia pine (Pinus virginiana Mill.) plantlets. Plant Cell Rep. 24: 581–589. Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil. 255: 571–586. Vonderwell, J.D., Enebak, S.A., and Samuelson, L.J. 2001. Influence of two plant growth promoting rhizobacteria on loblolly pine root respiration and IAA activity. Forest Sci. 47:197-202. Wagner, W. C. 1999. Sustainable agriculture: how to sustain a production system in a changing environment. Int. J. Parasitol. 29: 1-5. Welke, S. 1999. Effectiveness of compost extracts as disease suppressants in fresh market crops in BC. Online Resources http://www.ofrf.org/publications/Grant%20reports/99.31.10.Welke.Spr99.IB9.pdf Weltzein, H. C. 1991. Biocontrol of foliar fungal disease with compost extracts. Microbial ecology of leaves. 430-450. Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 487-511. Wulff, E. G. M., Mansfeld-Giese, C. M., Fels, K., Lubeck, M. J. and Hockenhull, J. 2002. Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Pathol. 51: 574-584. Yaoyu, F., Zhimin, Say, L. O., Jiangyong, H., Zhigang, Z., and Wun, J. N. 2003. Optimization of agitation, aeration, and temperature conditions for maximum β–mannanase production. Enz. Microbial Technol. 32: 282-289. Yasemin, I., Bülent, I., and Gülay, Ö. 2002. Regulation of crystal protein biosynthesis by Bacillus thuringiensis: II. Effects of carbon and nitrogen sources. Res. Microbiol. 153: 605–609. Yoshida, S. H., Tsukamoto, S., Hatakeda, T. K., and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology. 91: 181-187. Zhang, W., Dick, W. A., and Hoitink, H. A. J. 1998. Compost-induced systemic acquired resistance in cucumber to Pythium root rot and Anthracnose. Phytopathology. 86: 1066–1070. Zinati, G. M., Li, Y. C. and Bryan, H. H. 2001. Utilization of compost increases organic carbon and its humin, humic and fulvic acid fractions in calcareous soil. Comp. Sci. Util. 9: 156–162. 王詩雯. 2002. 拮抗性桿菌屬(Bacillus spp.)於水稻白葉枯病防治之應用及其作用機制. 國立中興大學植物病理學系碩士論文. 84 pp。 李雅惠. 2002. 拮抗性桿菌屬(Bacillus spp.)之分離、培養與抗生活性之改進以及病害防治之應用. 79 pp。 邱燕欣. 2004. 拮抗性桿菌 Bacillus subtilis WG6-14 菌株於柑橘潰瘍病防治應用.國立中興大學植物病理學系碩士論文. 92 pp。 曾德賜、葉瑩. 2003. 病害防治用微生物製劑之開發與應用. 植物保護管理永續發展研討會專刊. 221-238。 曾德賜、黃文的、柯欣志、葉瑩. 2003. 枯草桿菌作為益生性生物製劑之應用. 國際植物健康管理研討會專集. 186-206。 羅朝村. 2001. 非農藥防治方法(二)微生物在農業作物病害防治的應用、演進與防治機制. 永續農業第一輯(作物篇). 207-216。 黨建章. 2005. 發酵技術概論. 新文京開發出版. 台北. 382 pp。 Arkhipova, T. N., Melentiev, A. I., Martynenko, E.V., and Kudoyarova, G. R. 2005. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil. 272: 201-209. Dey, R., Pal, K. K., Bhatt, D. M., and Chauhan, S. M. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159: 371-394. Duffy, B., Sarreal, C., Subbarao, R., and Stanker, L. 2004. Effect of molasses on regrowth of E. coli O157:H7 and Salmonella in compost teas. Comp. Sci. Util. 12:93-96. Elsorra, E. I., Oliwia, M., Abdelazim, F, Kritin, R., Ralf, G., Helmut, B., Thomas, R. and Rainer, B. 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant- growth-promoting effect. Microbiology. 148: 2097-2109. Fabio, F. A., Ademir, A. H. and Mariangela, H. 2005. Phytohormones and antibiotics produced by Bacillus subtilis and their effect on seed pathogenic fungi and on soybean root development. World J. Microbiol. Biotechnol. 21: 1639-1645. Flores, H. E., and Galston, A. W. 1982. Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol. 69: 701-706. Jacobsen, B. J. Z. and Larson, B. J. 2004. The role of Bacillus-based biological control agents in integrated pest management systems: plant diseases. Phytopathology. 94: 1272-1275. Karen, A. K., Thomas, R., and Thomas, A. M. 1998. Final optical density and growth rate; effects of temperature and NaCl differ from acidity. Int. J. of Food Microbiol. 43:195-203. Kishorel, G. K., and Podile, A.R. 2005. Phylloplane bacteria increase seedling emergence, growth and yield of field-grown groundnut (Arachis hypogaea L.). Letters in Appl. Microbiol., 40: 260-268. Markus, P., Fred, B. O.S., and Alexander, S. C. 2001. Cultivation of bacteria producing polyamino acids with liquid manure as carbon and nitrogen source. Appl. and Environ. Microbiol. 67: 617–622. Perego, P., Converti, A., and Borghi, M. D. P. 2003. Effects of temperature, inoculum size and starch hydrolyzate concentration on butanediol production by Bacillus licheniformis. Bioresour. Technol. 89: 125–131. Rinaldi, D. A. M. F., and Leite, J. R. P. 2000. Adaptation of Xanthomonas axonopodis pv. citri population to the presence of copper compounds in nature. Proc. Int. Soc. Citric. 2: 1064. Sandra, M. M., Joao, J. C., Adriano, O. H., Rui, J. G., Manuel, J. C. and Antonio, E. C. 2005. A procedure for high-yield spore production by Bacillus subtilis. Biotechnol. Prog. 21: 1026-1031. Scheuerell, S. J. and Mahaffee,W. F. 2002. Compost tea: Principles and prospects for plant disease control. Comp. Sci. Util. 10: 313–338. Schisler, D. A. S., Behle, R.W., and Jackson, M.A. 2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology. 94: 1267-1271. Yaoyu, F., Zhimin, Say, L. O., Jiangyong, H., Zhigang, Z., and Wun, J. N. 2003. Optimization of agitation, aeration, and temperature conditions for maximum β–mannanase production. Enz. Microbial. Technol. 32: 282-289.
摘要: 
病蟲害綜合管理為目前各國重視且迅速發展的永續農業策略,有鑒於化學農藥的濫用已造成環境生態之浩劫,生物防治則是一種能維護農業生態系中病蟲害與益菌或天敵等族群間均衡的手段,本研究室近年來積極投入本土性微生物資源及其活體製劑量產與應用技術之開發。我們由分離自霧峰蕃石榴根圈之枯草桿菌 Bacillus subtilis WG6-14菌株,經測試證實其生長快速、產孢特性優異,對多數土壤傳播性病原真菌與黃單孢菌屬(Xanthomonas)病原細菌具抗生活性。其應用性於本研究室已成功建立內生孢子量產液體發酵培養技術,所產製之 WG6-14發酵菌液於溫室、田間試驗評估,證實對柑橘潰瘍病防治效果顯著。拮抗菌相較於病原菌族群壓倒性(inundative)優勢的維持,為影響防治效果之關鍵。為確保生物製劑在施用時菌體活性之理想狀態,並使成本可以大幅降低,本研究嘗試建立可由業者自行增量培養之方法。利用塑膠桶及定時攪拌器,配合由魚精粉、紅糖粉、乳清粉等農業常見資材,於適當配方比例下,配合培養過程相關理化條件如培養溫度、pH 値的調控,可在材料與器械不經高壓滅菌情況下,成功增量為功能性營養配方(functional nutritive formulation, FNF),WG6-14孢子活體產量達1010cfu/ml。經三個月的儲存,活菌量仍有108cfu/ml。將此功能性營養液施用於溫室的臍橙與甘藍幼苗,觀察到明顯的促進生長效果,施用四週後可發現臍橙新梢生長勢及新葉數目的都優於對照組;施用於甘藍幼苗上也明顯的增加鮮重達51.2%。進而分析其中能促進植物生長之物質,結果發現或許與多元胺中的 putrescine 有關。而在病害防治應用上,評估功能性營養液對於溫室栽種的臍橙上柑橘潰瘍病之防治效果,結果顯示在稀釋100倍與500倍葉噴前處理下,相較於對照處理77%之發病率,處理組發病率分別只有22%與34%,防治效果顯著。進而施用於大林田間葡萄柚及柳丁上評估對於潰瘍病的防治作用,於每週定期噴灑施施用下,能將發病度壓制在43.8%,相較於對照組58.9%的發病度有明顯的防治效果。本研究所建立之功能性營養配方於作物栽培上提供病害防治兼有促進生長之效果,此於病蟲害綜合管理上之應用性值得推薦。

The major objective of the investigation was to establish a non-sterile propagation system for the production of a functional nutritive formulation (FNF) which consists mainly viable endospores of Bacillus subtilis WG6-14 and the microbial metabolites which appeared to be nutritive for plant growth. The tested biological control agent WG6-14, originally isolated by Lee (2002) from guava rhizosphere, has been shown with great potential for biofungicide application and superior antagonistic effectiveness against most soil-borne fungal pathogens and phytopathogenic Xanthomonads. As the maintenance of an inundative advantageous status of antagonistic microorganisms is known to be critical for the key point of effectiveness on disease control, a pilot scale liquid fermentation technique platform for the production of WG6-14 endospore formulation was established. Using the endospore formulation as a seed inoculum, a broth culture amplification system was attempted with the use of common agricultural waste as major constituent of growth medium and the cultures were performed with a self-constructed open tank system where in a timer controlled stirring device was equipped. The culture medium was freshly prepared and used without autoclave sterilization. The establishment of a FNF in this investigation was aimed to provide a grower do-it-yourself system for the mass propagation and reactivation of the fermentor produced endospore biomass right before application and thus to reduce the cost of the biofungicide application. With the optimization of the cultural substrate formulation, the yield of endospore of WG6-14 in the FNF prepared with 200L and 500L scale plastic tanks reached 1010cfu/ml 10-12 days. The viable biomass of FNF dropped to 108 cfu/ml level gradually after 3 months. With the application by soil drenching and/or foliar spray of FNF each at appropriate concentration, substantial growth promotion on the cabbage seedling and Navel orange were demonstrated. In the case of Navel orange, the foliar spray with FNF at 100X dilution led to 25.8% increase in numbers of new leaves. Whereas for cabbage seedling, the same treatment led to 51.2% increase in fresh weight 4 weeks after treatment. The analysis by high performance liquid chromatography (HPLC) revealed the presence of polyamines-mainly putrescine and spermidine in the FNF prepared by an optimized protocol. The possible connection of the polyamine production to the observed growth promotion and antimicrobial activity deserves future attention. The application of the prepared FNF in disease control was tested on the green house grown Navel orange by an artificial inoculation model system previously established for citrus canker disease control evaluation. The pretreatment by foliar spray with 100X and 500X diluted FNF 24 hours before artificial inoculation resulted in the reduction of disease severity down to 22% and 34% respectively, the significance of disease control was clearly indicated by that the disease severity of the compared control was 77%. In field trial recently conducted, the foliar spray of 100X diluted FNF was shown to reduce disease severity on grapefruit by 40% comparing to that of non-treated control. The success of FNF development warrants the application of the inundative strategy where in the application of viable, active WG6-14 propagable for biocontrol is attempted.
URI: http://hdl.handle.net/11455/30977
其他識別: U0005-2808200610550300
Appears in Collections:植物病理學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.