Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/30999
標題: 益生性枯草桿菌Bacillus subtilis WG6-14在水稻栽培與病害管理上之應用性
The application of Bacillus subtilis WG6-14 as probiotic in the cultivation and disease management of rice
作者: 林漢釗
Lin, Han-Chao
關鍵字: Bacillus subtilis;枯草桿菌;rice;seedling blight;Bakanae disease;sheath blight;rice bacterial blight;水稻;秧苗立枯病;水稻徒長病;水稻紋枯病;水稻白葉枯病
出版社: 植物病理學系所
引用: 方新政、劉嵋恩. 1986. 尿素及Trichoderma harzianum防治白絹病之可行性. 植保會刊28:432。(摘要) 方新政、劉嵋恩、杜金池. 1988. 化學肥料及含氮化合物對土壤中白絹病菌菌核之影響. 植保會刊30:101-110。 王詩雯. 2002. 拮抗性桿菌屬 (Bacillus spp.) 於水稻白葉枯病防治之應用及其機制. 國立中興大學植物病理學系碩士論文. 84 pp。 宇國勝. 1975. 影響稻苗徒長病發生因子之研究. 國立中興大學植物病理學系碩士論文. 89pp。 宇國勝、孫守恭. 1976. 稻苗徒長病菌子囊孢子之逸散與稻種污染. 植保會刊18:319-332。 朱盛祺. 2004. 黏帚黴菌Gliocladium virens WJGV2、TLGV22之生物特性及其在病害防治應用厚膜孢子製劑之量產. 國立中興大學植物病理學系碩士論文. 93pp。 行政院農業委員會. 2005. 93年第一期稻穀生產成本調查結果提要及收益分析. 2005. http://www.coa.gov.tw/view.php?catid=7281. 呂理燊、李昱輝、鄭安秀、陳紹崇. 1991. 菱角白絹病及其防治. 植保會刊 33:180-187。 宋應星. 1967. 天工開物. 台灣商務. 台北。 李時珍. 1976. 本草綱目. 國立中國醫藥研究所. 台灣台北。 李雅惠. 2002. 拮抗性桿菌屬 (Bacillus spp.) 之分離、培養與抗生活性之改進以及病害防治之應用. 國立中興大學植物病理學系碩士論文. 79 pp。 杜金池、張義璋. 1981. 水稻紋枯病原菌之生態及生物防治研究. 台南農改場研究彙報15:1-24。 杜金池、張義璋. 1983. 近年來本省Rhizoctonia屬病原真菌研究之回顧. 植保會刊25:213-229。 杜金池、張義璋、王仲文. 1979. 水稻紋枯病菌之生態研究. 科學發展月刊7: 1208-1219。 杜金池、程永雄、黃杉芅. 1991. 應用太陽能及有機綠肥對蕃茄白絹病之防治效果. 植保會刊33:95-102。 林再發. 1990. 白葉枯病對水稻產量與米質之影響及抗病品系之育成. 台中區農業改良場研究彙報 29:29-38。 林信山、柯南靖、郭聰欽. 2004. 植物健康管理之真諦及價值. p.3-16. 水稻健康管理研討會專集. 財團法人全方位農業振興基金會. 台北. 158pp。 林寶鑫. 1980. 糧食作物 一、水稻. p.375-397. 台灣農家要覽 (上). 梁鶚編. 財團法人豐年社附設出版社. 台北. 1386 pp。 邱燕欣. 2004. 拮抗性枯草桿菌Bacillus subtilis WG6-14菌株於柑橘潰瘍病防治應用. 國立中興大學植物病理學系碩士論文. 92 pp。 孫守恭. 1978. 稻苗徒長病菌之生態及生殖. 水稻病蟲害:生態學與生流行學. 邱人璋編. 農復會. 台北. 331 pp。 張義璋. 1973. 稻苗徒長病菌有性世代及生態之研究. 國立中興大學植物病理學系碩士論文. 64pp。 張義璋. 2003a. 箱育秧苗立枯病. p.241-249. 植物保護圖鑑系列8 水稻保護 (下冊). 李金龍編. 行政院農業委員會動植物防疫檢疫疫局. 台北. 448 pp。 張義璋. 2003b. 紋枯病. p.299-310. 植物保護圖鑑系列8 水稻保護 (下冊). 李金龍編. 行政院農業委員會動植物防疫檢疫疫局. 台北。 張義璋. 2003c. 徒長病. p.256-262. 植物保護圖鑑系列8 水稻保護 (下冊). 李金龍編. 行政院農業委員會動植物防疫檢疫疫局. 台北. 448 pp。 張彩泉、李蒼郎. 1999. 第一章 稻作文化歷史傳承. p.1-8. 台灣稻作發展史. 鄧耀宗編. 台灣省政府農林廳. 台北. 770 pp. 陳治官. 2003a. 壹、前言 一、作物簡介. p.2-8. 植物保護圖鑑系列8 水稻保護 (上冊). 李金龍編. 行政院農業委員會動植物防疫檢疫疫局. 台北. 448 pp。 陳昇明、郭文良. 1985. 枯草桿菌對水稻紋枯病菌之抗生作用及防治效應. 植保會刊 27:95-103。 陳昭瑩. 2003 b. 根圈細菌於植物病害防治之應用. p.15-25. 微生物多樣性及其永續利用研討會專刊. 國立台灣大學植物病理與微生物學系. 台北,台灣。 彭廣茜、張學君. 1999. 枯草芽孢桿生防菌株Bp產生抗菌物質的條件. 貴州農業科學 27:6-9。 曾德賜、黃文的、柯欣志、葉瑩. 2003. 枯草桿菌作為益生性生物製劑之應用. p.185-206. 2004國際植物健康管理研討會專集。 費雯綺、王玉美、張國輝、李明郎、廖莉莉. 2002. 植物保護手冊. 行政院農業委員會農業藥物毒物試驗所編印. 台中. 791 pp。 黃益田. 2004. 溫故知新 舊瓶新酒~談水稻種子之溫湯消毒. 農業世界雜誌254:86-89。 劉嵋恩、吳龍溪. 1971. 土壤溫度及含水量對白絹病菌腐生活力之影響. 科學農業19:191-195。 劉顯達、鄭光哲. 1985. 水稻紋枯病生物防治施用拮抗真菌Trichoderma harzianum 作生物防治因子. 屏東農專學報26:1-7。 蔣汝國. 2005. 有機栽培水稻紋枯病之非農藥防治法之探討. 台南區農業改良場研究彙報 46:25-32。 蔡武雄. 2003. 陸、病害各論. p.234. 植物保護圖鑑系列8 水稻保護 (下冊). 李金龍編. 行政院農業委員會動植物防疫檢疫疫局. 台北. 448 pp。 鄭清煥. 2003. 參、害蟲各論. p.32-33. 植物保護圖鑑系列8 水稻保護 (上冊). 李金龍編. 行政院農業委員會動植物防疫檢疫疫局. 台北. 448 pp。 澤田兼吉. 1919. 台灣產菌類調查報告第1編. 台灣總督府農事試驗埂特別報告第19號。 謝式坢鈺. 1978. 水稻白葉枯病原細菌Xanthomonas oryzae之生態. p.167-184. 邱人璋編. 水稻病蟲害:生態學與流行學. 中國農村復興聯合委員會. 台北. 331 pp。 謝式坢鈺. 2003. 水稻白葉枯病. Pp. 323-338. 植物保護圖鑑系列8 水稻保護(下冊). 李金龍編. 行政院農業委員會動植物防疫檢疫疫局. 台北. 448 pp。 簡錦忠、朱啟魯. 1974. 水稻秧苗立枯病病因之研究. 研究彙報 32:1-16。 簡錦忠、洪雲卿. 1971. 稻苗立枯病症之初步觀察. 農業研究 20:47-52. 簡錦忠、黃益田. 1978. 水稻苗期病害之病原與生態. p. 319-331. 邱人璋編. 水稻病蟲害:生態學與流行病學. 中國農村復興聯合委員會. 331 pp。 羅朝村. 1996. 生物防治在作物病害管理上的應用與發展. 植物保護新科技研討會專刊. 141-150。 Aldrch, J., and Baker, R. 1970. Biological control Fusarium roseum f. sp. dianthi by Bacillus subtilis . Plant Dis. Rep. 54:446-448. Amoah, B. K., Macdonald, M. V., Rezanoor, N., and Nicholson, P. 1996. The use of the random amplified polymorphic DNA technique to identify mating groups in the Fusarium section Liseola. Plant Pathol. 45:115–125. Anuratha, C. S., and Gnanamanickam, S. S. 1987. Pseudomonas flurescens suppresses the development of bacterial blight symptoms. Int. Rice Res. Newsl. 12:17. ( Abstr.) Araújo, F. F., Henning, A. A., and Hungria, M. 2005. Phytonormones and antibiotics produced by Bacillus subtilis and their effects on seed pathogenic fungi and on soybean root development. World J. of Microbiol. & Biotechnol. 21:1639-1645. Asaka, O., and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbial. 62:4081-4085. Asante, G. J., and Neal, A. L. 1964. Characterization of fungistatic substances produced by a Bacillus antagonistic to Ceratocystis ulmi. Phytopathology 54:810-822. Bacon, C. W., Porter, J. K., Norred, W. P., and Leslie, J. F. 1996. Production of fusaric acid by Fusarium species. Appl. Environ. Microbiol. 62:4039–4043. Baker, C. J., Stavely, J. R., Thromas, C. A., Sasser, M., and Macfall, J. S. 1983. Inhibitory effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves. Phytopathology 73:1148-1152. Baker, K. F. 1987. Evolving concepts of biological control of plant pathogens. Annu. Rev. Phytopathol. 25:67-85. Bell, D. K., Wells, H. D., and Markham, C. R. 1982. In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology 72:379-382. Bernal, G., Illanes, A., and Ciampi, L. 2002. Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. Electronic J. Biotechnol. 5:1-9 Besson, F., and Michel, G. 1986. Isolation and characterization of new iturins: iturin D and iturin E. J. Antibiot. 40:437-442. Booth, C. 1971. The genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey, England. 237 pp. Boyle, L. W. 1961. The ecology of Sclerotium rolfsii with emphasis on the note of saprophytic media. Phytopathology 51:117-119. Brain, B. M. G., and Deborah, R. F. 2002. Biological control of plant pathogens: research, commercialization, and application in the USA. APSnet Feature Story May-June(www.apsnet.org/online/feature/biocontrol) Brathwaite, C. W. D., and Cunningham, H. G. A. 1982. Inhibition of Sclerotium rolfsii by Pseudomonas aeruginosa. Can. J. Bot. 60:237-239. Carldis, P. D. 1925. A rot of the calimyna fig in California. Phytopathology 15:728. (Abstr.) Castilla, N., and Savary, S. 2000a. Epidemiology of rice sheath blight caused by Rhizoctonia solani Kühn under tropical conditions. Page 66 (Abstr.) in: Third International Symposium on Rhizoctonia (ISR 2000). National Chung Hsing University, Taichung, Taiwan, 125 pp. Castilla, N., and Savary, S. 2000b. Effect of spatial pattern of initial infections on the epidemics of rice sheath blight caused by Rhizoctonia solani Kühn. Page 67 (Abstr.) in: Third International Symposium on Rhizoctonia (ISR 2000). National Chung Hsing University, Taichung, Taiwan, 125 pp. Chang, I. P., and Kommedahl, T. 1968. Biological control of seedling blight of corn by coating kernels with antagonistic microorganism. Phytopathology 58:1395-1401. Choi, Y. C., Yun, M. S., and Wakimoto, S. 1980. Serological specificity of Xanthomonas campestris pv. oryzae. Ann. Phytopathol. Soc. Jpn. 46:455-463. Cook, R. J. 1990. Twenty-five years of progress towards biological control. Pages 1-14 In: Biological Control of Soil-borne Plant Pathogens. D. Homby Ed. CAB International, Wallingford (UK). Davey, A. E., amd Leach, L. D. 1935. Toxicity of compounds of ammonia to Sclerotium rolfsii. Phytopathology 25:895-896. (Abstr. ) Desjardins, A. E., Plattner, R. D., and Nelson, P. E. 1997. Production of fumonisin B1 and moniliformin by Gibberella fujikuroi from rice from various geographic areas. Appl. Environ. Microbiol. 63:1838–1842. Devi, T. V., Vizhi, R. M., Sakthivel, N., and Gnanamanickam, S. S. 1989. Biological control of sheath-blight of rice in India with antagonistic bacteria. Plant and Soil. 119:325-330. Diomande, M., and Beute, M. K. 1977. Comparison of soil plate fungicide screening and field efficacy in control of Sclerotium rolfsii on peanuts. Plant Dis. Report. 61:408-412. Doherty, M. A., and Preece, T. F. 1978. Bacillus cereus prevents germination of uredospore of Puccinia allii and the development of rust disease of leek, Allium poreum, in controlled environments. Physiol. Plant Pathol. 12:123-132. Dunleavy, J. 1954. Control of damping-off sugar beet by Bacillus subtilis. Phytopathology 45:252-258. Elad, Y., Katan, J., and Chet, Y. 1980. Physical, biological, and chemical control integrated for soil borne diseases in potatoes. Phytopathology 70:418-422. Endo, R. M., and Burkholder, E. C., 1971. The association of Fusarium moniliforme with the crown rot complex of asparagus. Phytopathology 6:891. (Abstr.) Ferreira, J. H., Matthe, F. N., and Thomas, A. C. 1990. Biological control of Eutypa lata on grapevine by an antagonistic strain of Bacillus subtilis. Phytopathology 81:283-287. Fiddaman, P. J., and Rossall, S. 1993. The production of antifungal volatiles by Bacillus subtilis. J. Appl. Bacteriol. 74:119-126. Food and Agriculture Organization of the United Nations, FAO. 2005. FAO Statistical Databases. 2005. from http://faostat.fao.org/faostat/default.jsp?language=EN&version=ext&hasbulk=0. Fravel, D. R., and Spurr, H. W. 1990. Biocontrol of tobacco brown spot disease by Bacillus cereus subsp. mycoides in a controlled environment. Phytopathology 81:283-287. Garrett, S.D. 1965. Toward biological control of soilborne plant pathogens. Pages 4-17. in:Ecology of Soilborne Plant Pathogens. K.F. Baker and W.C. Snyder, eds. University of California Press, Berkeley, 571pp. Gautam, M., and Kolte, S. J. 1979. Control of sclerotium of sunflower through organic amendments of soil. Plant and Soil 53:233-238. Glick, B. R., and Bashan, Y. 1997. Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol. Anv. 15:353-378. Goto, M. 1964. “Kresek” and pale yellow leaf, systemic symptoms of bacterial leaf blight of rice caused by Xanthomonas oryzae (Uyeda et Ishiyama) Dowson. Plant Dis. Reptr. 48:858-861. Grinstein, A., Katan, J., Razik, A. A., Zeydan, O., and Elad, Y. 1979. Control of Sclerotium rolfsii and weeds in peanuts by solar heating of the soil. Plant Dis. Reptr. 63:1056-1059. Grossman, A. D., and Losick, R. 1988. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl. Acad. Sci. 85:4369-4373. Gurkin, R. S., and Jenkins, S. F. 1985. Influence of cultural practices, fungicides and inoculum placement on southern blight and Rhizoctonia crown rot of carrot. Plant Dis. 69:477-481. Hall, T. J. 1986. Effect of xylem-colonization Bacillus spp. on Verticillium wilt in maples. Plant Dis. 70:521-524. Henry, A. W. 1923. The pathogenicity of Fusarium moniliforme Sheld. On cereals. Phytopathology 13:52. ( Abstr.) Hsieh, S. P. Y., and Buddenhagen, I. W. 1974. Suppressing effects of Erwinia herbicola on infection by Xanthomonas oryzae and on symptom development in rice. Phytopathology 64:1182-1185. Hsieh, S. P. Y., Buddenhagen, I. W., and Kauffman, H. E. 1974. An improved method for detecting the presence of Xanthomonas oryzae in rice seed. Phytopathology 64:273-274. Hsieh, Y., and Chet, I. 1968. The effect of nitrogenous amendments on the germinability of sclerotia of Sclerotium rolfsii and on their accompanying microflora. Phytopathology 58:209-211. Hsieh, W. H., Smith, S. N., and Snyder. W. C. 1977. Mating groups in Fusarium moniliforme. Phytopathology 67:1041–1043. Hwang, S. F., and Chakravarty, P. 1992. Potential for the integrated control of Rhizoctonia root-rot of Pisum sativum using Bacillus subtilis and a fungicide. Z. PflKrankh. PflSchutz. 99:626-636. Islam, Z., Pamplona, R., Cruz, C., V. Atkinson, A. D., and Azucena, E.J. 2003. Biological Control of Rice Diseases. International Rice Research Institute. 24 pp. Katz, E., and Demain, A. L. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41:449-474. Kilian, M., Steiner, U., Krebs, B., Junge, H., and Schmiedeknecht, R. H. 2000. FZB24 Bacillus subtilis – mode of action of microbial agent enhancing plant vitality. Pflanzenschutz-Nachr. 1:72-93. Kondoh, M., Hirai, M., and Shoda, M. 2001. Integrated biological and chemical control of damping-off caused by Rhizoctonia solani using Bacillus subtilis lXB14-C and flutolanil. J. Biosci. Bioeng. 91:173-177. Krebs, B., Höding, B., Kübart, S. M., Workie, A., Junge, H., Schmiedeknecht, G., Grosch, R., Bochow, H., and Hevesi, M. 1998. Use of Bacillus subtilis as biocontrol agent. 1. Activities and characterization of Bacillus subtilis strain. J. Plant Dis. Prot. 105:181-197. Kuhlman, E. G. 1982. Varieties of Gibberella fujikuroi with anamorphs in Fusarium section Liseola. Mycologia 74:759–768. Latoud, C., Peypoux F., and Michel, G. 1987. Biosynthesis of inturin A, an antifungal antibiotic form Bacillus subtilis, membrane permeability and lipid composition. J. Antibioticas 40:1588-1959. Leslie, J. F. 1991. Mating populations in Gibberella fujikuroi (Fusarium Section Liseola). Phytopathology 81:1058–1060. Leach, C. D., and Davey, A. E. 1942. Reducing southern Sclerotium rot of sugar beets with nitrogenous fertilizer. J. Agr. Res. 64:1-18. Lead, Y., Cheat, Y., and Kaman, J. 1980. Trichoderma harzianum: A biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology 70:119-121. Leifert, C., Li, H., Chidburee, S., Hampson, S., Workman, S., Sigee, D., Epton, H. A. S., and Harbour, A. 1995. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. J. Appl. Bacteriol. 78:97-108. Leslie, J. F., Marasas, W. F. O., Shephard, G. S., Sydenham, E. W. , Stockenström, S., and Thiel, P. G. 1996. Duckling toxicity and the production of fumonisin and moniliformin by isolates in the A and F mating populations of Gibberella fujikuroi (Fusarium moniliforme). Appl. Environ. Microbiol. 62:1182–1187. Leslie, J. F., Plattner, R. D., Desjardins, A. E., and Klittich. C. J. R. 1992. Fumonisin B1 production by strains from different mating populations of Gibberella fujikuroi (Fusarium moniliforme). Phytopathology 82:341–345. Leslie, J. F. 1991. Mating populations in Gibberella fujikuroi (Fusarium section Liseola). Phytopathology 81:1058-1060. Lewis, J. A., and Fravel, D. R. 1996. Influence of Pyrax/biomass of biocontrol fungi on snap bean damping-off caused by Sclerotium rolfsii in the field and on germination of sclerotia. Plant Dis. 80: 655-659. Lim, G. 1967. Fusarium population in rice field soils. Phytopathology 57:1152-1153. Liu, Z. L., and Sinclair, J. B. 1990. Biocontrol of Rhizoctonia root and crown rot of soybeans by Bacillus megaterium ATCC-55000. Phytopathology 80:1051 (Abstr.). Lo, T. T. 1961. A brief report on the plant diseases and their control in Taiwan. Plant Industry series. 23:1-52. Logrieco, A., Moretti, A., Castella, G., Kostecki, M., Golinski, P., Ritieni, A., and Chelkowski, J. 1998. Beauvericin production by Fusarium species. Appl. Environ. Microbiol. 64:3084-3088. Lu, J.J., and Chang, T.T. 1980. Rice in its temporal and spatial perspective. Pages 1-74 in: Rice Production and Utilization. B.S. Luh ed. AVI Publishing Co, Westport, CT, USA. Marasas, W. F. O., Wehner, F. C., van Rensburg, S. K., and van Schlkwyk, D. J. 1981. Mycoflora of corn produced in human esophageal cancer areas in Transkei. Phytopathology 71:792-796. Maiti, D., and Sen, C. 1985. Integrated biocontrol of Sclerotium rolfsii with nitrogenous fertilizers and Trichoderma harzianum. Indian J. Agri. Sci. 55:464-468. Mckeen, C. D., Reilly, C. C., and Pusey, P. L. 1985. Production and partial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilis. Phytopathology 76:136-139. Mihail, J. D., and Alcorn, S. M. 1984. Effects of soil solarization on Macrophomina phaseolina and Sclerotium rolfsii. Plant Dis. 68:156-159. Mizukami, T., and Wakimoto, S. 1969. Epidemiology and control of bacterial leaf blight of rice. Annu. Rev. Phytopathol. 7:51-72. Morgan, F. L. 1963. Infection inhibition and germtube lysis of three cereal rusts by Bacillus pumilus. Phytopathology 53:1346-1348. Natural, M. P. 1975. Survival of streptomycin resistant isolates of Xanthomonas oryzae in rice seeds. MS thesis, Unversity of the Philippines at Los Banos, Laguna, Philippines. 58pp. Nelson, P.E., Toussoun, T.A., and Marasas, W. F. O. 1983. Fusarium Species: An Illustrated Manual for Identification. The Pennsylvania State Univ. Press, University Park, and London. Nicholson, P., Simpson, D. R., Weston, G., Rezanoor, H. N., Lees, A. K., Parry, D. W., and Joyce, D. 1998. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assay. Plant Pathol. 53:17–37. Nirenberg, H. 1976. Untersuchungen uber die morphologische und biologische Differenzierung in der Fusarium-Sektion Liseola. Mitt. Biol. Bundesanst. Land-Forstwirtsch. Berlin-Dahlem. 169:1–117. Norred, W. P. 1993. Fumonisins—Mycotoxins produced by Fusarium moniliforme. J. Toxicol. Environ. Health 38:309-328. Nyvall, R. F., and Kommedahl, T. 1968. Individual thickened hyphae as survival structures of Fusarium moniliforme in corn. Phytopathology 58:1704-1707. Ogoshi, A. 1975. Grouping of Rhizoctonia solani Kuhn and their perfect stage. Rev. Plant Prot. Res. 8:93-103. Osburn, R. M., Milner, J. L., Oplinger, E. S., Smith, R. S., and Handelsman, J. 1995. Effect of Bacillus subtilis UW85 on the yield of soybean at two field sites in Wisconsin. Plant Dis. 79:551-556. Ou, S. H. 1972. Bakanae disease and foot rot. Pages 247-256 in: Rice Disease. S. H. Ou ed. Commonw. Mycol. Inst., Kew, England. Padmanabhan, S. Y. 1983. Integrated control of bacterial blight of rice. Oryza 20:188-194. PodiIe, A. R., Prasad, G. S., and Dube, H. C. 1985. Bacillus subtilis as antagonist to vascular wilt pathogens. Curr. Sci. 54:864- 865. Podile, A. R., and Prakash, A. P. 1996. Lysis and biological control of Aspergillus niger by Bacillus subtilis AF1. Can. J. Microbiol. 42:533-538. Priest, F. G. 1993. Systematics and ecology of Bacillus. Pages 3-16. In: Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. R. Losick, J. A. Hoch, and A. L. Sonenshein eds. American Society of Microbiology, Washington. Punja, Z. K., Carter, J. D., Campell, G. M., and Rossell, E. L. 1986. Effects of calcium and nitrogen fertilizers, fungicides, and tillage practices on incidence of Sclerotium rolfsii on processing carrots. Plant Dis. 70:819-824. Punja, Z. K., and Grogan, R. G. 1982. Effects of inorganic salts, carbonate, bicarbonate anions, ammonia, and the modifying influence of pH on sclerotial germination of Sclerotium rolfsii. Phytopathology 72:635-639. Punja, Z. K., and Gorgan, R. G. 1983. Basidocarp induction, nuclear condition, variability, and heterokary on incompatibility in Athelia (Sclerotium) rolfsii. Phytopathology 73:1273-1278. Pusey, P. L. 1986. Compatibility of Bacillus subtilis for postharvest control of peach brown rot with commercial fruit waxes, dichloran, and cold-storage condition. Plant Dis. 70:587-590. Ritieni, A., Fogliano, V., Randozzo, G., Scarallo, A., Logrieco, A., Moretti, A., Mannina, L., and Bottalico, A. 1995. Isolation and characterization of fusaproliferin, a new toxic metabolite from Fusarium proliferatum. Nat. Toxins 3:17-20. Roinking, O. A. 1937. Isolation made from heart rot of banana in Huduras. Phytopathology 27:853-854. Rytter, J. L., Lukezic, F. L., Craig, R. and Moonman, G. W. 1989. Biological control of Geranium rust by Bacillus subtilis. Phytopathology 79:367-370. Schmiedeknecht, G., Bochow, H., and Junge, H. 1998. Use of Bacillus subtilis as biocontrol agent. II. Biological control of potato diseases. Z. PflKrankh. PflSchutz. 105:376-386. Schreiber, L. R., Gregory, G. F., Keause, C. R., and Ichida, J. M. 1988. Production, partial purification, and antimicrobial activity of a novel antibiotic produced by Bacillus subtilis isolate from Ulmus americana. Can. J. Bot. 66:2338-2346. Shahjahan, A. K. M., Fabeller, N., and Mew, T. W. 1990. Effect of crop management practices on the sclerotia dynamics of Rhizoctonia solani in upland rice. Bangladesh J. Plant Pathol. 6:19-23. Shanmugam, V., Sriram, S., Babu, S., Nandakumar, R., Raguchander, T., Balasubramanian, P., and Samiyappan, R. 2001. Purification and characterization of an extracellular α-glucosidase protein from Trichoderma viride which degrades phytotoxin asscociated with sheath blight disease in rice. J. Appl. Microbiol. 90:320-329. Shoda, M. 2000. Bacterial control of plant diseases. J. Biosci. Bioeng. 89:515-521. Singh, R. S., and Reddy, C. S. 1979. Suppression of damping-off of tomato and seeding blight of chickpea and sugarbeet by strains of Streptomyces distaticus. Ind. Phytopathol. 32:374-377. Sriram, S., Raguchander, T., Babu, S., Nandakumar, R., Shanmugam, V., Vidhyasekaran, P., Balasubramanian, P., and Samiyappan, R. 2000. Inactivation of phytotoxin produced by the rice sheath blight pathogen Rhizoctonia solani. Can. J. Microbiol. 46:520-524. Sivamani, E., Anuratha, C. S., and Gnanamanickam, S. S. 1987. Toxicity of Pseudomonas oryzae (Uyeda et Ishiyama) Dowson, the incident of bacterial leaf blight of rice. Ann. Phytopathol. Soc. Jpn. 34:289-297. Sneath, P. H. A., Mair, M. E., and Holt, J. G., eds. 1986. Bergey’s Manual of Systematic Bacteriology. Vol. 2. Willian & Wilkins, Baltimore, MD. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56:845-857 Stowe, B. B., and Yamaki, T. 1957. The history and physiological action of the gibberellins. Annu. Rev. Plant Physiol. 8:181-216. Su, S. K. 1975. The disease cycle of rice bakanae disease in Taiwan. Proc. Natl’ Sci. Council 8:245-256. Swings, J., Van den Mooter, M., Vauterin, L., Hoste, B., Gillis, M., Mew, T. W., and Kersters, K. 1990. Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae pv. oryzae (ex Ishiyama 1922) sp. Nov., nom. rev. Int. J. Bacteriol. 40:309-311. Thiel, P. G., Marasas, W. F. O., Sydenham, E. W., Shephard, G. S., Gelderblom, W. C. A., and Nieuwenhuis, J. J. 1991. Survey of fumonisin production by Fusarium species. Appl. Environ. Microbiol. 57:1089-1093. Todar, K. 2003. The genus Bacillus. Todar’s Online Textbook of Bacteriology. University of Wisconsin-Madison. Department of Bacteriology. Online Resources. http://textbookofbacteriology.net/Bacillus.html Tschen, J. S-M. 1991. Effect of antibiotic antagonists on control of basal stem rot of chrysanthemum casuaed by Rhizoctonia solani. Plant Prot. Bull. 33: 56-62. Tu, C. C., Hsieh, T. F., Tsai, W. H., and Kimbrough, J. W. 1992. Induction of basidia and morphological comparison among isolates of Athelia (Sclerotium) rolfsii. Mycologia 84:695-704. Tudzynski, B., and Hölter, K. 1998. Gibberellin biosynthetic pathway in Gibberella fujikuroi: evidence for a gene cluster. Fungal Genet. Biol. 25:157-170. Turner, J. T. and Backman, P. A. 1911. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 75: 347-353. Utkhede, R. S. and Rage, J. E. 1982. Interaction of antagonist and pathogen in biological control of onion white rot. Phytopathology 26:379-407. Verschuere, L., Rombaut, G., Sorgeloos, P., and Verstrete, W. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Bio. Rev. 64:655-671. Vidhyasekaran, P., Ruby, P. T., Samiyappan, R., Velazhahan, R., Vimala, R., Ramanathan, A., Paranidharan, V., and Muthukrishnan, S. 1997. Host-specific toxin production by Rhizoctonia solani, the rice sheath blight pathogen. Phytopathology 87:1258-1263. Viswanath-Reddy, M. 1965. Inoculum potential and foot-rot of rice (Oryza sativa L.). Phytopathology. Z. 53:197-200. Voigt, K., Schleier, S., and Bruckner, B.1995. Genetic variability in Gibberella fujikuroi and some related species of the genus Fusarium based on random amplification of polymorphic DNA (RAPD). Curr. Genet. 27:528-535. Voorhees, R. K., and Eddins, A. H. 1932. Gibberella monilfirme on coen plants in the field. Phytopathology 22:29. (Abstr.) Whipps, J. M. 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52:487-511. Wilson, C. L., and Pusey, P. L. 1985. Potential for biological control of postharvest plant diseases. Plant Dis. 69:375-378. Yu, M. C., Huang, Y. T., and Tsay, H. J. 1980. Disease development of rice sheath blight. Plant Prot. Bull. 22:263-267 Zehnder, W. G., Murphy, J. F., Sikora, E. J., and Kloepper, J. W. 2001. Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107:39-50. 王淳禾. 2006. 枯草桿菌Bacillus subtilis WG6-14懸浮培養增量菌液製作及其病害管理之應用. 國立中興大學植物病理學系碩士論文. 59 pp。 方新政. 1991. 白絹病菌菌核在含尿素之土壤中失去活力原因探討. 台南區農業改良場研究彙報27:37~44。 方新政、劉嵋恩. 1986. 尿素及Trichoderma harzianum防治白絹病之可行性. 植保會刊 28:432。 (摘要) 方新正、劉嵋恩. 1989. 尿素在土壤中抑制白絹病之機制. 植保會刊 31:163-172。 方新政、劉嵋恩、杜金池. 1988. 化學肥料及含氮化合物對土壤中白絹病菌菌核之影響. 植保會刊 30:101-110。 王詩雯. 2002. 拮抗性桿菌屬 (Bacillus spp.) 於水稻白葉枯病防治之應用及其機制. 國立中興大學植物病理學系碩士論文. 84 pp。 李雅惠. 2002. 拮抗性桿菌屬 (Bacillus spp.) 之分離、培養與抗生活性之改進以及病害防治之應用. 國立中興大學植物病理學系碩士論文. 79 pp。 杜金池、程永雄、黃杉芅. 1991. 應用太陽能及有機綠肥對蕃茄白絹病之防治效果. 植保會刊33:95-102。 邱燕欣. 2004. 拮抗性枯草桿菌Bacillus subtilis WG6-14菌株於柑橘潰瘍病防治應用. 國立中興大學植物病理學系碩士論文. 92 pp。 林寶鑫. 1980. 糧食作物 一、水稻. p.375-397. 台灣農家要覽 (上). 梁鶚編. 財團法人豐年社附設出版社. 台北. 1386 pp。 侯福分. 1983. 水稻機械插秧育苗管理. 台中區農推專訊 17:1-10。 陳昭瑩. 2003. 根圈細菌於植物病害防治之應用. p.15-25. 微生物多樣性及其永續利用研討會專刊. 國立台灣大學植物病理與微生物學系. 台北,台灣。 張義璋. 2003. 箱育秧苗立枯病. p.241-249. 植物保護圖鑑系列8 水稻保護 (下冊) . 李金龍編. 行政院農業委員會動植物防疫檢疫疫局. 台北. 448 pp。 費雯綺、王玉美、張國輝、李明郎、廖莉莉. 2002. 植物保護手冊. 行政院農業委員會農業藥物毒物試驗所編印. 台中. 791 pp。 簡錦忠、洪雲卿. 1971. 稻苗立枯病症之初步觀察. 農業研究 20:47-52。 Arkhipova, T.N., Veselov, S.U., Melentiev,A.I., Martynenko, E.V., and Kudoyarova, G.R. 2005. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil 272:201–209. Babad, J., Pinsky, A., Turnercraff, R., and Sharon, N. 1952. An antifungal polypeptide produced by Bacillus subtilis. Nature 170:618-619. Besson, F., Peypoux, F., Michel, G., and Delcambe, L. 1976. Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J. Antibiotics 29:1043-1049. Brathwaite, C. W. D., and Cunningham, H. G. A. 1982. Inhibition of Sclerotium rolfsii by Pseudomonas aeruginosa. Can. J. Bot. 60:237-239. Elad, Y., Katan, J., and Chet, Y. 1980. Physical, biological, and chemical control integrated for soil born diseases in potatoes. Phytopathology 70:418-422. Ferreira, S. A., and Rebecca, R. A. 1992. Sclerotium rolfsii. Knowledge Master. Extension Entomology & UH-CTAHR Integrated Pest Management Program. Online Resources. http://www.extento.hawaii.edu/Kbase/Crop/Type/s_rolfs.htm Gautam, M., and Kolte, S. J. 1979. Control of sclerotium of sunflower through organic amendments of soil. Plant and Soil 53:233-238. Grinstein, A., Katan, J., Razik, A. A., Zeydan, O., and Elad, Y. 1979. Control of Sclerotium rolfsii and weeds in peanuts by solar heating of the soil. Plant Dis. Reptr. 63:1056-1059. Gurkin, R. S., and Jenkins, S. F. 1985. Influence of cultural practices, fungicides and inoculum placement on southern blight and Rhizoctonia crown rot of carrot. Plant Dis. 69:477-481. Huang, H. C., and Chang, C. 2003. Effect of relative humidity on myceliogenic germination of Sclerotia of Sclerotinia minor. Plant Pathol. Bul. 12:65-68. Islam, Z., Pamplona, R., Cruz, C., V. Atkinson, A. D., and Azucena, E.J. 2003. Biological Control of Rice Diseases. International Rice Research Institute. 24 pp. Kado, C. H., and Heskett. M. G. 1970. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 60:969-976. Katz, E., and Demain, A. L. 1977. The peptide antibiotic of Bacillus: chemistry, biogenesis, and possible function. Bacteriol. Rev. 41:449-474. Krebs, B., Höding, B., Kübart, S. M., Workie, A., Junge, H., Schmiedeknecht, G., Grosch, R., Bochow, H., and Hevesi, M. 1998. Use of Bacillus subtilis as biocontrol agent. 1. Activities and characterization of Bacillus subtilis strain. J. Plant Dis. Prot. 105:181-197. Latoud, C., Peypoux F. and Michel, G. 1987. Action of iturin A, an antifungal antibiotic from Bacillus subtilis, on the yeast Saccharomyces cerevisiae: modifications of membrane permeability and lipid composition. J. Antibiotics 40:1588-1595. Lewis, J. A., and Fravel, D. R. 1996. Influence of Pyrax/biomass of biocontrol fungi on snap bean damping-off caused by Sclerotium rolfsii in the field and on germination of sclerotia. Plant Dis. 80: 655-659. Maiti, D., and Sen, C. 1985. Integrated biocontrol of Sclerotium rolfsii with nitrogenous fertilizers and Trichoderma harzianum. Indian J. Agri. Sci. 55:464-468. Maxwell, D. P., and Bateman, D. F. 1968. Influence of carbon source and pH on oxalate accumulation in culture filtrates of Sclerotium rolfsii. Phytopathology 58:1351-1355. Mckeen, C. D., Reilly, C. C. and Pusey, P. L. 1985. Production and practial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilis. Phytopathology 76:136-139. Mihail, J. D., and Alcorn, S. M. 1984. Effects of soil solarization on Macrophomina phaseolina and Sclerotium rolfsii. Plant Dis. 68:156-159. Muhammad, S., and Amusa, N. A. 2003. In-vitro inhibition of growth of some seedling blight inducing pathogens by compost-inhabiting microbes. Afr. J. Biotechnol. 2:161–164. Naima. K., Brahim, E., Latifa, L., and Abdallah, O. 2004. Effect of nitrogen fertilizers and Trichoderma harzianum on Sclerotium rolfsii. Agronomie 24:281-288. Nandi, P., and Sen, G. P. 1953. An antifungal substance from a strain of Bacillus subtilis. Nature 172:871-872. Punja, Z. K., and Grogan, R. G. 1982. Effects of inorganic salts, carbonate, bicarbonate anions, ammonia, and the modifying influence of pH on sclerotial germination of Sclerotium rolfsii. Phytopathology 72:635-639. Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., and Pare, P. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100:4927-4932. Shoda, M. 2000. Bacterial Control of Plant Diseases. J. Biosci. Bioeng. 89:515-521. Singh, R. S., and Reddy, C. S. 1979. Suppression of damping-off of tomato and seeding blight of chickpea and sugar beet by strains of Streptomyces distaticus. Indian Phytopathol. 32:374-377. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56:845–857. Tu, C. C., Hsieh, T. F., Tsai, W. H., and Kimbrough, J. W. 1992. Induction of basidia and morphological comparison among isolates of Athelia (Sclerotium) rolfsii. Mycologia 84:695-704. Turner, J. T., and Backman, P. A. 1911. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 75: 347-353. Zehnder, W. G., Murphy, J. F., Sikora, E. J., and Kloepper, J. W. 2001. Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107:39-50. 王淳禾. 2006. 枯草桿菌Bacillus subtilis WG6-14懸浮培養增量菌液製作及其病害管理之應用. 國立中興大學植物病理學系碩士論文. 59 pp。 宇國勝. 1975. 影響稻苗徒長病發生因子之研究. 國立中興大學植物病理學系碩士論文. 89 pp。 宇國勝、孫守恭. 1976. 稻苗徒長病菌子囊孢子之逸散與稻種污染. 植保會刊 18:319-332。 李雅惠. 2002. 拮抗性桿菌屬 (Bacillus spp.) 之分離、培養與抗生活性之改進以及病害防治之應用. 國立中興大學植物病理學系碩士論文. 79 pp。 林寶鑫. 1980. 糧食作物 一、水稻. p.375-397. 台灣農家要覽 (上). 梁鶚編. 財團法人豐年社附設出版社. 台北. 1386 pp。 倪蕙芳. 1992. 枯草桿菌Baillus subtilis PB-113菌株所產生抗生物質之理化與生物特性研究. 國立中興大學植物病理學系. 碩士論文. 91 pp。 孫守恭. 1978. 稻苗徒長病菌之生態及生殖. p.303-317. 邱人璋編. 水稻病蟲害:生態學與流行學. 中國農村復興聯合委員會. 台北. 331 pp。 張義璋. 1973. 稻苗徒長病菌有性世代及生態之研究. 國立中興大學植物病理學系碩士論文. 64 pp。 張義璋. 2003. 徒長病. p.256-262. 植物保護圖鑑系列8 水稻保護 (下冊). 李金龍編. 行政院農業委員會動植物防疫檢疫疫局. 台北. 448 pp。 曾聰徹. 1994. 正視伏馬鐮孢毒素問題. 科學月刊 25:354-356。 費雯綺、王玉美、張國輝、李明郎、廖莉莉. 2002. 植物保護手冊. 行政院農業委員會農業藥物毒物試驗所編印. 台中. 791 pp。 黃益田. 2004. 溫故知新 舊瓶新酒~談水稻種子之溫湯消毒. 農業世界雜誌 254:86-89。 彭廣茜、張學君. 1999. 枯草芽孢桿生防菌株Bp產生抗菌物質的條件. 貴州農業科學27:6-9。 Babad, J., Pinsky, A., Turnercraff, R., and Sharon, N. 1952. An antifungal polypeptide produced by Bacillus subtilis. Nature 170:618-619. Bacon, C. W., and Hinton, D. M. 2002. Endophytic and biological control potential of Bacillus mojavensis and related species. Biological Control 23:274–284 Besson, F., Peypoux, F., Michel, G., and Delcambe, L. 1976. Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J. Antibiotics 29:1043-1049. Duitman, E. H., Hamoen, L. W., Rembold, M., Venema, G., Seitz, H., Saenger, W., Bernhard, F., Reinhardt, R., Schmidt, M., Ullrich, C., Stein, T., Leenders, F., and Vater, J. 1999. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: A multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc. Natl. Acad. Sci. USA 96:13294-13299. Ferrira, J. H., Matthee, F. N., and Thomas, A. C. 1990. Biological control of Eutypa lata on grapevine by an antagonistic strain of Bacillus subtilis. Phytopathology. 81:283-287. Islam, Z., Pamplona, R., Cruz, C., V. Atkinson, A. D., and Azucena, E.J. 2003. Biological Control of Rice Diseases. International Rice Research Institute. 24 pp. Kado, C. H., and Heskett. M. G. 1970. Selective media for isolation of Agrobacte
摘要: 
為了探討枯草桿菌 (Bacillus subtilis ) WG6-14於育苗作業中對台稉8號(Oryza sativa L. cv. Tai-Keng 8; TK8) 及台稉9號 (Oryza sativa L. cv. Tai-Keng 9; TK9) 之應用性。將本實驗室所建立之醱酵量產技術所生產出來之枯草桿菌WG6-14醱酵菌液 (1010 endospores/ml) 經1~100倍稀釋後來取代25%撲克拉乳劑 (2000倍) 對稻種進行浸種處理24小時,以化學藥劑或清水做浸種處理為對照組 (CK)。可知施用WG6-14 50倍與100倍行浸種處理可以提早並增加水稻發芽率。然而將濃度提高至1倍與10倍,則會抑制胚根與胚軸的生長。於2005年台中市南屯區育苗場以WG6-14取代化學藥劑來處理供試稻種台稉8號與台稉9號,以WG6-14 50倍稀釋液比照化學藥劑施用方式對此兩稻種浸漬24小時,對照組則以清水行浸種處理,於處理後兩週調查其25 cm2內之秧苗數量,於處理組方面分別為165株 (TK8) 與137株 (TK9),在對照組方面分別為110株 (TK8) 與113株 (TK9)。並測量秧苗高度,處理組平均株高分別為11.4 cm (TK8) 與14.1 cm (TK9),在對照組則分別為10.4 cm (TK8) 與12.5 cm (TK9)。可由上述證實施用WG6-14對秧苗發芽及發育具有促進之功效。在育苗過程中發現施用WG6-14秧苗會有類似缺氮所造成的輕微黃化。在育苗土添加400 ppm之尿素會使秧苗產生黃化與生長遲緩等由氨所造成的毒害現象。然而,於水稻移植到盆栽中時,連續以WG6-14 FNF 50倍澆灌四週後並添加尿素,可觀察到良好的促進生長並增加植株葉綠素含量。檢視WG6-14防治可有效地防治由Sclerotium rolfsii所引起的秧苗立枯病,於PSA上進行對峙培養顯示出WG6-14對該病原真菌具有良好的拮抗能力,可產生的拮抗物質可抑制病原真菌菌絲生長,其菌絲浸於WG6-14培養過濾液,WG6-14的代謝物質可以造成真菌菌絲細胞膜完全喪失調節膜滲透的功能。在病害防治上,自田間收集已被Sclerotium rolfsii感染的秧苗盤,以WG6-14 50倍連續澆灌一週,於澆灌處理結束後第三天測量發病面積,在對照組平均增加4.92%,WG6-14處理組則平均增加之面積0.88%,另外在菌核數量方面,以WG6-14處理組也明顯較少。在密閉的培養皿中,檢測施用WG6-14與尿素對菌核活性的影響。單獨施用WG6-14 50倍對菌核活性沒有影響,單獨添加0.5%尿素,則可降低菌核活性到56.8%,而WG6-14與尿素共同施用,則可以降低菌核活性到零。然而,只在非滅菌土中對菌核殺傷力較為明顯。導致菌核死亡的作用機制尚需要進一步的探討與研究。結果中顯示枯草桿菌WG6-14醱酵液應用水稻秧苗生產及苗期立枯病之防治上皆有極大的發展潛力。
本研究的目的為利用拮抗性枯草桿菌Bacillus subtilis WG6-14防治苗期徒長病。將實驗室中所保存的TKS1-1, TLB7-7, SP4-17, BS-1, WP8-12 與 WG6-14等Bacillus spp.對徒長病原菌Fusarium moniliforme Fm01於PSA平板上進行對峙培養,其中以WG6-14有較好的拮抗性及良好的內生孢子產孢能力特點,選用來進行以下的試驗。經由實驗室中所生產的枯草桿菌WG6-14醱酵液 (≒1010 endospore/ml) 與經由開放系統下所生產的枯草桿菌功能性營養配方 (functional nutritive formulation, FNF) 以供防治病害試驗所用。以WG6-14醱酵液與與FNF100倍稀釋液替代化學藥劑來浸種處理稻種防治徒長病。以人工接種方式將稻種浸於徒長病原菌 (Fm01) 孢子懸浮液 (103conidia/ml)。與水處理組比較,以WG6-14醱酵液與FNF處理,皆可降低種子帶菌率,但不如撲克拉乳劑 (2000倍)處理來得低。接著以不同濃度的枯草桿菌WG6-14醱酵液做浸種處理,顯示出施用之枯草桿菌濃度必須高於50倍稀釋,其稻種帶菌率愈低,並愈接近化學藥劑處理的結果。將播種後苗徒長病率接近100%之帶菌稻種,以WG6-14醱酵液1X與10X 連續浸種處理三天,其發病率分別為1.6%與3.6%,跟化學藥劑處理組之結果相近。以將稻種播種於含102 conidia/gsoil帶菌土上,可以導致100%苗期徒長病發生。於此帶菌土中混入WG6-14醱酵液,使其帶菌土中每克土最終菌量為106 cfu,處理五天之病土於其上播下稻種,與水處理相較可降低20.7%發病率為。顯示WG6-14可以有效地降低土壤中F. moniliforme孢子殘存。WG6-14可以抑制徒長病原菌之分生孢子發芽與菌絲生長。在以WG6-14培養於523液態培養基之培養過濾液,取其處理徒長病原菌分生孢子,可導致細胞內的離子滲漏,並且造成90%的分生孢子死亡。在許多數據顯示枯草桿菌WG6-14在苗期徒長病害管理上是一相當好的生物製劑。
本研究目的是在水稻田間以生物防治來抑制水稻紋枯病及水稻白葉枯病的發生。利用從番石榴根圈土壤所分離得到的Bacillus subtilis WG6-14,對紋枯病原菌具有良好的拮抗能力,可分泌peptide一類之抗生物質對其菌絲生長具有良好的抑制效果,其抑制菌絲生長之作用機制乃是造成其細胞膜的破壞。於2005至2006年間,在台中市南屯區水稻田間,施用經WG6-14醱酵液擴大培養之功能性營養配方 (functional nutritive formulation, FNF; 1010 endosopre/ml),將FNF隨灌溉水滴入試驗田中 (800 L/ha)。於2005年第一期稻作,施用於台稉8號 (TK8)與台農71號 (TN71)之結果,可以明顯地抑制紋枯病害的感染。在台稉8號方面,於收割期調查其發病率及病班高度,於在處理組分別為13.6 cm與46%,對照組分別為40.2 cm and 75.4%,在產量上無明顯差異,但在稔實率上以FNF處理組較好。在台農71號方面,FNF於病害防治上有優異的成果,於收割期調查病斑高度與發病率方面,在處理組各別為33.1 cm與65.6%;於對照組各別為86.6 cm與98.1%。於期間逼遇到龍王颱風,其因紋枯病所引起的倒伏率相當的嚴重,在FNF處理組,倒伏率為7.5%,對照組為85.5%,在產量與稔實率方面,FNF處理組各別為6,7 t/ha與79.7%,在對照組為6.2 t/ha與62.9%。在該期田間試驗中曾觀察到處理組,其植株有黃化的情形,並於溫室盆栽試驗證實,連續以WG6-14 FNF 50倍澆灌四週後,在以尿素添加,才能有良好的促進生長並增加植株葉綠素含量。在2005年第二期稻作於台稉8號實驗田有良好的結果呈現。因其間為分蘗盛期正值颱風季節,有不少的植株逼受到白葉枯病的感染,經由WG6-14 FNF 50X稀釋液葉噴於處理後,對紋枯病病斑高度與發病率之調查,於FNF處理組各別為7.5 cm與19.5%,在對照組各別為 36.2 cm與 71.1%。對白葉枯病的發病率方面,FNF處理組為40.4%,對照組則為69.7%,FNF處理組在產量與稔實率皆比對照組有增加的情形。在2006年於相同的實驗田將原本隨灌溉水滴灌處理改以葉噴方式處理,FNF 50倍於分蘗期間每二週施用一次。於成熟期調查紋枯病斑高度與發病率,在台稉8號方面,分別為7.5 cm 與19.5 %,在台農71號部分,分別為37.1 cm與10.4 %。在多次的田間試驗的數據清楚顯示,枯草桿菌WG6-14 FNF在水稻紋枯病與水稻白葉枯病之防治上為一有效的生物製劑。

The application of Bacillus subtilis WG6-14 on commercial seedling production of rice (Oryza sativa L. cv. TK8 and TK9) was explored. In a model system wherein commercially used seedling tray was applied the fermentor produced WG6-14 broth culture (contains approximately 1.0×1010 endospores/ ml) at 1-100X in dilution series were tested as substitute of Prochloraz (EC, applied at 2000X dilution) for seed soaking treatment as routinely processed comparing to that treated by chemical or that treated by water (CK), The application of WG6-14 resulted earlier and significantly increased seed germination when applied at 50X and 100X in dilution. However, when the applied concentration was raised to 1X and 10X dilution. The seed germination and the hypocotyl and radical development were greatly inhibited. The use of WG6-14 as chemical substitute for Prochloraz was tested repeatedly in a commercial rice seedling propagation station in 2005 at Nan-Tun, Taichung. The test seeds including cv. TK8 and cv. TK9 were soak-treated with WG6-14 at 50X in dilution as substitute of chemical for 24 hrs likewise, the compared control seeds were soak-treated with only water. The survey conducted 2 weeks after sowing indicated the number of seedlings developed per 25 cm2 area from WG6-14 treated seeds were 165 (cv. TK8) and 137 (cv. TK9) respectively, whereas that developed from control treatment was 110 (cv. TK8) and 113 (cv. TK9) respectively. The examination on the seedling growth revealed further that average seedling height of WG6-14 treatment was about 11.4 cm (cv.TK8) and 14.1 cm (cv. TK9), while that of control treatment was 10.4 cm (TK8) and 12.5 cm (TK9). The beneficial effect on seed germination and seedling growth by applied WG6-14 soaking treatment was again demonstrated. It was noticed during the field trial that the seedlings developed from WG6-14 appeared to show slight chlorotic symptom similar to nitrogen deficiency. The addition of urea to the bedding substrate was not helpful, the seedlings expressed severe chlorosis and retarded growth typical of ammonia toxicity when the added urea exceeded 400 ppm. As the seedling propagation for the field trial conducted was badly plagued by the seedling blight disease caused by Sclerotium rolfsii, the effectiveness of WG6-14 in controlling the disease was also examined. The dual culture assay on potato sucrose agar plate revealed the strong antagonistic effectiveness of WG6-14 against the pathogenic fungi. The growth inhibition was due at least in part to the antibiotic produced by WG6-14. When subjected to soaking treatment with the culture of WG6-14, the fungal mycelia quickly loses their regulatory control on the membrane permeability indicating instant damage on the membrane integrity by the applied bacterial metabolites. For the disease control, the seedling trays with severe infection of Sclerotium rolfsii were collected from the field and daily drenching treatment with 50X diluted WG6-14 was applied for 1 week. Disease survey 3 days after last application indicated that the average seedling infection in the water treated control increased 4.92%, whereas that of WG6-14 treatment increased only 0.88%. The inhibitory effect was also manifested by the evidence that the total number of sclerotia in WG6-14 treated trays were greatly reduced. In a closed Petri dish system, the effect of WG6-14 and urea application on viability of sclerotia was examined. The examination of viable count of the test sclerotia indicated that the application of 50X diluted WG6-14 by itself did not show detectable deleterious effect on the sclerotia viability. The application of urea (0.5%) by itself led to 56.8% decrease of the viability. When WG6-14 was applied together with urea, the viability of test sclerotia was reduced to nearly zero. However, the killing effect was observed only when the non-sterilized soil was used. Although further effect are required to work out the possibly involved mechanism regarding to the sclerotia killing effect observed, the results herein provided indicated clearly the great value of WG6-14 as a microbial agent for rice seedling production and as well the seeding blight control.
The use of antagonistic Bacillus subtilis for the control of Bakanae disease on rice (Oryza sativa L.) was investigated. By dual culture assay on potato sucrose agar plate with a virulent field strain of Fusarium moniliforme Fm1 obtained from single spore isolation, the antagonistic effectiveness of 6 Bacillus strains chosen from our lab collections, namely TKS1-1, TLB7-7, SP4-17, BS-1, WP8-12 and WG6-14 were screened. Strain WG6-14 was selected as the tester strain for continued works because of its superior antagonistic effectiveness and good endospore producing characteristics. The fermentor produced endospore formulation (≒1010 CFU/ml) of WG6-14 and a functional nutritive formulation (FNF) produced by an open tank system using the fermentor produced formulation as starter inoculum were used for the disease control evaluation trials. Both the fermentor produced WG6-14 and the FNF at 100X dilution were tested for their effectiveness as substitute of chemicals applied in seed soaking treatment for controlling Bakanae disease. The test seeds were artificially contaminated with Fm1 by prior seed soaking with 103 conidia/ml conidial suspension. Both the applied treatment appeared to be effective to some extent for reducing the Fm1 contamination when compared to the water treated control. The effectiveness however was far loss than that by chemical treatment using Prochloraz (EC. 2000X dilution). The followed tried using fermentor produced WG6-14 in serial dilutions as soaking agent revealed further the need of increasing bacterial concentration to greater than 50X dilution for reducing Fm1 contamination to level close to that by compared chemical treatment. The contaminated seeds, when seeded, showed nearly 100% infection of Bakanae disease among the seedling developed. By soaking treatment of these seeds with 1X and 10X diluted WG6-14 for 3 consecutive days, the disease incidence was reduced to 1.6% which was comparable to that by Prochloraz (2000X). The application of WG6-14 at 100X dilution also reduced disease incidence significantly although at less extent. For soil artificially inoculated with 102 conidia/g soil, when used as substrate for seedling cultivation, resulted in 100% disease incidence among the seedling developed. The application of WG6-14 at 106 CFU/g soil appeared to be effective in reducing the disease incidence caused by this infected soil. The disease control efficacy, however, appeared to be a function of time available for the applied antagonist to work on the target pathogen before seeding. A 5-day WG6-14 treatment prior seeding reduced the disease incidence by 20.7% as compared to that of water treated control. The effectiveness of WG6-14 in reducing Fm propraules in soil was thus implied. The conidial germination and mycelia growth were both greatly inhibited. When subjecting to treatment by culture filtrate of WG6-14 growing in 523 broth, The conidia of Fm1 showed a sharp increase of electrolyte leakage and approximately 90% of the conidia was killed within 5 hours. The results discussed indicated clearly the great value of Bacillus sibtilis WG6-14 as a biofungicide for the management of rice Bakanae disease.
The biocontrol of sheath blight (Rhizoctonia solani AG1) and bacterial leaf blight (Xanthomonas oryzae pv. oryzae) on paddy rice was attempted. The Bacillus sibtilis WG6-14 isolated from guava rhizosphere was shown strongly antagonistic against R. solani AG1. The bacteria produced peptide antibiotic(s) which appeared to be greatly inhibitory to the mycelial growth of R.solani AG1, the inhibitory effect was due greatly in part to the damage on membrane integrity. The field trials were conducted in the year 2005 and 2006 in field plot at Nan-tun, Taichung. A functional nutritive formulation produced by plastic open tank system wherein the fermentor produced WG6-14 culture broth (containing 1010 endosopre/ml) was used as starter inoculum was need for field application. The test formulation was drenching applied through the irrigation water at the rate of 800L/ha. In first crop season at 2005. The FNF application greatly reduced sheath blight infection on both cultivar TK8 and cultivar TN71. For cultivar TK8, the average lesion height and percent incidence of the disease at harvest stage scored 13.6 cm and 46% respectively for FNF treatment; that of water treated control was 40.2 cm and 75.4% respectively. Although the yield increase was not detected, significant increase of fertility was evident for FNF treatment. For cultivar TN71, an even better performance of the disease control was demonstrated with FNF application. The lesion height and disease incidence of FNF treatment rated at harvest stage scored 33.1 cm and 65.6% respectively. That of the compared water treated control scored 86.6 cm and 98.1% respectively. Due to the bad hit of summer storm (Long Wang), the impact of sheath blight on development of lodging was severe. However, for FNF treated rice, the percentage of lodging was only 7.4, whereas that of control treatment was approximately 85.5%. And because of the lodging effect, the yield and fertility of FNF treatment scored 6,7 t/ha and 79.7% respectively, while that of water treatment control scored 6.2t/ha and 62.9% respectively. During the time of experiment, the leaf color that drenching WG6-14 FNF show slight chlorotic symptom. However, in an adjunct trial wherethat WG6-14 FNF was used as replacement for seed soaking, a one shoot post-treatment of urea by drenching application together with 50X diluted FNF 4 weeks after transplanting was found great beneficial in promoting plant growth and increasing the chlorophyll contents. The field trial for sheath blight control on cultivar TK8 in the second crop of 2005 also turned out to be successful. Because of the bad summer storms during the season, the test plants show severe infection of bacterial leaf blight at the maximum tillaging stage . Additional foliar spray of FNF at 50X dilution was thus applied to the test plants. Disease survey at the time of maturity indicated that the lesion height and disease incidence of sheath blight of FNF treatment scored 7.5 cm and 19.5% respectively; that of water treated plot scored 36.2 cm and 71.1% respectively. As for bacterial leaf blight severity, the FNF treated rice scored 40.4% , that of the control scored 69.7%. The efficacy of control for both diseases, and thus the increase of yield and fertility all appeared to be great successful. In the first crop of 2006, the use of FNF for the control of sheath blight disease was repeatedly treated at the same field plot. In stead of drenching treatment, the test plants were sprayed biweekly FNF at 50X dilution 3 times at tiller stage . Disease surrey at maturity stage indicated that for FNF treated rice, the lesion height and disease incidence scored 7.5 cm and 19.5 % respectively for cultivar TK8; 37.1 cm and 10.4 % respectively for cultivar TN71. Whereas for water treated control, the lesion length and disease incidence was scored 36.2 cm and 71.1% respectively for cultivar TK8 and 26.0 cm and 73.6% respectively for cultivar TN71. The accumulated evidence indicated clearly the use of WG6-14 FNF as an effective bioagent for the control of both sheath blight and bacterial leaf blight disease in paddy rice cultivation.
URI: http://hdl.handle.net/11455/30999
其他識別: U0005-2808200616344500
Appears in Collections:植物病理學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.