Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3114
DC FieldValueLanguage
dc.contributor吳震裕zh_TW
dc.contributorChen-Yu Wuen_US
dc.contributor.author陳新岳zh_TW
dc.contributor.authorChen, Hsin-Yuehen_US
dc.contributor.other化學工程學系所zh_TW
dc.date2013en_US
dc.date.accessioned2014-06-06T05:31:10Z-
dc.date.available2014-06-06T05:31:10Z-
dc.identifierU0005-2901201311501300en_US
dc.identifier.citation1.黃德歡, “改變世界的奈米技術” , 瀛舟出版社, 台北, 民國91年 2.黃忠良, “磁性流體理論應用” , 復漢出版社, 第11頁, 民國88年 3.金重勳, “磁性技術手冊”, 中華民國磁性技術協會, 第6頁至第7頁,民國91年 4.A. Fuertes, V. Teresa, S. Marta, Journal Physical Chemical C, 112,3648-3654 (2008) 5.A. Lubbe, M.D., Ph. D., C. Alexiou, C. Bergemann, Journal of Surgical Research, 95, 200–206 (2001) 6.S. R. Rudge, T. L. Kurtz, C. R. Vessely, L. G. Catterall, Biomaterials, 21, 1441 (2000) 7.X. W. Lou, L. A. Archer, Z. C. Yang, Advanced Materials., 20, 3987-4019 (2008) 8.S. L. Shen, W. Wu, K. Guo, H. Meng, J. F. Chen, Colloids and Surface A: physicochemical Engineering Aspects, 311, 99-105 (2007) 9.S. U. Pickering, Journal of Chemical Socity Transactions, 91, 2001-2021 (1907) 10.D. J. Shaw, “Introduction to Colloid and Surface Chemistry”, (1991) 11.A. M. Mayes, Material for Biomedical Application, (2006) 12.R. Langer, Science, 249, 1527-1533 (1990) 13.Y. Li, D. Yin, Z. Wang, B. Li, G. Xue, Colloids and Surfaces A:Physicochemical Engineering Aspects, 339, 100- 105 (2009) 14.Y. Chung, S. R. Yun, C. W. Lee, N. J. Jo, C. H. Yo, K. S. Ryu, Bulletin of the Korean Chemical Society, 31, 2065- 2068 (2010) 15.C. Wang, J. Yan, X. Cui, H. Wang, Journal of Colloid and Interface Science, 354, 94-99 (2011) 16.C. Zhang, H. Zhang, B. Du, R. Hou, S. Guo, Journal of Colloid andInterface Science, 368, 97-106 (2012) 17.S. J. Ding, C. L. Zhang, M. Yang, X. Z. Qu, Y. F. Lu, Z. Z. Yang, Polymer, 47, 8360-8366 (2006) 18.M. Yang, J. Ma, C. L. Zhang, Y. F. Lu, Z. Z. Yang, Angewandte Chemie International Edition, 44, 6727 (2005) 19.X. Wang, J. Liu, X. Feng, M. Guo, D. Sun, Materials Chemistry and Physics, 112, 319-321 (2008) 20.X. Wang, S. Tang, J. Liu, Z. He, L. An, C. Zhang, J. Hao, W. Feng, Journal of Nanoparticle Research, 11, 923-929 (2009) 21.J. Yuan, X. Zhang, H. Qian, Journal of Magnetism and Magnetic Materials, 322, 2172-2176 (2010) 22.Z. Huang, F. Tang, Colloid Polymer Science, 282, 1198- 1205 (2004) 23.Z. Huang. F. Tang, Journal of Colloid and Interface Science, 281, 432-436 (2005) 24.D. Wang, C. Song, G. Gu, Z. Hu, Materials Lettters, 59, 782-785 (2005) 25.Y. Cuo, G. Gu, Y. Jiao, X. Fu, Z. Hu, Polymer Material Science Engineering, 19, 40 (2003) 26.Y. Zhang, Z. Huang, F. Tang, J. Ren, Thin Solid Films, 2555-2561 (2006) 27.C. C. Wang, I. H. Chen, C. R. Lin, Journal of Magnetism and Magnetic Materials, 304, 451-453 (2006) 28.W. Wu, D. Caruntu, A. Martin, M. H. Yu, C. J. O’Connor, W. L. Zhou, J. F. Chen, Journal of Magnetism and Magnetic Materials, 311, 578-582 (2007) 29.J. Liu, Y. Deng, C. Liu, Z. Sun, D. Zhao, Journal of Colloid and Interface Science, 333, 329-334 (2009) 30.C. R. Lin, I. H. Chen, C. C. Wang, M. L. Chen, Acta Materialia, 6710-6710-6716 (2011) 31.B. Liu, W. Zhang, Q. Zhang, H. Zhang, J. Yu, X. Yang, Journal of Colloid and Interface Science, 375, 70-77 (2012) 32.J. Liu, J. Wei, S. Li, Materials Letters, 61, 1529-1532 (2007) 33.C. Wang, J. Yan, X. Cui, D. Cong, H. Wang, Colloids and Surfaces A: Physicochemical Engineering, 363, 71-77 (2010) 34.W. Li, X. Qiao, Q. Zheng, T. Zhang, Journal of Alloys and Compounds, 509, 6206-6211 (2011) 35.W. Wu, C. L. Cheng, S. L. Shen, K. Zhang, H. Meng, K. Guo, J. F. Chen, Colloids and Surfaces A: Physicochemical Engineer Aspects, 334, 131-136 (2009) 36.K. Zhang, W. Wu, K. Guo, J. F. Chen, P. Y. Zhang, Colloids and Surfaces A:Physicochemical Engineer Aspects, 349, 110-116 (2009) 37.C. Wang, C. Zhang, Y. Li, Y. Chen, Z. Tong, Reactive and Functional Polymers, 69, 750-754 (2009) 38.L. Zhang, P. Liu, T. Wang, Chemical Engineering Journal, 171, 711-716 (2011) 39.Y. Yang, L. Li, G. Chen, Journal of Magnetism and Magnetic Materials, 305, 40-46 (2006) 40.Y. Chen, Z. Qian, Z. Zhang, Colloids and Surfaces A: Physicochemical Engineering Aspects, 312, 209-213 (2008) 41.C. Oh, Y. G. Lee, C. U. Jon, S. G. Oh, Colloids and Surfaces A:Physicochemical Engineering Aspects, 337, 208-212 (2009) 42.D. Jiang, W. Hu, H. Wang, B. Shen, Y. Deng, Journal of Colloid and Interface Science, 357, 317-321 (2011) 43.L. Zhang, T. Wang, P. Liu, Chemical Engineering Journal, 187, 372-379 (2012) 44.C. F. Lee, C. C. Lin, C. A. Chien, W. Y. Chiu, Eurpean Polymer Journal, 44, 2768-2776 (2008) 45.F. Guo, Q. Zhang, W. Wang, H. Zhang, J. Sun, Materials Science and Engineering C, 31, 938-944 (2011) 46.M. Sasidharan, H. H. Luitel, N. Gunawardhana, M. Inoue, S. I. Yusa, T. Watari, K. Nakashima, Materials Letters, 73, 4-7 (2012) 47.K. Pavel, K. Zuzana, Š. František, Microporous and Mesoporous Materials, 159, 119-125 (2012) 48.K. Ni, E. Bourgeat-Lami, N. Sheibat-Othman, G. Shan, G. Fevotte, Macromolecular Symposia, 271, 120-128 (2008) 49.S. Wei, Y. Zhang, J. Xu, Colloids and Surfaces A: Physicochemical Engineering A spects, 296, 51-56 (2007) 50.L. Du, J. Ye, J. Wang, B. Jiang, Y. Yang, Journal of Applied Polymer Science, 123, 2517-2525 (2012) 51.P. H. Wang, C. Y. Pan, Colloid Polymer Science, 280, 252- 159 (2002) 52.H. Dong, F. Yan, H. Ji, K. Y. Wong, H. Ju, Department of Chemistry and Biomolecular Sciences Macquarie University, 20, 1173-1179 (2010) 53.J. H. Park, S. Woo, J. H. Kim, R. Kim, J. Kim, S. S. Lee, Materials Letters, 62, 3916-3918 (2008) 54.J. Wu, D. Li, Energy Procedia, 11, 4794-4802 (2011) 55.Y. H. Lien, T. M. Wu, Journal of Colloid and Interface Science, 326, 517-521 (2008) 56.S. Chen, J. Feng, X. Guo, J. Hong, W. Ding, W. Materials Letters, 59, 985 (2005) 57.G. Y. Li, Y. R. Jiang, K. L. Huang, P. Ding, J. Chen, Journal of Alloys and Compounds, 466, 451-456 (2008) 58.李小如, “磁性黏土/聚乙烯醇奈米複合材料之製備與物性分析”, 中興大學化 學工程研究所碩士論文, 民國96年 59.M. Zrinyl, L. Barsi, A. Buki, Polymer Gel and Networks, 5, 415 (1997) 60.Y. C. Chang, D. H. Chen, Journal of Colloid and Interface Science, 283, 446-451 (2005) 61.Yudelson, J. S. U. S. Patent, 4,965,007 (1990) 62.H. P. Lin, C. Y. Mou, Accounts of Chemical Research :Articles ASAP, 35, 927-935 (2002) 63.J. F. Chen, H. M. Ding, J. X. Wang, L. Shao,Biomaterials, 25, 723-727 (2004) 64.X. N. LU, J. M. XU, W. Z. MA, Y. F. LU, Soil Science Society of China, 17(1), 124-129 (2007) 65.E. Karasulu, H. Y. Karasulu, G. Ertan, L. Kirilmaz, T. Guneri, European Journal of Pharmaceutical Sciences, 19, 99-104 (2003) 66.A. Sousa, K. C. Souza, Acta Biomaterialia, 4, 671-679 (2008)en_US
dc.identifier.urihttp://hdl.handle.net/11455/3114-
dc.description.abstract本實驗以無乳化聚合製備均一聚苯乙烯乳液,其粒徑約在400 nm間。接著添加親水性較高的壓克力酸(AA)接枝外殼,以提供羧基。由光散射粒徑分析儀(DLS)觀察,在壓克力酸改質PS乳液(PS-AA),發現其粒徑大小均一。接著,利用共沉澱法在水相溶液中合成具有磁性的四氧化三鐵奈米粒子,其晶體大小約為5-8 nm間。經由表面電位(Zeta-potential)測量PS-AA乳液及磁性奈米粒子之表面電位性質,由分析圖中可得知,壓克力酸改質PS乳液中於pH值在2-10間之表面電位皆帶負電位,而磁性奈米粒子之等電位點(Isoelectric Point, IEP)出現在pH值為6附近。實驗結果說明,調整溶液之pH值可使磁性奈米粒子吸附於壓克力酸改質PS球表面。當pH值在2-5間,因電位相異可有效的使磁性奈米粒子吸附於壓克力酸改質PS球表面。 藉由控制TEOS添加量,改變pH與反應條件形成PS-AA/Fe3O4 /SiO2核-殼結構;最後,再利用高溫煅燒將核心壓克力酸改質PS球移除,得到磁性中空玻璃球。透過穿透式電子顯微鏡(TEM)觀察表面型態,當煅燒後得到均一且完整的磁性中空玻璃球結構,平均粒徑在429.8 nm。經由磁性分析(VSM),從磁化曲線圖可得到磁性中空玻璃球的飽和磁化量為43.90 emu/g,且具有超順磁的性質。此外,經BET測量,磁性中空玻璃球在煅燒前後比表面積由4.11 m2/g增加至274.8 m2/g。 最後,將維他命C置於磁性中空玻璃球內,研究其釋放行為。將累積釋放百分比帶入零級模型、一級模型、Higuchi模型。其中,Higuchi模型中,第零小時到第三小時,反應釋放常數為64.76,第三小時到第 十小時,反應速率常數為2.40。zh_TW
dc.description.abstractIn this study, polystyrene latex was first prepared by emulsifier free polymerization of styrene in aqueous solution with the particles diameter about 400 nm. The PS latex was grafted with acrylic acid (AA) to impart their surface with carboxylic functional groups. The PS-AA latex particles are nearly monodispersed based on DLS data. Afterward, the Fe3O4 nanoparticles was synthesized by coprecipitation method with the particles diameter about 5-8 nm. Zeta-potential measurements were used to evaluate the surface charge of the PS-AA latex and Fe3O4. The Zeta-potential of the PS latex is negative between the pH range of 2-10. The isoelectric point (IEP) of the Fe3O4 nanoparticles appears at around pH 6. The experimental results indicate that Fe3O4 nanoparticles adsorb on the surface of PS-AA spheres. At low pH value (pH=2-4), the adsorption is effective due to opposite charges on the surface of the PS-AA latex and the magnetic nanoparticles. The PS-AA/Fe3O4/SiO2 core-shell structure was performed by controlling the hydrolysis/condensation reaction of TEOS at various pHs and reaction conditions. Finally, a magnetic hollow silica spheres was obtained by removing PS-AA core by calcination step. Transmission electron microscopy (TEM) demonstrats that the obtained magnetic hollow silica nanospheres with the perfect spherical profile were well monodispersed and uniform with the mean diameter of 429.8 nm. The magnetic hollow silica nanospheres bear the characteristic of superparamagnetic with the saturation magnetization value of 43.90 emu/g by property VSM(Vibrating Sample Magnetometer). Moreover, the BET measurements show the surface area of 4.11 m2/g for silica spheres with magnetic peroperty and 274.48 m2/g for magnetic hollow silica sphere aftercalcination. Finally, We also focused on the encapsulation of ascorbic acid into magnetic hollow silica and studied their controlled release behavior in the aqueous solution. Release data of Vitamin C were analyzed with zero order release model, the first order release model, and Higuchi release model. The release model fits well with the Higuchi model with the kinetic constant k1 equals 64.76 in the first 3 hours and 7.34 for k2 after 3 hours.en_US
dc.description.tableofcontents謝誌.......................................................i 中文摘要...................................................ii 英文摘要..................................................iii 目錄.......................................................v 表目錄...................................................viii 圖目錄......................................................x 一、緒論....................................................1 1.1 前言...............................................1 1.2 磁性材料之簡介.......................................2 1.3 磁性中空球的製備與用途.................................3 1.4 中空奈米粒子藥物釋放..................................5 1.5 研究動機與目的.......................................8 二、文獻回顧.................................................9 2.1磁性中空玻璃球製備.....................................9 2.1.1以模板方式製備磁性中空玻璃球.........................9 2.1.2利用Pickering emulsion法製備磁性中空玻璃球.........19 2.1.3添加界面活性劑製備磁性中空玻璃球.....................22 2.2多孔隙磁性玻璃球藥物釋放.............................26 三、實驗...................................................29 3.1 實驗項目...........................................29 3.2 實驗藥品...........................................30 3.3 實驗架構與實驗流程...................................32 3.4 實驗儀器...........................................39 3.5 實驗步驟...........................................40 四、結果與討論..............................................43 4.1壓克力酸改質PS乳液(PS-AA)之製備與分析...................43 4.1.1 PS-AA官能基鑑定(FT-IR)........................43 4.1.2 PS-AA廣角X-ray繞射分析(XRD)....................44 4.1.3 PS-AA光散射粒徑分析(DLS).......................45 4.1.4 PS-AA表面型態分析(SEM).........................47 4.1.5 PS-AA界面電位分析(Zeta-potential)..............49 4.2共沉澱法製備磁性奈米粒子(Fe3O4)之製備與分析..............50 4.2.1 Fe3O4官能基鑑定(FT-IR)........................51 4.2.2 Fe3O4廣角X-ray繞射分析(XRD)....................52 4.2.3 Fe3O4光散射粒徑分析(DLS).......................54 4.2.4 Fe3O4表面型態分析(SEM).........................55 4.2.5 Fe3O4界面電位分析(Zeta-potential)..............56 4.2.6 Fe3O4震動樣品磁度儀分析(VSM)....................57 4.3 Fe3O¬4吸附PS-AA表面(PS-AA/Fe3O4)之製備與分析.........58 4.3.1 Fe3O4吸附PS-AA表面無機含量分析(TGA).............59 4.3.2 PS-AA/Fe3O4官能基鑑定(FT-IR)..................65 4.3.3 PS-AA/Fe3O4廣角X-ray繞射分析(XRD)..............66 4.3.4 PS-AA/Fe3O4球光散射粒徑分析(DLS)................68 4.3.5 PS-AA/Fe3O4表面型態分析(SEM)...................70 4.3.6 PS-AA/Fe3O4界面電位分析(Zeta-potential)........75 4.3.7 PS-AA/Fe3O4震動樣品磁度儀分析(VSM)..............77 4.4矽烷縮合於磁性聚苯乙烯球(PS-AA/Fe3O4/SiO2)之製備與分析...79 4.4.1 PS-AA/Fe3O4/SiO2官能基鑑定(FT-IR).............80 4.4.2 PS-AA/Fe3O4/SiO2無機含量分析(TGA)..............81 4.4.3 PS-AA/Fe3O4/SiO2廣角X-ray繞射分析(XRD).........83 4.4.4 PS-AA/Fe3O4/SiO2光散射粒徑分析(DLS)............84 4.4.5 PS-AA/Fe3O4/SiO2表面型態分析(SEM、TEM).........85 4.4.6 PS-AA/Fe3O4/SiO2比表面積及孔洞分析(BET).........88 4.4.7 PS-AA/Fe3O4/SiO2震動樣品磁度儀分析(VSM).........91 4.5磁性中空玻璃球(Fe3O4/SiO2)之製備與分析.................92 4.5.1 Fe3O4/SiO2官能基鑑定(FT-IR)...................92 4.5.2 Fe3O4/SiO2無機含量分析(TGA)....................94 4.5.3 Fe3O4/SiO2廣角X-ray繞射分析(XRD)...............95 4.5.4 Fe3O4/SiO2表面型態分析(SEM、TEM)...............96 4.5.5 Fe3O4/SiO2比表面積及孔洞分析(BET)...............99 4.5.6 Fe3O4/SiO2震動樣品磁度儀分析(VSM)..............103 4.6維他命C在磁性中空玻璃球內之釋放行為.....................105 4.6.1 以BET、TGA證明維他命C進入磁性中空玻璃球...........105 4.6.2 累積釋放百分比之不同模型分析.....................115 五、結論..................................................120 六、參考文獻...............................................122 附錄一、磁性中空玻璃球樣品代號說明.............................126 附錄二、磁性奈米粒子(Fe3O4)吸附於壓克力酸改質PS球表面之理論值計算..127 附錄三、磁性聚苯乙烯球及磁性中空玻璃球煅燒前後之EDS元素含量)分析....128 附錄四、TEOS水解縮合於磁性聚苯乙烯球之添加量與殼厚之理論值計算.....129 附錄五、磁性中空玻璃球包覆維他命C之實驗代號說明及磁性中空玻璃球包覆維他命 C理論值計算........................................130 附錄六、以TGA及UV計算維他命C釋放量............................132zh_TW
dc.language.isozh_TWen_US
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2901201311501300en_US
dc.subject無乳化聚合zh_TW
dc.subjectemulsifier-free polymerizationen_US
dc.subject磁性奈米粒子zh_TW
dc.subject磁性中空玻璃zh_TW
dc.subject維他命Czh_TW
dc.subject釋放控制zh_TW
dc.subjectmagnetic nanoparticlesen_US
dc.subjectmagnetic hollow glass sphereen_US
dc.subjectascorbic aciden_US
dc.subjectcontrol releaseen_US
dc.title磁性中空玻璃球製備、分析與維他命C釋放行為之研究zh_TW
dc.titleThe Study of Preparation、Characterization and Release Behavior of Vitamin C of Magnetic Hollow Silica Spheresen_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1zh_TW-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.