Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31182
標題: 應用青枯病菌之族群架構及偵測於番茄青枯病的綜合管理
Application of population profiling and detection of Ralstonia solanacearum on integrated management of tomato bacterial wilt
作者: 林志鴻
Lin, Chih-Hung
關鍵字: biovar;生物型;BIO-PCR;detection;egl gene;integrated management;mutS gene;phylotype;race;Ralstonia solanacearum;rootstock;tomato bacterial wilt;virulence;BIO-PCR;偵測;egl基因;綜合防治;mutS基因;演化型;生理小種;青枯病菌;根砧;番茄青枯病;毒力
出版社: 植物病理學系所
引用: CHAPTER I 1. Agarwal, S. and Rao, A. V. 2000. Tomato lycopene and its role in human health and chronic diseases. CMAJ 163:739-744. 2. Agricultural Statistics Yearbook 2006. 2007. Council of Agriculture, Executive Yuan, Taipei, Taiwan. 3. Arab, L. and Steck, S. 2000. Lycopene and cardiovascular disease. Am. J. Clin. Nutr. 71:1691S-1695S. 4. Buddenhagen, I. W. and Kelman, A. 1964. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 2:203-230. 5. Buddenhagen, I. W., Sequeira, L., and Kelman, A. 1962. Designation of races in Pseudomonas solanacearum. (Abstr.) Phytopathology 52:726. 6. Cook, D., Barlow, E., and Sequeira, L. 1989. Genetic diversity of Pseudomonas solanacearum: detection of restriction fragment length polymorphisms with DNA probes that specify virulence and the hypersensitive response. Mol. Plant-Microbe Interact. 2:113-121. 7. Cook, D. and Sequeira, L. 1994. Strain differentiation of Pseudomonas solanacearum by molecular genetic methods. Pages 77-93 in: Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. A. C. Hayward and G. L. Hartman, eds. CAB International, Wallingford, UK. 8. Denny, T. P. 2006. Plant pathogenic Ralstonia species. Pages 573-644 in: Plant-associated bacteria. S. S. Gnanamanickam eds. Springer, Dordrecht, Netherlands. 9. Dittapongpitch, V. and Surat, S. 2003. Detection of Ralstonia solanacearum in soil and weeds from commercial tomato fields using immunocapture and the polymerase chain reaction. J. Phytopathol. 151:239-246. 10. Elphinstone, J. G. 2005. The current bacterial wilt situation: a global overview. Pages 9-28 in: Bacterial wilt disease and the Ralstonia solanacearum species complex. C. Allen, P. Prior., and A. C. Hayward, eds. APS Press, St. Paul, MN. 11. Elphinstone, J. G., Hennessy, J., Wilson, J. K., and Stead, D. E. 1996. Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. Bull. OEPP/EPPO Bull. 26:663-678. 12. Engelbrecht, M. C. 1994. Modification of a semi-selective medium for the isolation and quantification of Pseudomonas solanacearum. ACIAR Bacterial Wilt Newsl. 10:3-5. 13. Fegan, M. and Prior, P. 2005. How complex is the Ralstonia solanacearum species complex? Pages 449-461 in: Bacterial wilt disease and the Ralstonia solanacearum species complex. C. Allen, P. Prior, and A. C. Hayward, eds. APS Press, St. Paul, MN. 14. Fegan, M., Taghavi, M., Sly, L. I., and Hayward, A. C. 1998. Phylogeny, diversity and molecular diagnostics of Ralstonia solanacearum. Pages 19-33 in: Bacterial wilt disease: molecular and ecological aspects. P. Prior, C. Allen, and J. Elphinstone, eds. Springer-Verlag, Berlin, Germany. 15. French, E. R. 1994. Strategies for integrated control of bacterial wilt of potatoes. Pages 199-207 in: Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. A. C. Hayward and G. L. Hartman, eds. CAB International, Wallingford, UK. 16. Gillings, M. R. and Fahy, P. 1994. Genomic fingerprinting: towards a unified view of the Pseudomonas solanacearum species complex. Pages 95-112 in: Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. A. C. Hayward and G. L. Hartman, eds. CAB International, Wallingford, UK. 17. Giovannucci, E., Rimm, E. B., Liu, Y., Stampfer, M. J., and Willett, W. C. 2002. A prospective study of tomato products, lycopene, and prostate cancer risk. J. Natl. Cancer Inst. 94:391-398. 18. Graham, J., Jones, D. A., and Lloyd, A. B. 1979. Survival of Pseudomonas solanacearum race 3 in plant debris and in latently infected potato tubers. Phytopathology 69:1100-1103. 19. Graham, J. and Lloyd, A. B. 1979. Survival of potato strain (race 3) of Pseudomonas solanacearum in the deeper soil layers. Aust. J. Agric. Res. 30:489-496. 20. Granada, G. A. and Sequeira, L. 1983. A new selective medium for Pseudomonas solanacearum. Plant Dis. 67:1084-1088. 21. Granada, G. A. and Sequeira, L. 1983. Survival of Pseudomonas solanacearum in soil, rhizosphere and plant roots. Can. J. Microbiol. 29:433-440. 22. Guidot, A., Prior, P., Schoenfeld, J., Carrère, S., Genin, S., and Boucher, C. 2007. Genomic Structure and phylogeny of the plant pathogen Ralstonia solanacearum inferred from gene distribution analysis. J. Bacteriol. 189:377-387. 23. Hanson, P. M., Wang, J.-F., Licardo, O., Hanudin, Mah, S. Y., Hartman, G. L., Lin, Y.-C., and Chen, J.-T. 1996. Variable reaction of tomato lines to bacterial wilt evaluated at several locations in Southeast Asia. HortScience 31:143-146. 24. Hartman, G. L. and Elphinstone, J. G. 1994. Advances in the control of Pseudomonas solanacearum race 1 in major food crops. Pages 157-177 in: Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. A. C. Hayward and G. L. Hartman, eds. CAB International, Wallingford, UK. 25. Hartman, G. L., Hong, W.-F., and Wang, T.-C. 1991. Survey of bacterial wilt on fresh market hybrid tomatoes in Taiwan. Plant Prot. Bull. (Taiwan) 33:197-203. 26. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87. 27. Hayward, A. C. 1994. The hosts of Pseudomonas solanacearum. Pages 9-24 in: Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. A. C. Hayward and G. L. Hartman, eds. CAB International, Wallingford, UK. 28. Hayward, A. C. 2000. Ralstonia solanacearum. Pages 32-42 in: Encyclopedia of Microbiology, Vol. 4. J. Lederberg, ed. Academic Press, San Diego, CA. 29. He, L. Y., Sequeira, L., and Kelman, A. 1983. Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis. 67:1357-1361. 30. Ito, S., Ushijima, Y., Fujii, T., Tanaka, S., Kameya-Iwaki, M., Yoshiwara, S., and Kishi, F. 1998. Detection of viable cells of Ralstonia solanacearum in soil using a semiselective medium and a PCR technique. J. Phytopathol. 146:379-384. 31. Kelman A. 1953. The bacterial wilt caused by Pseudomonas solanacearum. N. C. Agric. Exp. Stn. Tech. Bull. No. 99. 194 pp. 32. Khachik, F., Carvalho, L., Bernstein, P. S., Muir, G. J., Zhao, D.-Y., and Katz, N. B. 2002. Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp. Biol. Med. 227:845-851. 33. Lee, Y.-A. and Wang, C.-C. 2000. The design of specific primers for the detection of Ralstonia solanacearum in soil samples by polymerase chain reaction. Bot. Bull. Acad. Sin. (Taiwan) 41:121-128. 34. Lopes, C. A., Quezado-Soares, A. M., and de Melo, P. E. 1994. Differential resistance of tomato cultigens to biovars I and III of Pseudomonas solanacearum. Plant Dis. 78: 1091-1094. 35. Moffett, M. L. and Hayward, A. C. 1980. The role of weed species in the survival of Pseudomonas solanacearum in tomato cropping land. Australa. Plant Pathol. 9:6-8. 36. Palleroni, N. J. and Doudoroff, M. 1971. Phenotypic characterization and deoxyribonucleic acid homologies of Pseudomonas solanacearum. J. Bacteriol. 107:690-696. 37. Persley, G. J. 1986. Ecology of Pseudomonas solanacearum, the causal agent of bacterial wilt. Pages 71-76 In: Bacterial wilt disease in Asia and the South Pacific. G. J. Persley, ed. ACIAR Proceedings No.13, Canberra, Australia. 38. Poussier, S., Prior, P., Luisetti, J., Hayward, C., and Fegan, M. 2000. Partial sequencing of the hrpB and endoglucanase genes confirms and expands the known diversity within the Ralstonia solanacearum species complex. Syst. Appl. Microbiol. 23:479-486. 39. Poussier, S., Trigalet-Demery, D., Vandewalle, P., Goffinet, B., Luisetti, J., and Trigalet, A. 2000. Genetic diversity of Ralstonia solanacearum as assessed by PCR- RFLP of the hrp gene region, AFLP and 16S rRNA sequence analysis, and identification of an African subdivision. Microbiology 146:1679-1692. 40. Pradhanang, P. M., Elphinstone, J. G., and Fox, R. T. V. 2000. Sensitive detection of Ralstonia solanacearum in soil: a comparison of different detection techniques. Plant Pathol. 49:414-422. 41. Prior, P. and Fegan, M. 2005. Recent developments in the phylogeny and classification of Ralstonia solanacearum. Acta Hort. 695:127-136. 42. Prior, P., Steva, H., and Cadet, P. 1990. Aggressiveness of strains of Pseudomonas solanacearum from the French West Indies (Martinique and Guadeloupe) on tomato. Plant Dis. 74:962-965. 43. Priou, S., Gutarra, L., and Aley, P. 2006. An improved enrichment broth for the sensitive detection of Ralstonia solanacearum (biovar 1 and 2A) in soil using DAS-ELISA. Plant Pathol. 55:36-45. 44. Quimio, A. J. and Chan, H. H. 1979. Survival of Pseudomonas solanacearum E. F. Smith in the rhizosphere of some weed and economic plant species. Philipp. Phytopathol. 15:108-121. 45. Schönfeld, J., Heuer, H., Van Elsas, J. D., and Smalla, K. 2003. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Appl. Environ. Microbiol. 69:7248-7256. 46. Sesso, H. D., Liu, S., Gaziano, J. M., and Buring, J. E. 2003. Dietary lycopene, tomato-based food products and cardiovascular disease in women. J. Nutr. 133:2336-2341. 47. Taghavi, M., Hayward, C., Sly, L. I., and Fegan, M. 1996. Analysis of the phylogenetic relationships of strains of Burkholderia solanacearum, Pseudomonas syzygii, and the blood disease bacterium of banana based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 46:10-15. 48. van der Wolf, J. M., van Bekkum, P. J., van Elsas, J. D., Nijhuis, E. H., Vriend, S. G. C., and Ruissen, M. A. 1998. Immunofluorescence colony staining and selective enrichment in liquid medium for studying the population dynamics of Ralstonia solanacearum (race 3) in soil. Bull. OEPP/EPPO Bull. 28:71-79. 49. van der Wolf, J. M., Vriend, S. G. C., Kastelein, P., Nijhuis, E. H., van Bekkum, P. J., and van Vuurde, J. W. L. 2000. Immunofluorescence colony-staining (IFC) for detection and quantification of Ralstonia (Pseudomonas) solanacearum biovar 2 (race 3) in soil and verification of positive results by PCR and dilution plating. Eur. J. Plant Pathol. 106:123-133. 50. Villa, J. E., Tsuchiya, K., Horita, M., Opina, N., and Hyakumachi, M. 2005. Phylogenetic relationships of Ralstonia solanacearum species complex strains from Asia and other continents based on 16S rDNA, endoglucanase, and hrpB gene sequences. J. Gen. Plant Pathol. 71:39-46. 51. Wilcox, J. K., Catignani, G. L., and Lazarus, C. 2003. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 43:1-18. CHAPTER II 1. Buddenhagen, I. W. and Kelman, A. 1964. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 2:203-230. 2. Buddenhagen, I. W., Sequeira, L., and Kelman, A. 1962. Designation of races in Pseudomonas solanacearum. (Abstr.) Phytopathology 52:726. 3. Castillo, J. A. and Greenberg, J. T. 2007. Evolutionary dynamics of Ralstonia solanacearum. Appl. Environ. Microbiol. 73:1225-1238. 4. Chao, Y.-C., Liang, W.-J., Huang, L.-L., Ho, W.-C., and Tsai, C.-H. 1995. Bacterial wilt of Texas blue bell (Eustoma grandiflorum L.). Plant Pathol. Bull. (Taiwan) 4:193-195. (In Chinese) 5. Chen, W.-P. and Kuo, T.-T. 1993. A simple and rapid method for preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res. 21:2260. 6. Chen, Y.-J., Huang, L.-W., and Lin, Y.-S. 2006. Occurrence of bacterial wilt of sweet potato in Taiwan. (Abstr.) Plant Pathol. Bull. (Taiwan) 15:297-298. (In Chinese) 7. Chiou, Y.-S. 2002. Characteristics of strains of Ralstonia solanacearum recently affecting potatoes in central Taiwan. Dissertation, National Chung Hsing University. (In Chinese) 8. Cook, D., Barlow, E., and Sequeira, L. 1989. Genetic diversity of Pseudomonas solanacearum: detection of restriction fragment length polymorphisms with DNA probes that specify virulence and the hypersensitive response. Mol. Plant-Microbe Interact. 2:113-121. 9. Cook, D. and Sequeira, L. 1994. Strain differentiation of Pseudomonas solanacearum by molecular genetic methods. Pages 77-93 in: Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. A. C. Hayward and G. L. Hartman, eds. CAB International, Wallingford, UK. 10. Denny, T. P. 2006. Plant pathogenic Ralstonia species. Pages 573-644 in: Plant-associated bacteria. S. S. Gnanamanickam eds. Springer, Dordrecht, Netherlands. 11. Dianese, J. C. and Dristig, M. C. G. 1994. Strain characterization of Pseudomonas solanacearum based on membrane protein patterns. Pages 113-121 in: Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. A. C. Hayward and G. L. Hartman, eds. CAB International, Wallingford, UK. 12. Dristig, M. C. G. and Dianese, J. C. 1990. Characterisation of Pseudomonas solanacearum biovars based on membrane protein patterns. Phytopathology 80:641-646. 13. Elbaz, M., Kodja, H., and Luisetti, J. 2005. Plant host is inducing diversity within Ralstonia solanacearum strains. Acta Hort. 695:137-144. 14. Elphinstone, J. G. 2005. The current bacterial wilt situation: a global overview. Pages 9-28 in: Bacterial wilt disease and the Ralstonia solanacearum species complex. C. Allen, P. Prior., and A. C. Hayward, eds. APS Press, St. Paul, MN. 15. Fegan, M. and Prior, P. 2005. How complex is the Ralstonia solanacearum species complex? Pages 449-461 in: Bacterial wilt disease and the Ralstonia solanacearum species complex. C. Allen, P. Prior, and A. C. Hayward, eds. APS Press, St. Paul, MN. 16. Fegan, M., Taghavi, M., Sly, L. I., and Hayward, A. C. 1998. Phylogeny, diversity and molecular diagnostics of Ralstonia solanacearum. Pages 19-33 in: Bacterial wilt disease: molecular and ecological aspects. P. Prior, C. Allen, and J. Elphinstone, eds. Springer-Verlag, Berlin, Germany. 17. French, E. R. and Sequeira, L. 1970. Strains of Pseudomonas solanacearum from Central and South America: a comparative study. Phytopathology 60:506-512. 18. Gillings, M. R. and Fahy, P. 1994. Genomic fingerprinting: towards a unified view of the Pseudomonas solanacearum species complex. Pages 95-112 in: Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. A. C. Hayward and G. L. Hartman, eds. CAB International, Wallingford, UK. 19. Hanson, P. M., Wang, J.-F., Licardo, O., Hanudin, Mah, S., Hartman, G. L., Lin, Y.-C., and Chen, J.-T. 1996. Variable reaction of tomato lines to bacterial wilt evaluated at several locations in Southeast Asia. HortScience 31:143-146. 20. Hartman, G. L., Hong, W.-F., and Wang, T.-C. 1991. Survey of bacterial wilt on fresh market hybrid tomatoes in Taiwan. Plant Prot. Bull. (Taiwan) 33:197-203. 21. Hayward, A. C. 1964. Characteristics of Pseudomonas solanacearum. J. Appl. Bacteriol. 27:265-277. 22. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:67-87. 23. Hayward, A. C. 1994. The hosts of Pseudomonas solanacearum. Pages 9-24 in: Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. A. C. Hayward and G. L. Hartman, eds. CAB International, Wallingford, UK. 24. Hayward, A. C. 2000. Ralstonia solanacearum. Pages 32-42 in: Encyclopedia of Microbiology, Vol. 4. J. Lederberg, ed. Academic Press, San Diego, CA. 25. He, L. Y., Sequeira, L., and Kelman, A. 1983. Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis. 67:1357-1361. 26. Hsu, S.-T. 1991. Ecology and control of Pseudomonas solanacearum in Taiwan. Plant Prot. Bull. (Taiwan) 33:72-79. (In Chinese) 27. Hsu, S.-T., Hong, W.-F., Tzeng, K.-C., and Chen, C.-C. 1993. Bacterial wilt of perilla caused by Pseudomonas solanacearum and its transmission. Plant Dis. 77:674-677. 28. Hsu, S.-T., Tsai, T.-T., and Tzeng, K.-C. 1979. Pathovars of Pseudomonas solanacearum in Taiwan and their interaction in tobacco plants. Natl. Sci. Counc. Mon. (Taiwan) 7:609-620. (In Chinese) 29. Huang, J.-C., Hseu, S.-H., and Lin, C.-Y. 2001. The occurrence of bacterial wilt of water convolvulus caused by Ralstonia solanacearum. Plant Pathol. Bull. (Taiwan) 10:189-194. (In Chinese) 30. Huang, J.-C., Hseu, S.-H., and Sen, B.-K. 2000. Bacterial wilt of jute caused by Ralstonia solanacearum. Plant Pathol. Bull. (Taiwan) 9:35-38. (In Chinese) 31. Jaunet, T. X. and Wang, J.-F. 1999. Variation in genotype and aggressiveness of Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology 89:320-327. 32. Kado, C. I. and Heskett, M. G.. 1970. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 60:969-976. 33. Kelman, A. 1953. The bacterial wilt caused by Pseudomonas solanacearum. NC Agric. Exp. Stn. Tech. Bull. No.99. 194 pp. 34. Lee, H.-L. and Huang, T.-C. 1991. Preliminary studies on wilt disease of custard apple. (Abstr.) Plant Prot. Bull. (Taiwan) 33:433. (In Chinese) 35. Lin, C.-H., Hsu, S.-T., and Tzeng, K.-C. 1994. Radish (Raphanus sativus L.) a new host of Pseudomonas solanacearum in Taiwan. Plant Pathol. Bull. (Taiwan) 3:147-155. 36. Liu, H., Zhang, S., Schell, M. A., and Denny, T. P. 2005. Pyramiding unmarked deletions in Ralstonia solanacearum shows that secreted proteins in addition to plant cell-wall-degrading enzymes contribute to virulence. Mol. Plant-Microbe Interact. 18:1296-1305. 37. Lopes, C. A., Quezado-Soares, A. M., and de Melo, P. E. 1994. Differential resistance of tomato cultigens to biovars I and III of Pseudomonas solanacearum. Plant Dis. 78: 1091-1094. 38. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., Förster, W., Brettske, I., Gerber, S., Ginhart, A. W., Gross, O., Grumann, S., Hermann, S., Jost, R., König, A., Liss, T., Lüßmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., and Schleifer, K. H. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32:1363-1371. 39. Opina, N., Tavner, F., Hollway, G., Wang, J.-F., Li, T.-H., Maghirang, R., Fegan, M., Hayward, A. C., Krishnapillai, V., Hong, W.-F., Holloway, B. W., and Timmis, J. N. 1997. A novel method for development of species and strain-specific DNA probes and PCR primers for identifying Burkholderia solanacearum (formerly Pseudomonas solanacearum). Asia Pacific J. Mol. Biol. Biotechnol. 5:19-30. 40. Palleroni, N. J. and Doudoroff, M. 1971. Phenotypic characterization and deoxyribonucleic acid homologies of Pseudomonas solanacearum. J. Bacteriol. 107:690-696. 41. Pan, C.-M., Lin, Y.-S., and Hsu, S.-T. 1996. Bacterial wilt, a new disease of loofah caused by Pseudomonas solanacearum. Plant Prot. Bull. (Taiwan) 38:295-312. 42. Poussier, S., Prior, P., Luisetti, J., Hayward, C., and Fegan, M. 2000. Partial sequencing of the hrpB and endoglucanase genes confirms and expands the known diversity within the Ralstonia solanacearum species complex. Syst. Appl. Microbiol. 23:479-486. 43. Poussier, S., Trigalet-Demery, D., Vandewalle, P., Goffinet, B., Luisetti, J., and Trigalet, A. 2000. Genetic diversity of Ralstonia solanacearum as assessed by PCR- RFLP of the hrp gene region, AFLP and 16S rRNA sequence analysis, and identification of an African subdivision. Microbiology 146:1679-1692. 44. Prior, P. and Fegan, M. 2005. Recent developments in the phylogeny and classification of Ralstonia solanacearum. Acta Hort. 695:127-136. 45. Prior, P., Steva, H., and Cadet, P. 1990. Aggressiveness of strains of Pseudomonas solanacearum from the French West Indies (Martinique and Guadeloupe) on tomato. Plant Dis. 74:962-965. 46. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425. 47. Smith J. M., Feil, E. J., and Smith, N. H. 2000. Population structure and evolutionary dynamics of pathogenic bacteria. BioEassys 22:1115-1122. 48. Su, C.-C. and Lu, L.-S. 1995. Bacterial wilt of anthurium caused by Pseudomonas solanacearum. Plant Pathol. Bull. (Taiwan) 4:34-38. (In Chinese) 49. Taghavi, M., Hayward, C., Sly, L. I., and Fegan, M. 1996. Analysis of the phylogenetic relationships of strains of Burkholderia solanacearum, Pseudomonas syzygii, and the blood disease bacterium of banana based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 46:10-15. 50. Wang, J.-F., Hanson, P. M., and Barnes, J. A. 1998. Worldwide evaluation of an international set of resistance sources to bacterial wilt in tomato. Pages 269-275 in: Bacterial wilt disease: molecular and ecological aspects. P. Prior, C. Allen, and J. Elphinstone, eds. Springer-Verlag, Berlin, Germany. 51. Wang, W.-Y. 1992. Survey of Eucalyptus diseases in Taiwan. Bull. Taiwan For. Res. Inst. New Series. 7:179-194. (In Chinese) 52. Yang, H.-C., Chen, D.-Y., and Su. C.-C. 1994. Preliminary report on bacterial wilt of cat-tail willow caused by Pseudomonas solanacearum. (Abstr.) Plant Pathol. Bull. (Taiwan) 3:238. (In Chinese) CHAPTER III 1. Dittapongpitch, V. and Surat, S. 2003. Detection of Ralstonia solanacearum in soil and weeds from commercial tomato fields using immunocapture and the polymerase chain reaction. J. Phytopathol. 151:239-246. 2. Elphinstone, J. G. 2005. The current bacterial wilt situation: a global overview. Pages 9-28 in: Bacterial wilt disease and the Ralstonia solanacearum species complex. C. Allen, P. Prior, and A. C. Hayward, eds. APS Press, St. Paul, MN. 3. Elphinstone, J. G., Hennessy, J., Wilson, J. K., and Stead, D. E. 1996. Sensitivity of different methods for the detection of Ralstonia solanacearum in potato tuber extracts. Bull. OEPP/EPPO Bull. 26:663-678. 4. Engelbrecht, M. C. 1994. Modification of a semi-selective medium for the isolation and quantification of Pseudomonas solanacearum. ACIAR Bacterial Wilt Newsl. 10:3-5. 5. Farag, N., Stead, D. E., and Janse, J. D. 1999. Ralstonia (Pseudomonas) solanacearum race 3, biovar 2, detected in surface (irrigation) water in Egypt. J. Phytopathol. 147:485-487. 6. Granada, G. A. and Sequeira, L. 1983. A new selective medium for Pseudomonas solanacearum. Plant Dis. 67:1084-1088. 7. Hong, J., Ji, P., Momol, M. T., Jones, J. B., Olson, S. M., Pradhanang, P., and Guven, K. 2005. Ralstonia solanacearum detection in tomato irrigation ponds and weeds. Acta Hort. 695:309-311. 8. Hsu, S.-T. 1991. Ecology and control of Pseudomonas solanacearum in Taiwan. Plant Prot. Bull. (Taiwan) 33:72-79. (In Chinese) 9. Ito, S., Ushijima, Y., Fujii, T., Tanaka, S., Kameya-Iwaki, M., Yoshiwara, S., and Kishi, F. 1998. Detection of viable cells of Ralstonia solanacearum in soil using a semiselective medium and a PCR technique. J. Phytopathol. 146:379-384. 10. Kado, C. I. and Heskett, M. G.. 1970. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 60:969-976. 11. Kelman, A. 1953. The bacterial wilt caused by Pseudomonas solanacearum. NC Agric. Exp. Stn. Tech. Bull. No.99. 194 pp. 12. Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693-695. 13. Lee, Y.-A. and Wang, C.-C. 2000. The design of specific primers for the detection of Ralstonia solanacearum in soil samples by polymerase chain reaction. Bot. Bull. Acad. Sin. (Taiwan) 41:121-128. 14. Lin, C.-H., Hsu, S.-T., and Tzeng, K.-C. 1994. Radish (Raphanus sativus L.), a new host of Pseudomonas solanacearum in Taiwan. Plant Pathol. Bull. (Taiwan) 3:147-155. 15. Lin, J.-C., Hsu, S.-T., and Tzeng, K.-C. 1999. Weed hosts of Ralstonia solanacearum in Taiwan. Plant Prot. Bull. (Taiwan) 41:277-292. (In Chinese) 16. Michel, V. V., Hartman, G. L., and Midmore, D. J. 1996. Effect of previous crop on soil populations of Burkholderia solanacearum, bacterial wilt, and yield of tomatoes in Taiwan. Plant Dis. 80:1367-1372. 17. Moffett, M. L. and Hayward, A. C. 1980. The role of weed species in the survival of Pseudomonas solanacearum in tomato cropping land. Australa. Plant Pathol. 9:6-8. 18. Opina, N., Tavner, F., Hollway, G., Wang, J.-F., Li, T.-H., Maghirang, R., Fegan, M., Hayward, A. C., Krishnapillai, V., Hong, W.-F., Holloway, B. W., and Timmis, J. N. 1997. A novel method for development of species and strain-specific DNA probes and PCR primers for identifying Burkholderia solanacearum (formerly Pseudomonas solanacearum). Asia Pacific J. Mol. Biol. Biotechnol. 5:19-30. 19. Ozakman, M. and Schaad, N. W. 2003. A real-time BIO-PCR assay for detection of Ralstonia solanacearum race 3, biovar 2, in asymptomatic potato tubers. Can. J. Plant Pathol. 25:232-239. 20. Pan, C.-M., Lin, Y.-S., and Hsu, S.-T. 1996. Bacterial wilt, a new disease of loofah caused by Pseudomonas solanacearum. Plant Prot. Bull. (Taiwan) 38:295-312. 21. Picard, C., Ponsonnet, C., Paget, E., Nesme, X., and Simonet, P. 1992. Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Appl. Environ. Microbiol. 58:2717-2722. 22. Pradhanang, P. M. 1999. Optimization of sampling method for accurate detection of Ralstonia solanacearum in naturally infested soil. ACIAR Bacterial Wilt Newsl. 16:2-5. 23. Pradhanang, P. M., Elphinstone, J. G., and Fox, R. T. V. 2000. Sensitive detection of Ralstonia solanacearum in soil: a comparison of different detection techniques. Plant Pathol. 49:414-422. 24. Priou, S., Gutarra, L., and Aley, P. 2006. An improved enrichment broth for the sensitive detection of Ralstonia solanacearum (biovar 1 and 2A) in soil using DAS-ELISA. Plant Pathol. 55:36-45. 25. Schaad, N. W., Cheong, S. S., Tamaki, S., Hatziloukas, E., and Panopoulos, N. J. 1995. A combined biological and enzymatic amplification (BIO-PCR) technique to detect Pseudomonas syringae pv. phaseolicola in bean seed extracts. Phytopathology 85:243-248. 26. Schönfeld, J., Heuer, H., van Elsas, J. D., and Smalla, K. 2003. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Appl. Environ. Microbiol. 69:7248-7256. 27. Sequeira, L. and Averre, C. W. 1961. Distribution and pathogenicity of strains of Pseudomonas solanacearum from virgin soils in Costa Rica. Plant Dis. Reptr. 45:435-440. 28. Smith, T. E. 1943. Distribution of bacterial wilt (Bacterium solanacearum) in successive crops of tobacco grown on the same fields. Phytopathology 33:1076-1080. 29. Song, W. Y., Kim, H. M., Hwang, C. Y., and Schaad, N. W. 2004. Detection of Acidovorax avenae ssp. avenae in rice seeds using BIO-PCR. J. Phytopathol. 152:667-676. 30. Tsai, J.-W., Hsu, S.-T., and Chen, L.-C. 1985. Bacteriocin-producing strains of Pseudomonas solanacearum and their effect on development of bacterial wilt of tomato. Plant Prot. Bull. (Taiwan) 27:267-278. 31. van der Wolf, J. M., van Bekkum, P. J., van Elsas, J. D., Nijhuis, E. H., Vriend, S. G. C., and Ruissen, M. A. 1998. Immunofluorescence colony staining and selective enrichment in liquid medium for studying the population dynamics of Ralstonia solanacearum (race 3) in soil. Bull. OEPP/EPPO Bull. 28:71-79. 32. van Overbeek, L. S., Bergervoet, J. H. W., Jacobs, F. H. H., and van Elsas, J. D. 2004. The low-temperature-induced viable-but-nonculturable state affects the virulence of Ralstonia solanacearum biovar 2. Phytopathology 94:463-469. 33. Villa, J., Tsuchiya, K., Horita, M., Natural, M., Opina, N., and Hyakumachi, M. 2003. DNA analysis of Ralstonia solanacearum and related bacteria based on 282-bp PCR-amplified fragment. Plant Dis. 87:1337-1343. 34. Wenneker, M., Verdel, M. S. W., Groeneveld, R. M. W., Kempenaar, C., Van Beuningen, A. R., and Janse, J. D. 1999. Ralstonia (Pseudomonas) solanacearum race 3 (biovar 2) in surface water and natural weed hosts: first report on stinging nettle (Urtica dioica). Eur. J. Plant Pathol. 105:307-315. 35. Yamada, T., Kawasaki, T., Nagata, S., Fujiwara, A., Usami, S., and Fujie, M. 2007. New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology 153:2630-2639. CHAPTER IV 1. Anith, K. N., Momol, M. T., Kloepper, J. W., Marois, J. J., Olson, S. M., and Jones, J. B. 2004. Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S- methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis. 88:669-673. 2. Bertolla, F., Frostegård, Å., Brito, B., Nesme, X., and Simonet, P. 1999. During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Mol. Plant-Microbe Interact. 12:467-472. 3. Black, L. L., Wu, D.-L., Wang, J.-F., Kalb, T., Abbass, D., and Chen, J.-H. 2003. Grafting tomatoes for production in the hot-wet season. AVRDC International Cooperators' Guide. AVRDC publication no. 03-551. 4. Elphinstone, J. G. 2005. The current bacterial wilt situation: a global overview. Pages 9-28 in: Bacterial wilt disease and the Ralstonia solanacearum species complex. C. Allen, P. Prior, and A. C. Hayward, eds. APS Press, St. Paul, MN. 5. Elphinstone, J. G. and Aley, P. 1993. Integrated control of bacterial wilt of potato in the warm tropics of Peru. Pages 276-283 in: Bacterial wilt. ACIAR Proceedings 45, 381p. G. L. Hartman and A. C. Hayward, eds. Watson Ferguson and Company, Brisbane, Australia. 6. Enfinger, J. M., McCarter, S. M., and Jaworski, C. A. 1979. Evaluation of chemicals and application methods for control of bacterial wilt of tomato transplants. Phytopathology 69:637-640. 7. Engelbrecht, M. C., Van Wyk, R. J., Engelbrecht, S. La G., and Janse Van Rensburg, J. N. 1990. Control of bacterial wilt of tobacco with chloropicrin in South Africa. Phytophylactica 22:269-271. 8. Fry, W. E. 1978. Quantification of general resistance of potato cultivars and fungicide effects for integrated control of potato late blight. Phytopathology 68:1650-1655. 9. Granada, G. A. and Sequeira, L. 1983. A new selective medium for Pseudomonas solanacearum. Plant Dis. 67:1084-1088. 10. Grimault, V. and Prior, P. 1994. Grafting tomato cultivars resistant or susceptible to bacterial wilt: analysis of resistance mechanisms. J. Phytopathol. 141:330-334. 11. Hanson, P. M., Wang, J.-F., Licardo, O., Hanudin, Mah, S. Y., Hartman, G. L., Lin, Y.-C., and Chen, J.-T. 1996. Variable reaction of tomato lines to bacterial wilt evaluated at several locations in Southeast Asia. HortScience 31:143-146. 12. Hanson, P. M., Yang, R.-Y., Wu, J., Chen, J.-T., Ledesma, D., Tsou, S. C. S., and Lee, T.-C. 2004. Variation for antioxidant activity and antioxidants in tomato. J. Amer. Soc. Hort. Sci. 129:704-711. 13. Hartman, G. L. and Elphinstone, J. G. 1994. Advances in the control of Pseudomonas solanacearum race 1 in major food crops. Pages 157-177 in: Bacterial wilt: the disease and its causative agent, Pseudomonas solanacearum. A. C. Hayward and G. L. Hartman, eds. CAB International, Wallingford, UK. 14. Hartman, G. L., Hong, W.-F., and Wang, T.-C. 1991. Survey of bacterial wilt on fresh market hybrid tomatoes in Taiwan. Plant Prot. Bull. (Taiwan) 33:197-203. 15. Haubold, B. and Rainey, P. B. 1997. Towards an understanding of the population genetics of plant-colonizing bacteria. Adv. Bot. Res. 24:335-351. 16. Hayward, A. C. 2000. Ralstonia solanacearum. Pages 32-42 in: Encyclopedia of Microbiology, Vol. 4. J. Lederberg, ed. Academic Press, San Diego, CA. 17. Hong, T.-L. and Tsou, S. C. S. 1998. Quality analysis of tomato using near infrared spectroscopy. J. Chinese Agric. Chem. Soc. (Taiwan) 36:418-424. (In Chinese) 18. Hsu, S.-T. 1991. Ecology and control of Pseudomonas solanacearum in Taiwan. Plant Prot. Bull. (Taiwan) 33:72-79. (In Chinese) 19. Hsu, S.-T., Tsai, T.-T., and Tzeng, K.-C. 1979. Pathovars of Pseudomonas solanacearum in Taiwan and their interaction in tobacco plants. Natl. Sci. Counc. Mon. (Taiwan) 7:609-620. (In Chinese) 20. Ioannou, N. 2001. Integrating soil solarization with grafting on resistant rootstocks for management of soil-borne pathogens of eggplant. J. Hort. Sci. Biotechnol. 76:396-401. 21. Jaunet, T. X. and Wang, J.-F. 1999. Variation in genotype and aggressiveness of Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology 89:320-327. 22. Kado, C. I. and Heskett, M. G.. 1970. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 60:969-976. 23. Kay, E., Chabrillat, G., Vogel, T. M., and Simonet, P. 2003. Intergeneric transfer of chromosomal and conjugative plasmid genes between Ralstonia solanacearum and Acinetobacter sp. BD413. Mol. Plant-Microbe Interact. 16:74-82. 24. Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44:693-695. 25. Lee,
摘要: 
由土壤傳播的植物病原細菌Ralstonia solanacearum所引起的青枯病是全球性的重要病害。在台灣已記載被本病為害的寄主計有28種植物和數種雜草,青枯病菌是一種在表現型和基因型上均有顯著差異的複合種類,在台灣已知的青枯病菌皆屬於第一生理小種,第三或第四生物型,但是在不同植物種類上的毒力卻有很大的差異,近來則在馬鈴薯上出現第三生理小種第二生物型的菌株。本研究目的在於(一)以新的演化型分類系統決定台灣青枯病菌菌株的演化型,並利用egl和mutS基因的部分序列分析台灣各地區不同來源菌株間的親緣關係,再探討生物型、毒力、菌株來源及地域來源與前述分類結果的相關性;(二)利用半選擇性培養基MSM-1和青枯病菌專一性的引子對AU759/760發展簡易的BIO-PCR方法,評估此方法對田間樣品的偵測效果;(三)發展初步篩選系統,以選擇適合當地應用於綜合防治番茄青枯病的抗病根砧及土壤添加物。首先,評估不同來源的157個台灣菌株在生物型、毒力及親源關係的差異性。除了分離自馬鈴薯的2個菌株屬於第二生物型外,其餘供試菌株皆為第三或第四生物型,其中第三生物型菌株為優勢族群。以演化型專一性的多引子PCR進行檢定,除了2個第二生物型的馬鈴薯菌株屬於第二演化型外,其餘供試菌株皆為第一演化型。從157個菌株中選出58個供試菌株,接種在三種具有不同抗病性的番茄品種上,可區分為7個毒力群。分析供試菌株的egl和mutS基因的部分序列皆發現第一演化型呈現分歧,這個發現首次證明在亞洲的第一演化型菌株可能存在著演化分歧,可區分為2個亞群。根據卡方檢定,發現egl和mutS基因的部分序列分析所獲得的2個亞群,其菌株分佈與生物型及菌株來源有關。至於毒力的表現型,僅與egl基因演化群的菌株分佈有關,與mutS基因演化群的菌株分佈無關。在病菌檢測方面,建立BIO-PCR方法偵測田間土壤、雜草及灌溉水中的青枯病菌,此方法是先以液態的MSM-1培養基在30oC培養田間樣品三天,再利用專一性引子對AU759/760直接與培養液進行PCR檢測。於台灣主要番茄產區的8個具有不同青枯病發病史及耕作制度的田區進行採樣,共收集320個土壤、91個雜草、85個灌溉水樣品進行病原菌偵測。不論是土壤、雜草或灌溉水樣品,以BIO-PCR方法所偵測到帶菌樣品的比例皆高於單獨使用選擇性培養基的稀釋平板法。結果並顯示若要追蹤田間青枯病菌,以雜草根圈土樣品可能是最理想的標的物。以BIO-PCR方法證明了病原菌在田間呈現不規則分佈。若每5.5 m2面積採集1個土壤次樣品,將36個土壤次樣品混合成1個土壤樣品,則每1,000 m2田區只需採集5個土壤樣品,即可得知青枯病菌的存在與否。在綜合防治策略上,發展初步篩選系統,以增加防治策略應用在各地區的成功機率。經初步篩選試驗,結果顯示尿素與石灰混合物對三種供試土壤具有最佳的抑菌效果。根據苗期對代表性菌株的抗病篩選結果,選出具穩定抗病性的茄子品種EG203及番茄品種Hawaii 7996做為根砧。田間試驗結果僅一個田區顯示綜合使用Hawaii 7996根砧和土壤添加物比單獨使用Hawaii 7996根砧具有顯著的防治效果;以EG203做為根砧時,土壤添加物則無法提供顯著的防治效果。了解台灣青枯病菌菌株的差異性、應用BIO-PCR偵測方法追蹤病原菌在田間的分佈及應用初步篩選系統擬定防治策略,將有助於番茄青枯病的永續管理。

Bacterial wilt caused by the soil-borne plant pathogenic bacterium, Ralstonia solanacearum, is a globally important disease. The disease has been recorded on 28 plant species as well as several weed species in Taiwan. This pathogen is a species complex with significant phenotypic and genetic diversity. In Taiwan, all reported strains of R. solanacearum are race 1 and biovar 3 or 4, but they are highly variable in virulence on different plant species including tomatoes. Recently, race 3 biovar 2 strains were detected from infected potatoes. The purposes of this study were to (i) determine the phylotype of Taiwanese strains using the new phylotyping classification scheme, determine the phylogenic origins of strains collected from different locations and sources in Taiwan using endoglucanase (egl) and mutase (mutS) partial gene sequences, and examine associations of the classification results with biovar, virulence, strain origins, and geographical origins; (ii) develop a simple BIO-PCR protocol using the semi-selective medium, MSM-1, and species-specific primer pairs, AU759/760, and evaluate the effectiveness of this protocol with field samples; and (iii) develop a preliminary screen to select locally adapted resistant rootstock and soil amendment for integrated management of tomato bacterial wilt in the field. First, the diversity among 157 strains of R. solanacearum isolated from 22 host, 11 weed, 2 water, and 4 soil origins in Taiwan was evaluated on their biovar, virulence, and phylogenic origin. All strains tested were biovar 3 or 4 except for two strains isolated from potato were biovar 2. The biovar 3 strains are predominant. The phylotype-specific multiplex PCR identified all tested strains as phylotype I, except the two biovar 2 potato strains as phylotype II. The 58 out of 157 strains were selected and inoculated on three tomato varieties with different resistance to bacterial wilt. Seven groups with various profiles of virulence were detected. Phylogenetic analysis of partial egl and mutS gene sequences of the same 157 strains revealed a major branch within phylotype I. This is the first evidence to imply the possible existence of an evolution divergence within phylotype I strains in Asia and at least two subgroups could be distinguished. Based on the chisquare test, the distribution of the two subgroups of phylotype I defined by egl or mutS gene sequence over biovars or strain origins was not independent. Only distribution of strains of egl phylogenic groups, but not mutS, was associated with virulence phenotypes. For detection of R. solanacearum, a BIO-PCR method was established to detect R. solanacearum from field soil, weed, and water samples. The method involved incubating field samples in liquid MSM-1 medium at 30oC for 3 days and then detecting with species-specific primer pair AU759/760 without DNA purification. Samples of 320 field soil, 91 weed, and 85 water samples were collected from eight fields with different disease histories and cropping systems located in major tomato production areas. The frequency of positive detections by BIO-PCR was higher than that by plating on MSM-1 medium. Results indicated that weed rhizosphere soils could be good sampling targets to monitor the pathogen in the field. Use of the BIO-PCR method confirmed the uneven distribution of the pathogen in the field. Five composite samples per 1,000-m2 field each consisting of 36 sub-samples at a sampling density of one sub-sample per 5.5 m2 were sufficient to determine the presence of R. solanacearum in the field. For integrated control of bacterial wilt, a preliminary screen was developed to increase the chances of identifying successful control measures over locations. Pre-incubation tests indicated that the mixture of urea and slaked lime was most suppressive to R. solanacearum in three tested soils, and was used in subsequent field experiments. Resistant eggplant (EG203) and tomato (Hawaii 7996) rootstocks were selected based on stable resistance against representative strains of R. solanacearum at the seedling stage. Integrated use of Hawaii 7996 as the rootstock and mixture of urea and slaked lime as the soil amendment provided significantly greater control of wilt than use of Hawaii 7996 as rootstock alone in only one of the four locations, whereas the soil amendment did not provide significant control effect when EG203 was used as the rootstock. Understanding strain variations of R. solanacearum in Taiwan, use of the BIO-PCR detection method to monitor pathogen distribution, and application of the preliminary screen scheme to select disease control strategy can contribute greatly to sustainable management of tomato bacterial wilt.
URI: http://hdl.handle.net/11455/31182
其他識別: U0005-0907200815465000
Appears in Collections:植物病理學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.