Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31225
DC FieldValueLanguage
dc.contributor葉瑩zh_TW
dc.contributor郭克忠zh_TW
dc.contributor黃德昌zh_TW
dc.contributor安寶貞zh_TW
dc.contributor謝文瑞zh_TW
dc.contributor林瑞松zh_TW
dc.contributor.advisor林益昇zh_TW
dc.contributor.author蘇俊峯zh_TW
dc.contributor.authorSu, Jiunn-Fengen_US
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T07:41:21Z-
dc.date.available2014-06-06T07:41:21Z-
dc.identifierU0005-1208200815252300zh_TW
dc.identifier.citation第一章 前言與前人研究 1. Aegerter, B. J., Gordon, T. R., and Davis, R. M. 2000. Occurrence and pathogenicity of fungi associated with melon root rot and vine decline in California. Plant Dis. 84: 224-230. 2. Andrews, P. K., and Marquez, C. S. 1993. Graft incompatibility. Hort. Rev. 15: 183-232. 3. Beltran, R., Vicent, A., Garcia-Jimenez, J., and Armengol, J. 2007. Quantification of Monosporascus cannonballus ascospores in muskmelon fields in eastern Spain. J. Phytopathol. 155: 248-250. 4. Beltran, R., Vicent, A., Sales Jr., R., Garcia-Jimenez, J., and Armengol, J. 2005. Population dynamics of Monosporascus cannonballus ascospores in marsh soils in eastern Spain. Eur. J. Plant Pathol. 113: 357-365. 5. Bruton, B. D., and Miller, M. E. 1997. Occurrence of vine decline diseases of muskmelon in Guatemala. Plant Dis. 81: 694. 6. Chaurasia, B., Pandey, A., and Palni, L. M. S. 2005. Distribution, colonization and diversity of arbuscular mycorrhizal fungi associated with central Himalayan rhododendrons. For. Ecol. Manage. 207: 315-324. 7. Cohen, R., Pivonia, S. Burger, Y., Edelstein, M., Gamliel, A., and Katan, J. 2000. Toward integrated management of Monosporascus wilt of melons in Israel. Plant Dis. 84: 496-505. 8. Cohen, R., Pivonia, S., Shtienberg, D., Edelstein, M., Raz, D., Gerstl, Z., and Katan, J. 1999. The efficacy of fluazinam in suppression of Monosporascus cannonballus, the causal agent of vine decline of melons. Plant Dis. 83: 1137-1141. 9. Collado, J., González, A., Platas, G., Stchigel, A. M., Guarro, J., and Peláez, F. 2002. Monosporascus ibericus sp. nov., an endophytic ascomycete from plants on saline soils, with observations on the position of the genus based on sequence analysis of the 18S rDNA. Mycol. Res. 106: 118-127. 10. Daniels, B. A., McCool, P. M., and Menge, J. A. 1981. Comparative inoculum potential of spores of six vesicular-abruscular mycorrhizal fungi. New Phytol. 89: 385-391. 11. Edelstein, M., Cohen, R., Burger, Y., Shriber, S., Pivonia, S., and Shtienberg, D. 1999. Integrated management of sudden wilt in melons, caused by Monosporascus cannonballus, using grafting and reduced rates of methyl bromide. Plant Dis. 83: 1142-1145. 12. Erwin, D. C. 1981. Chemical control. Pages 563-594 in: Fungal Wilt Diseases of Plants. M. E. Mace, A. A. Bell, and C. H. Beckman, eds. Academic Press, New York. 640pp. 13. Garcia-Jimenez, J., Velazquez, M. T., Jorda, C., and Alfaro-Garcia, A. 1994. Acremonium species as the causal agent of muskmelon collapse in Spain. Plant Dis. 78: 416-419. 14. Gottlieb, D. 1978. The Germination of Fungus Spores. Meadowfield, Durham, England. 166pp. 15. Helling, C. S., Dennison, D., G., and Kaufman, D. D. 1974. Fungicide movement in soils. Phytopathology 64: 1091-1100. 16. Heo, N. Y., Ryu, K. Y., and Lee, Y. B. 2001. Cultural characteristics and ascospore density in soil of Monosporascus cannonballus on Cucurbitaceous plants. Res. Plant Dis. 7: 16-19. 17. Ibarra, L., Flores, J., and Diaz-Perez, J. C. 2001. Growth and yield of muskmelon in response to plastic mulch and row covers. Sci. Hortic. 87: 139-145. 18. Karlatti, R. S., Abdeen, F. M., and Al-Fehaid, M. S. 1997. First report of Monosporascus cannonballus on melons in Saudi Arabia. Plant Dis. 81: 1215. 19. Kim, D. H., Rasmussen, S. L., and Stanghellini, M. E. 1995. Monosporascus cannonballus root rot of muskmelon: Root infection and symptom development in relation to soil temperature. (Abstr.) Phytopathology 85: 1195. 20. Krikum, J. 1985. Observations on the distribution of the pathogen Monosporacus eutypoides as related to soil temperature and fertilization. Phytoparasitica 13: 225-228. 21. Lee, J. M. 1994. Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience 29: 235-239. 22. Lin, Y. S., Su, J. F., and Huang, K. S. 2004. Grafting management of Fusarium wilt and root rot/vine decline of cucurbitaceous plants in Taiwan. Pages 119-136 in: Proceedings of 2004 Symposium on the Health Management of Fruity Vegetable. Yang, H. C., and Lin, H. S. ed. Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Taichung, 236 pp. (In Chinese). 23. Liu, R. J., and Luo, X. S. 1994. A new method to quantify the inoculum potential of arbuscular mycorrhizal fungi. New Phytol. 128: 89-92. 24. Lovelli, S., Pizza, S., Caponio, T., Rivelli, A. R., and Perniola, M. 2005. Lysimetric determination of muskmelon crop coefficients cultivated under plastic mulches. Agric. Water Manage. 72: 147-159. 25. Martyn, R. D., and Miller, M. E. 1996. Monosporascus root rot and vine decline: An emerging disease of melons worldwide. Plant Dis. 80: 716-725. 26. Martyn, R. D., Lovic, B. R., Maddox, D. A., Germash, A., and Miller, M. E. 1994. First report of Monosporascus root rot/vine decline of watermelon in Tunisia. Plant Dis. 78: 1220. 27. Mertely, J.C., Martyn, R.D., Miller, M. E., and Bruton, B. D. 1993. An expanded host range for the muskmelon pathogen Monosporascus cannonballus. Plant Dis. 77: 667-673. 28. Palti, J., and Katan, J. 1997. Effect of cultivation practices and cropping systems on soilborne diseases. Pages 377-396 in: Soilborne Diseases of Tropical Crop. R. J. Hillocks and J. M. Waller, eds. CAB International, Wallingford, UK. 464pp. 29. Reuveni, R., Krikun, J., and Shani, U. 1983. The role of Monosporascus eutypoides in a collapse of melon plants in an arid area of Israel. Phytopathology 73: 1223-1226. 30. Pivonia, S., Cohen, R., Kafkafi, U., Ben Ze’ev, I. S., and Katan, J. 1997. Sudden wilt of melons in southern Israel: Fungal agents and relationship with plant development. Plant Dis. 81: 1264-1268. 31. Pivonia, S., Kigel, J., Cohen, R., and Katan, J. 1998. The effect of fruit load on the transpiration rate and plant collapse in melon (Cucumis melo L.), infected with Monosporascus cannonballus. Pages 217-220 in: Cucurbitaceae 98. Evaluation and Enhancement of Cucurbit Germplasm. D. McCreight, ed. ASHS, Alexandria, VA. 377pp. 32. Pivonia, S., Kigel, J., Cohen, R., Katan, J. and Levita, R. 1999. Effect of soil temperature on the development of sudden wilt of melons. Phytoparasitica 27: 42-43. 33. Pollack, F. G., and Uecker, F. A. 1974. Monosporascus cannonballus an unusual ascomycete in cantaloupe roots. Mycology 66: 346-349. 34. Radewald, K. C., Ferrin, D. M., and Stanghellini, M. E. 2004. Sanitation practics that inhibit reproduction of Monosporascus cannonballus in melon roots left in the field after crop termination. Plant Pathol. 53: 660-668. 35. Ristaino, J. B., and Thomas, W. 1997. Agriculture, methyl bromide, and the ozone hole. Can we fill the gaps? Plant Dis. 81: 964-977. 36. Sinha, A. P., Singh, K., and Mukhopadhyay, A. N. 1988. Soil Fungicides. CRC Press, Boca Raton, FL. 192pp. 37. Stanghellini, M. E., and Rasmussen, S. L. 1992. A quantitative method for the recovery of ascospores of Monosporascus cannonballus from field soil. (Abstr.) Phytopathology 82: 1115. 38. Stanghellini, M. E., Kim, D. H., and Rasmussen, S. L. 1996. Ascospores of Monosporascus cannonballus: Germination and distribution in cultivated and desert soils in Arizona. Phytopathology 86: 509-514. 39. Stanghellini, M. E., Kim, D. H., and Waugh, M. 2000. Microbe-mediated germination of ascospores of Monosporascus cannonballus. Phytopathology 90: 243-247. 40. Stanghellini, M. E., Kim, D. H., Waugh, M. M., Ferrin, D. M., Alcantara, T., and Rasmusseh, S. L. 2004a. Infection and colonization of melon roots by Monosporascus cannonballus in two cropping seasons in Arizona and California. Plant Pathol. 53: 54-57. 41. Stanghellini, M. E., Waugh, M. M., Radewald, K. C., Kim, D. H., Ferrin, D. M., and Turini, T. 2004b. Crop residue destruction strategies that enhance rather than inhibit reproduction of Monosporascus cannonballus. Plant Pathol. 53: 50-53. 42. Su, J. F., Su, S. M., and Lin, Y. S. 2004. Distribution and germination of Monosporascus cannonballus ascospore in soil. J. Xinjiang University 21 (Supp.): 33-41. 43. Sussman, A. S., and Douthit, H. A. 1973. Dormancy in microbial spores. Ann. rev. plant physiol. 24:311-352. 44. Traka-Mavrona, E., Koutsika-Sotiriou, M., and Pritsa, T. 2000. Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Sci. Hort. 83: 353-362. 45. Tsay, J. G., and Tung, B. K. 1994. The occurrence of muskmelon root rot caused by Monosporascus cannonballus Pollack & Uecker in Taiwan. Plant Pathol. Bull. 3: 260. (In Chinese). 46. Tsay, J. G., and Tung, B. K. 1997. Effects of Monosporascus cannonballus on the growth of cucurbit and solanaceous vegetable seedlings. Plant Pathol. Bull. 6: 123-131. 47. Turian, G., and Hohl, H. R. 1981. The Fungal Spore: Morphogenetic Controls. Academic Press, London. 670pp. 48. Ucko, O., Maduel, A., Grinstein, A., and Katan, J. 1992. Combined methods of soil disinfestation for controlling melon collapse with reduced methyl bromide dosages. (Abstr.) Phytoparasitica 20: 229-230. 49. Uematsu, S., Hirota, K., Shiruishi, T., Ooizumi, T., Sokiyama, K., Ishikura, I., and Edagowa, Y. 1992. Monosporascus root rot on bottle gourd stock of watermelon caused by Monosporascus cannonballus. Ann. Phytopathol. Soc. Jpn. 58: 354-359. 50. Uematsu, S., Onogi, S., and Watanabe, T. 1985. Pathogenicity of Monosporascus cannonballus Pollack and Uecker in Relation to Melon root rot in Japan. Ann. Phytopath. Soc. Japan 51: 272-276. 51. von Arx, J. A. 1975. On Thielavia angulata and some recently described Thielavia species. Kavala 3: 33-36. 52. Watanabe, T. 1979. Monosporascus cannonballus, an ascomycetes from wilted melon roots undescribed in Japan. Trans. mycol. soc. Japan 20: 312-316. 53. Waugh, M. M., Kim, D. H., Ferrin, D. M., and Stanghellini, M. E. 2003. Reproductive potential of Monosporascus cannonballus. Plant Dis. 87:45-50. 54. Waugh, M. M., Stanghellini, M. E., and Kim, D. 2001. Scanning electron microscopy of germinated ascospores of Monosporascus cannonballus. Myc. Res. 105: 745-748. 55. Wolff, D. W., and Miller, M E. 1998. Tolerance to Monosporascus root rot and vine decline in melon (Cucumis melo L.) germplasm. HortScience 33: 287-290. 第二章 洋香瓜黑點根腐病菌在台灣的寄主範圍 1. Cohen, R., Pivonia, S. Burger, Y., Edelstein, M., Gamliel, A., and Katan, J. 2000. Toward integrated management of Monosporascus wilt of melons in Israel. Plant Dis. 84: 496-505. 2. Cohen, R., Pivonia, S., Shtienberg, D., Edelstein, M., Raz, D., Gerstl, Z., and Katan, J. 1999. The efficacy of fluazinam in suppression of Monosporacus cannonballus, the causal agent of vine decline of melons. Plant Dis. 83: 1137-1141. 3. Council of Agriculture, Executive Yuan, R. O. C. 2005. Ag. Statistics Yearbook 2005. Council of Agriculture, Executive Yuan, R. O. C. Taipei, Taiwan. 355 pp. 4. Hawksworth, D. L., and Ciccarone, A. 1978. Studies on a species of Monosporascus isolated from Triticum. Mycopathologia 66: 147-151. 5. Martyn, R. D., and Miller, M. E. 1996. Monosporascus root rot and vine decline: An emerging disease of melons worldwide. Plant Dis. 80: 716-725. 6. Martyn, R. D., Lovic, B. R., Maddox, D. A., Germash, A., and Miller, M. E. 1994. First report of Monosporascus root rot/vine decline of watermelon in Tunisia. Plant Dis. 78: 1220. 7. Mertely, J. C., Martyn, R. D., Miller, M. E., and Bruton, B. D. 1991. Role of Monosporascus cannonballus and other fungi in a root rot/vine decline of muskmelon. Plant Dis. 75: 1133-1137. 8. Mertely, J.C., Martyn, R.D., Miller, M. E., and Bruton, B. D. 1993a. An expanded host range for the muskmelon pathogen Monosporascus cannonballus. Plant Dis. 77: 667-673. 9. Mertely, J.C., Martyn, R.D., Miller, M. E., and Bruton, B. D. 1993b. Quantification of Monosporascus cannonballus ascospores in three commercial muskmelon fields in south Texas. Plant Dis. 77: 766-771. 10. Pivonia, S., Cohen, R., Cohen, S., Kigel, J., Levita, R., and Katan, J. 2004. Effect of irrigation regimes on disease expression in melon plants infected with Monosporascus cannonballus. Eur. J. Plant Pathol. 110: 155-161. 11. Pivonia, S., Cohen, R., Katan, J. and Kigel J. 2002. Effect of fruit load on the water balance of melon plants infected with Monosporascus cannonballus. Physiol. Mol. Plant P. 60: 39-49. 12. Pollack, F. G., and Uecker, F. A. 1974. Monosporascus cannonballus an unusual ascomycete in cantaloupe roots. Mycology 66: 346-349. 13. Ristaino, J. B., and Thomas, W. 1997. Agriculture, methyl bromide and the ozone hole, can we fill the gap? Plant Dis. 81: 964-977. 14. Sivanesan, A. 1991. IMI descriptions of fungi and bacteria No. 1035. Monosporascus cannonballus. Mycopathologia 114: 53-54. 15. Stanghellini, M. E., and Rasmussen, S. L. 1992. A quantitative method for the recovery of ascospores of Monosporascus cannonballus from field soil. Phytopathology 82: 1115. 16. Stanghellini, M. E., Kim, D. H., and Rasmussen, S. L. 1996. Ascospores of Monosporascus cannonballus: Germination and distribution in cultivated and desert soils in Arizona. Phytopathology 86: 509-514. 17. Stanghellini, M. E., Kim, D. H., and Waugh, M. 2000. Microbe-mediated germination of ascospores of Monosporascus cannonballus. Phytopathology 90: 243-247. 18. Su, J. F., and Lin, Y. S. 2001. The disease development and xylem-tylose formation of root rot and vine decline of muskmelon. Plant Pathol. Bull. 10: 205. (In Chinese). 19. Tsay, J. G., and Tung, B. K. 1994. The occurrence of muskmelon root rot caused by Monosporascus cannonballus Pollack & Uecker in Taiwan. Plant Pathol. Bull. 3: 260. (In Chinese). 20. Tsay, J. G., Chen, R. S., Tung, B. K. 1999. Survival of Monosporascus cannonballus in the field soil. Plant Pathol. Bull. 8: 121-124. (In Chinese). 21. Uematsu, S., Hirota, K., Shiruishi, T., Ooizumi, T., Sokiyama, K., Ishikura, I., and Edagowa, Y. 1992. Monosporascus root rot on bottle gourd stock of watermelon caused by Monosporascus cannonballus. Ann. Phytopathol. Soc. Jpn. 58: 354-359. 22. Uematsu, S., Onogi, S., and Watanabe, T. 1985. Pathogenicity of Monosporascus cannonballus Pollack and Uecker in Relation to Melon root rot in Japan. Ann. Phytopath. Soc. Japan 51: 272-276. 23. Zhang, J. X., Howell, C. R., Miller, M. E. 1998. Evaluation of Trichoderma virens as a potential biocontrol agent of Monosporascus cannonballus in muskmelon. Phytopathology 88: S12. 24. Stanghellini, M. E., Kim, D. H., Waugh, M. M., Ferrin, D. M., Alcantara, T., and Rasmusseh, S. L. 2004. Infection and colonization of melon roots by Monosporascus cannonballus in two cropping seasons in Arizona and California. Plant Pathol. 53: 54-57. 25. Waugh, M. M., Kim, D. H., Ferrin, D. M., and Stanghellini, M. E. 2003. Reproductive potential of Monosporascus cannonballus. Plant Dis. 87:45-50. 第三章 洋香瓜黑點根腐病菌子囊孢子在田間土壤中的族群變化與分佈 1. Aegerter, B. J., Gordon, T. R., and Davis, R. M. 2000. Occurrence and pathogenicity of fungi associated with melon root rot and vine decline in California. Plant Dis. 84: 224-230. 2. Beltran, R., Vicent, A., Garcia-Jimenez, J., and Armengol, J. 2007. Quantification of Monosporascus cannonballus ascospores in muskmelon fields in eastern Spain. J. Phytopathol. 155: 248-250. 3. Beltran, R., Vicent, A., Sales Jr., R., Garcia-Jimenez, J., and Armengol, J. 2005. Population dynamics of Monosporascus cannonballus ascospores in marsh soils in eastern Spain. Eur. J. Plant Pathol. 113: 357-365. 4. Bossuyt, H., Denef, K., Six, J., Frey, S. D., Merckx, R., and Paustian, K. 2001. Influence of microbial populations and residue quality on aggregate stability. Appl. Soil Ecol. 16: 195-208. 5. Ellis, S., and Mellor, A. 1995. Soil constituents and properties. 9-53 pp. in soil and environment. Routledge. 364 pp. 6. Gan, Y. T., Siddique, K. H. M., MacLeod, W. J., and Jayakumar, P. 2006. Management options for minimizing the damage by ascochyta blight (Ascochyta rabiei) in chickpea (Cicer arietinum L.). Field Crop. Res. 97: 121-134. 7. Grahman, J. 2001. Gradient media. 43-60pp. in biological centrifugation. Bios. 222 pp. 8. Heo, N. Y., Ryu, K. Y., and Lee, Y. B. 2001. Cultural characteristics and ascospore density in soil of Monosporascus cannonballus on Cucurbitaceous plants. Res. Plant Dis. 7: 16-19. 9. Lin, Y. S., Su, J. F., and Lin, K. M., 2008. The host range of Monosporascus cannonballus in Taiwan. Plant Pathol. Bull. 17: 25-34. (In Chinese). 10. Martyn, R. D., and Miller, M. E. 1996. Monosporascus root rot and vine decline: An emerging disease of melons worldwide. Plant Dis. 80: 716-725. 11. Mertely, J. C., Martyn, R. D., Miller, M. E., and Bruton, B. D. 1993. Quantification of Monosporascus cannonballus ascospores in three commercial muskmelon fields in south Texas. Plant Dis. 77: 766-771. 12. Pereira, J., and Dhingra, O. D. 1997. Suppression of Diaporthe phaseolorum f. sp. meridionalis in soybean stems by Chaetomium globosum. Plant Pathol. 46: 216-223. 13. Pollack, F. G., and Uecker, F. A. 1974. Monosporascus cannonballus an unusual ascomycete in cantaloupe roots. Mycology 66: 346-349. 14. Radewald, K. C., Ferrin, D. M., and Stanghellini, M. E. 2004. Sanitation practics that inhibit reproduction of Monosporascus cannonballus in melon roots left in the field after crop termination. Plant Pathol. 53: 660-668. 15. Seybold, C. A., and Herrick, J. E. 2001. Aggregate stability kit for soil quality assessments. Catena 44: 37-45. 16. Stanghellini, M. E., and Rasmussen, S. L. 1992. A quantitative method for the recovery of ascospores of Monosporascus cannonballus from field soil. (Abstr.) Phytopathology 82: 1115. 17. Stanghellini, M. E., Kim, D. H., and Rasmussen, S. L. 1996. Ascospores of Monosporascus cannonballus: Germination and distribution in cultivated and desert soils in Arizona. Phytopathology 86: 509-514. 18. Stanghellini, M. E., Kim, D. H., and Waugh, M. M. 2000. Microbe-mediated germination of ascospores of Monosporascus cannonballus. Phytopathology 90: 243-247. 19. Stanghellini, M. E., Kim, D. H., Waugh, M. M., Ferrin, D. M., Alcantara, T., and Rasmusseh, S. L. 2004a. Infection and colonization of melon roots by Monosporascus cannonballus in two cropping seasons in Arizona and California. Plant Pathol. 53: 54-57. 20. Stanghellini, M. E., Waugh, M. M., Radewald, K. C., Kim, D. H., Ferrin, D. M., and Turini, T. 2004b. Crop residue destruction strategies that enhance rather than inhibit reproduction of Monosporascus cannonballus. Plant Pathol. 53: 50-53. 21. Su, J. F., and Lin, L. S. 2008. The grafting management in root rot/vine decline of muskmelon. Plant Pathol. Bull. 17: 35-41. (In Chinese). 22. Su, J. F., Su, S. M., and Lin, Y. S. 2004. Distribution and germination of Monosporascus cannonballus ascospore in soil. Journal of Xinjiang University 21 (Supp.): 33-41. (In Chinese). 23. Villalta, O. N., Washington, W. S., Rimmington, G. M., and MacHardy, W. E. 2001. Environmental factors influencing maturation and release of ascospores of Venturia pirina in Victoria, Australia. Aust. J. Agric. Res. 52: 825-837. 24. Waugh, M. M., Kim, D. H., Ferrin, D. M., and Stanghellini, M. E. 2003. Reproductive potential of Monosporascus cannonballus. Plant Dis. 87: 45-50. 第四章 洋香瓜黑點根腐病菌子囊孢子的發芽與有效侵入率 1. Alphei, J., Bonkowski, M., and Scheu, S. 1996. Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaeus (Poaceae): Faunal interactions, response of microorganisms and effects on plant growth. Oecologia 106: 111-126. 2. Baker, R., and Drury, R. 1981. Inoculum potential and soilborne pathogens: the essence of every model is within the frame. Phytopathology 71: 363-372. 3. Bonkowski, M., Cheng, W., Griffiths, B. S., Alphei, J., and Scheu, S. 2000. Microbial-faunal interactions in the rhizosphere and effects on plant growth. Eur. J. Soil Biol. 36: 135-147. 4. Bordallo, J. J., Lopez-Llorca, L. V., Jansson, H. -B., Salinas, J., Persmark, L., and Asensio, L. 2002. Colonization of plant roots by egg-parasitic and nemetode-trapping fungi. New Phytol. 154: 491-499. 5. Cheng, W., Zhang, Q., Coleman, D. C., Carroll, C. R., and Hoffman, C. A. 1996. Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol. Biochem. 28: 1283-1288. 6. Cohen, R., Pivonia, S., Burger, Y., Edelstein, M., Gamliel, A., Katan, J. 2000. Toward integrated management of Monosporascus wilt of melons in Israel. Plant Dis. 84: 496-505. 7. Cohen, R., Pivonia, S., Shtienberg, D., Edelstein, M., Raz, D., Gerstl, Z., and Katan, J. 1999. The efficacy of fluazinam in suppression of Monosporacus cannonballus, the causal agent of vine decline of melons. Plant Dis. 83: 1137-1141. 8. Deacon, J. W., and Donaldson, S. P. 1993. Molecular recognition in the homing responses of zoosporic fungi, with special reference to Pythium and Phytophthora. Mycol. Res. 97: 1153-1171. 9. Horinouchi, H., Katsuyama, N., Taguchi, Y., and Hyakumachi, M. 2008. Control of Fusarium crown and root rot of tomato in a soil system by combination of a plant growth-promoting fungus, Fusarium equiseti, and biodegradable pots. Crop Prot. 27: 859-864. 10. Leonard, K. J. 1980. A reinterpretation of the mathematical analysis of rhizoplane and rhizosphere effects. Phytopathology 70: 695-696. 11. Lin, Y. S., Su, J. F., and Lin, K. M. 2008. The host range of Monosporascus cannonballus in Taiwan. Plant Pathol. Bull. 17: 25-34. (In Chinese). 12. Mandeel, Q. 2006. Influence of plant root exudates, germ tube orientation and passive conidia transport on biological control of Fusarium wilt by strains of nonpathogenic Fusarium oxysporum. Mycopathologia 161: 173-182. 13. Martyn, R. D., and Miller, M. E. 1996. Monosporascus root rot and vine decline: An emerging disease of melons worldwide. Plant Dis. 80: 716-725. 14. Mertely, J. C., Martyn, R. D., Miller, M. E., and Bruton, B. D. 1993. Quantification of Monosporascus cannonballus ascospores in three commercial muskmelon fields in south Texas. Plant Dis. 77: 766-771. 15. Pollack, F. G., and Uecker, F. A. 1974. Monosporascus cannonballus an unusual ascomycete in cantaloupe roots. Mycology 66: 346-349. 16. Stanghellini, M. E., Kim, D. H., and Rasmussen, S. L. 1996. Ascospores of Monosporascus cannonballus: Germination and distribution in cultivated and desert soils in Arizona. Phytopathology 86: 509-514. 17. Stanghellini, M. E., Kim, D. H., and Waugh, M. M. 2000. Microbe-mediated germination of ascospores of Monosporascus cannonballus. Phytopathology 90: 243-247. 18. Stanghellini, M. E., Kim, D. H., Waugh, M. M., Ferrin, D. M., Alcantara, T., and Rasmusseh, S. L. 2004. Infection and colonization of melon roots by Monosporascus cannonballus in two cropping seasons in Arizona and California. Plant Pathol. 53: 54-57. 19. Su, J. F., and Lin, L. S. 2008. The grafting management in root rot/vine decline of muskmelon. Plant Pathol. Bull. 17: 35-41. (In Chinese). 20. Uematsu, S., Onogi, S., and Watanabe, T. 1985. Pathogenicity of Monosporascus cannonballus Pollack and Uecker in Relation to Melon root rot in Japan. Ann. Phytopath. Soc. Japan 51: 272-276. 21. Wastie, R. L. 1962. Mechanism of action of an infective dose of Botrytis spores on bean leaves. Trans. Br. Mycol. Soc. 45: 465-473. 22. Waugh, M. M., Kim, D. H., Ferrin, D. M., and Stanghellini, M. E. 2003. Reproductive potential of Monosporascus cannonballus. Plant Dis. 87: 45-50. 第五章 利用嫁接技術管理洋香瓜黑點根腐病 1. Beltran, R., Vicent, A., Sales, Jr., Garcia-Jimenez, J., and Armengol, J. 2005. Population dynamics of Monosporascus cannonballus ascospores in marsh soils in eastern Spain. Eur. J. Plant Pathol. 113: 357-365. 2. Cohen, R., Burger, Y., Horev, C., Porat, A., and Edelstin, M. 2005. Performance of Galia-type melons grafted on to Cucurbita rootstock in Monosporascus cannonballus-infested and non-infested soils. Ann. Appl. Biol. 146: 381-387. 3. Cohen, R., Pivonia, S., Burger, Y., Edelstein, M., Gamliel, A., Katan, J. 2000. Toward integrated management of Monosporascus wilt of melons in Israel. Plant Dis. 84: 496-505. 4. Cohen, R., Pivonia, S., Shtienberg, D., Edelstein, M., Raz, D., Gerstl, Z., and Katan, J. 1999. The efficacy of fluazinam in suppression of Monosporacus cannonballus, the causal agent of vine decline of melons. Plant Dis. 83: 1137-1141. 5. Edelstein, M., Cohen, R., Burger, Y., Shriber, S., Pivonia, S. and Shtienberg, D. 1999. Integrated management of sudden wilt in melons, caused by Monosporascus cannonballus, using grafting and reduced rates of methyl bromide. Plant Dis. 83: 1142-1145. 6. Ibarra, L., Flores, J., and Diaz-Perez, J. C. 2001. Growth and yield of muskmelon in response to plastic mulch and row covers. Sci. Hortic. 87: 139-145. 7. Lin, Y. S., Su, J. F., and Huang, K. S. 2004. Grafting management of Fusarium wilt and root rot/vine decline of cucurbitaceous plants in Taiwan. Pages 119-136 in: Proceedings of 2004 Symposium on the Health Management of Fruity Vegetable. Yang, H. C., and Lin, H. S. ed. Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Taichung, 236 pp. (In Chinese). 8. Lin, Y. S., Su, J. F., and Lin, K. M. 2008. The host range of Monosporascus cannonballus in Taiwan. Plant Pathol. Bull. 17: 25-34. (In Chinese). 9. Lovelli, S., Pizza, S., Caponio, T., Rivelli, A. R., and Perniola, M. 2005. Lysimetric determination of muskmelon crop coefficients cultivated under plastic mulches. Agric. Water Manage. 72: 147-159. 10. Mertely, J. C., Martyn, R. D., Miller, M. E., and Bruton, B. D. 1993. Quantification of Monosporascus cannonballus ascospores in three commercial muskmelon fields in south Texas. Plant Dis. 77: 766-771. 11. Navas-Cortes, J. A., Alcala-Jimenez, A. R., Hau, B., and Jimenez-Diaz, R. M. 2000. Influence of inoculum density of race 0 and 5 of Fusarium oxysporum f. sp. ciceris on development of Fusarium wilt in chickpea cultivars. Eur. J. Plant Pathol. 106: 135-146. 12. Pivonia, S., Cohen, R., Cohen, S., Kigel, J., Levita, R., and Katan, J. 2004. Effect of irrigation regimes on disease expression in melon plants infected with Monosporascus cannonballus. Eur. J. Plant Pathol. 110: 155-161. 13. Pivonia, S., Cohen, R., Levita, R., and Katan, J. 2002. Improved solarization of containerized medium for the control of Monosporascus collapse in melon. Crop Prot. 21: 907-917. 14. Pollack, F. G., and Uecker, F. A. 1974. Monosporascus cannonballus an unusual ascomycete in cantaloupe roots. Mycology 66: 346- 349. 15. Stanghellini, M. E., and Rasmussen, S. L. 1992. A quantitative method for the recovery of ascospores of Monosporascus cannonballus from field soil. Phytopathology 82: 1115. 16. Stanghellini, M. E., Kim, D. H., and Rasmussen, S. L. 1996. Ascospores of Monosporascus cannonballus: Germination and distribution in cultivated and desert soils in Arizona. Phytopathology 86: 509-514. 17. Stanghellini, M. E., Kim, D. H., and Waugh, M. 2000. Microbe-mediated germination of ascospores of Monosporascus cannonballus. Phytopathology 90: 243-247. 18. Su, J. F., Huang, K. S., and Lin,Y. S. 2001. Control of the root rot and vine decline of muskmelon by resistant rootstock. Plant Pathol. Bull. 10: 205. (In Chinese). 19. Traka-Mavrona, E., Koutsika-Sotiriou, M., and Pritsa, T. 2000. Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Sci. Hort. 83: 353-362. 20. Tsay, J. G., and Tung, B. K. 1994. The occurrence of muskmelon root rot caused by Monosporascus cannonballus Pollack & Uecker in Taiwan. Plant Pathol. Bull. 3: 260. (In Chinese). 21. Zhang, J. X., Howell, C. R., Miller, M. E. 1998. Evaluation of Trichoderma virens as a potential biocontrol agent of Monosporascus cannonballus in muskmelon. Phytopathology 88: S12. 第六章 結論與討論 1. Andrews, P. K. and Marquez, C. S. 1993. Graft incompatibility. Hort. Rev. 15: 183-232. 2. Bower, J., Holford, P., Latche., and Pech, J-C. 2002. Culture conditions and detachment of the fruit influence the effect of ethylene on the climacteric respiration of melon. Postharvest Boil. Tec. 26: 135-146. 3. Bruton, B. D., and Miller, M. E. 1997. Occurrence of vine decline diseases of muskmelon in Guatemala. Plant Dis. 81: 694. 4. Carpenter-Boggs, L., Loynachan, T. E., and Stahl, P. D. 1995. Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol. Biochem. 27: 1445-1451. 5. Cohen, R., Burger, Y., Horev, C., Porat, A., and Edelstin, M. 2005. Performance of Galia-type melons grafted on to Cucurbita rootstock in Monosporascus cannonballus-infested and non-infested soils. Ann. Appl. Biol. 146: 381-387. 6. Cohen, R., Pivonia, S., Burger, Y., Edelstein, M., Gamliel, A., Katan, J. 2000. Toward integrated management of Monosporascus wilt of melons in Israel. Plant Dis. 84: 496-505. 7. Edelstein, M., Cohen, R., Burger, Y., Shriber, S., Pivonia, S., and Shtienberg, D. 1999. Integrated management of sudden wilt in melons, caused by Monosporascus cannonballus, using grafting and reduced rates of methyl bromide. Plant Dis. 83: 1142-1145. 8. Garcia-Jimenez, J., Velazquez, M. T., Jorda, C., and Alfaro-Garcia, A. 1994. Acremonium species as the causal agent of muskmelon collapse in Spain. Plant Dis. 78: 416-419. 9. Karlatti, R. S., Abdeen, F. M., and Al-Fehaid, M. S. 1997. First report of Monosporascus cannonballus on melons in Saudi Arabia. Plant Dis. 81: 1215. 10. Lin, Y. S., Su, J. F., and Huang, K. S. 2004. Grafting management of Fusarium wilt and root rot/vine decline of cucurbitaceous plants in Taiwan. Pages 119-136 in: Proceedings of 2004 Symposium on the Health Management of Fruity Vegetable. Yang, H. C., and Lin, H. S. ed. Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Taichung, 236 pp. (In Chinese). 11. Martyn, R. D., and Miller, M. E. 1996. Monosporascus root rot and vine decline: An emerging disease of melons worldwide. Plant Dis. 80: 716-725. 12. Martyn, R. D., Lovic, B. R., Maddox, D. A., Germash, A., and Miller, M. E. 1994. First report of Monosporascus root rot/vine decline of watermelon in Tunisia. Plant Dis. 78: 1220. 13. Mertely, J.C., Martyn, R.D., Miller, M. E., and Bruton, B. D. 1993. An expanded host range for the muskmelon pathogen Monosporascus cannonballus. Plant Dis. 77: 667-673. 14. Pivonia, S., Cohen, R., Cohen, S., Kigel, J., Levita, R., and Katan, J. 2004. Effect of irrigation regimes on disease expression in melon plants infected with Monosporascus cannonballus. Eur. J. Plant Pathol. 110: 155-161. 15. Pivonia, S., Cohen, R., Katan, J. and Kigel, J. 2002a. Effect of fruit load on the water balance of melon plants infected with Monosporascus cannonballus. Physiol. Mol. Plant P. 60: 39-49. 16. Pivonia, S., Cohen, R., Kigel, J., and Katan, J. 2002b. Effect of soil temperature on disease development in melon plants infected by Monosporascus cannonballus. Plant Pathol. 51: 472-479. 17. Pivonia, S., Kigel, J., Cohen, R., Katan, J. and Levita, R. 1999. Effect of soil temperature on the development of sudden wilt of melons. Phytoparasitica 27: 42-43. 18. Stanghellini, M. E., Kim, D. H., and Rasmussen, S. L. 1996. Ascospores of Monosporascus cannonballus: Germination and distribution in cultivated and desert soils in Arizona. Phytopathology 86: 509-514. 19. Stanghellini, M. E., Kim, D. H., and Waugh, M. M. 2000. Microbe-mediated germination of ascospores of Monosporascus cannonballus. Phytopathology 90: 243-247. 20. Traka-Mavrona, E., Koutsika-Sotiriou, M., and Pritsa, T. 2000. Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Sci. Horti. 83: 353-362. 21. Tsay, J. G., and Tung, B. K. 1997. Effects of Monosporascus cannonballus on the growth of cucurbit and solanaceous vegetable seedlings. Plant Pathol. Bull. 6: 123-131. 22. Uematsu, S., Hirota, K., Shiruishi, T., Ooizumi, T., Sokiyama, K., Ishikura, I., and Edagowa, Y. 1992. Monosporascus root rot on bottle gourd stock of watermelon caused by Monosporascus cannonballus. Ann. Phytopathol. Soc. Japan 58: 354-359. 23. Uematsu, S., Onogi, S., and Watanabe, T. 1985. Pathogenicity of Monosporascus cannonballus Pollack and Uecker in Relation to Melon root rot in Japan. Ann. Phytopath. Soc. Japan 51: 272-276. 24. Waugh, M. M., Stanghellini, M. E., and Kim, D. 2001. Scanning electron microscopy of germinated ascospores of Monosporascus cannonballus. Myc. Res. 105: 745-748.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/31225-
dc.description.abstract本論文主要目的在探討Monosporascus cannonballus的寄主範圍、子囊孢子在田間土壤中的族群變化與子囊孢子的發芽,進而利用子囊孢子對不同葫蘆科作物根部的有效侵入率,篩選可用的嫁接抗、耐病根砧與評估嫁接後洋香瓜鮮食品質,發展可應用於田間的黑點根腐病防治方法。田間調查得知洋香瓜黑點根腐病菌在台灣的寄主植物有:洋香瓜、香瓜、越瓜、胡瓜、蒲瓜(作西瓜根砧)和冬瓜等。在溫室內以土壤試管法則可觀察到供試的10種瓜類作物,包括洋香瓜、香瓜、越瓜、胡瓜、冬瓜、南瓜、西瓜、蒲瓜、絲瓜與苦瓜等,其根圈附近,皆有子囊孢子發芽及菌絲侵入根表皮的情形。新發展的循環子囊孢子分離法(circulating ascospore isolation method, CAIM)可由芳苑人工混菌土中得到98%的M. cannonballus子囊孢子回收率。利用CAIM法持續調查M. cannonballus子囊孢子在七股試驗田(嚴重發生洋香瓜黑點根腐病)田土中不同栽培時期的族群變化,結果植株移植當天、移植後第53與67天,根圈土壤中分別含有12.7、4.5與9.5 ascospores/g soil。洋香瓜果實於移植後第92天採收,在植株移植後第99與123天,根圈土壤中僅含有6.3與15 ascospores/g soil;植株移植後第130天與165天,則增加至95.9與303.5 ascospores/g soil。該試驗田又於植株移植後第207天整地,植株移植後第214、238與298天,利用CAIM法測得總體土壤中分別含有5.3、7.9與6.4 ascospores/g soil。本研究新研發的包埋子囊孢子發芽法(embedded ascospore germination method, EAGM)與Stanghellini等人發展的土壤試管法(soil tube method, STM)為兩種可觀察M. cannonballus 子囊孢子在植株根圈發芽的方法。在EAGM法的water agar上可以計數M. cannonballus子囊孢子的總數與發芽個數(numbers of germinated ascospores, GA),進而求得子囊孢子的發芽率。在STM法中,可由接種株根部計數得到已發芽並侵入植株根部的子囊孢子個數(numbers of germinated and penetrated ascospores, GPA),再利用空圓柱體體積公式與子囊孢子接種源濃度,計算得到STM法根圈土壤的子囊孢子總數。將此子囊孢子總數 x 子囊孢子發芽率,即可求得STM法根圈土壤子囊孢子的發芽個數(GA)。將(GPA/GA) x 100%定義為子囊孢子的有效侵入率(ascospore penetration efficiency, PE),藉由PE值來評估M. cannonballus子囊孢子對13種葫蘆科作物根部的侵入感染能力。結果顯示,洋香瓜(秋香)與越瓜(銀華)所得之PE值,6.51%與6.52%,與西瓜(富寶2號、勇士)、冬瓜(農友細長1號、小惠)、絲瓜(美菱、東光)與南瓜(壯士、鳳凰)等供試植株所得之PE值,分別為1.72%、1.46%、1.16%、0.61%、0.98%、1.04%、1.05%與1.97%,具顯著差異(p< 0.05)。據此,多種葫蘆科作物皆可為嫁接使用,但是評估嫁接後洋香瓜鮮食品質,則篩選得到以冬瓜與南瓜所製作的舌狀根靠接嫁接苗,可應用於田間防治試驗。2004年在東山鄉觀察以冬瓜1202與南瓜1913為根砧的洋香瓜舌狀根靠接株,對黑點根腐病有較佳的防治效果。隔年在七股鄉兩個田間試驗區,亦顯示以南瓜1913當根砧之嫁接株表現優良而穩定的成效。雖然根砧會被M. cannonballus所感染,但是根砧之根數佔整個植株根系的54%,且其根腐指數較低。在採收期嫁接株地上部雖表現暫時性萎凋的特性,但尚有具商品價值的洋香瓜可收穫。又於2007年的西港鄉田間防治試驗中,以南瓜1913當根砧之洋香瓜嫁接株,仍表現穩定的抗病效果,萎凋率僅19%,且可收穫具商品價值的洋香瓜,產量為100.3 kg/40 plants,無嫁接者則僅有84.9 kg/40 plants。zh_TW
dc.description.abstractThis study was studying in host range of Monosporascus cannonballus, dynamic populations of M. cannonballus ascospores in fields and M. cannonballus ascospore germination. Moreover, ascospore penetration efficiency (PE) was used for selecting resistant/tolerant rootstocks. After grafting, the eating quality was another factor affecting in developing disease management method of root rot/vine decline of muskmelon. Field survey results showed that the hosts of M. cannonballus included muskmelon, Japanese cantaloupe, oriental pickling melon, cucumber, wax gourd and bottle gourd as rootstock for watermelon in Taiwan. Using soil tube method, the ascospores could germinate in the rhizosphere and the hyphae penetrated into root tissues in such plants as muskmelon, Japanese cantaloupe, oriental pickling melon, cucumber, wax gourd, squash, watermelon, bottle gourd, loofah and bitter gourd. A newly developed method, circulating ascospore isolation method (CAIM), had 98% of M. cannonballus ascospore recovery rate in artificial infested Fangyuan soil. This method was applied to survey population dynamic of M. cannonballus ascospores different days after transplanting in an experimental filed of Chigu, which had a serious root rot/vine decline of muskmelon. The results showed that 12.7, 4.5 and 9.5 ascospores/g soil involved in rhizosphere soils 0, 53 and 67 days after transplanting, respectively. When muskmelon fruits were harvested at 92 days after transplanting, rhizosphere soils only contained 6.3 and 15 ascospores/g soil 99 and 123 days after transplanting, respectively, but ascospore densities raised to 95.9 and 303.5 ascospores/g soil 130 and 165 days after transplanting, respectively. When this experimental field was plowed 207 days after transplanting, there were only 5.3, 7.9 and 6.4 ascospores/g soil 214, 238 and 298 days after transplanting, respectively. A new developed method of embedded ascospore germination method (EAGM) and the soil tube method (STM), modified from Stanghellini et al., were two different methods in observation of M. cannonballus ascospore germination around the rhizosphere. With EAGM, the total number of ascospores and numbers of germinated ascospores (GA) on water agar were countable. So, ascospore germination rates could be calculated. In STM, the numbers of germinated and penetrated ascospores (GPA) could be counted from infected plant roots after inoculation. Following the volume formula of cannular cylinder and ascospore inoculum density, the total number of ascospores in rhizosphere in STM was possible known. This total number multiplied by ascospore germination rate was numbers of germinated ascospores (GA) in STM. When (GPA/GA) x 100% was defined as ascospore penetration efficiency (PE), PE values could be used to estimate the ability of M. cannonballus ascospores to penetrate into 13 cucurbitaceous plant roots. The results showed that PE values, 6.51% and 6.52% of muskmelon (Autumn favor) and Oriental pickling melon (Silver charm) were higher than watermelon (Empire no. 2 and Knight), wax gourd (K. Y. trim and Benefit), loofah (Miriam and Cylinder) and squash (Strong man and Phoenix), which were 1.72%, 1.46%, 1.16%, 0.61%, 0.98%, 1.04%, 1.05% and 1.97%, respectively, and were significantly different (p< 0.05). So, many cucurbitaeous plants could be used as rootstocks in disease management of root rot/vine decline of muskmelon. However, after grafting and evaluating the eating quality, wax gourd and squash was selected as rootstocks for muskmelon tongue root inarching grafts. In 2004, a field experiment was conducted at Dongshan (in Tainan County) and Wax gourd 1202 and Squash 1913 were screened for their suitability as rootstock. In 2005, in further field experiments conducted at Chigu Ⅰand Ⅱ (Tainan), the grafts on squash 1913 rootstock gave a stable, positive performance on disease management. Although the root of rootstock plants was also infected by M. cannonballus, they displayed a relatively low root rot index. And there were 54% of the total root numbers found to derive from the rootstock plant. By harvest time, the grafts showed a phenomenon of temporary wilting in which the plants wilted during the day and would recover at night or in a later time under certain circumstances. A normal harvest of high quality fruit of muskmelon was possible. The grafts of squash 1913 as rootstock still had a stable performance on disease management at 2007 (at Sigang in Tainan County). The wilt rates was only 19% and high quality fruit of 100.3 kg/40 plants was compared with 84.9 kg/40 plants on non-grafting.en_US
dc.description.tableofcontents誌謝辭 Ⅲ 中文摘要 Ⅳ 英文摘要 Ⅵ 目錄 Ⅷ 第一章 前言與前人研究 1 1.1 前言 1 1.2 前人研究 1 引用文獻 6 第二章 洋香瓜黑點根腐病菌在台灣的寄主範圍 11 摘要 11 Abstract 12 2.1. 前言 13 2.2. 材料與方法 14 2.3. 結果 17 2.4. 討論 20 引用文獻 21 第三章 洋香瓜黑點根腐病菌子囊孢子在田間土壤中的族群變化與分佈 33 摘要 33 Abstract 34 3.1. 前言 35 3.2. 材料與方法 35 3.3. 結果 38 3.4. 討論 41 引用文獻 43 第四章 洋香瓜黑點根腐病菌子囊孢子的發芽與有效侵入率 52 摘要 52 Abstract 53 4.1. 前言 54 4.2. 材料與方法 55 4.3. 結果 57 4.4. 討論 58 引用文獻 61 第五章 利用嫁接技術管理洋香瓜黑點根腐病 69 摘要 69 Abstract 70 5.1. 前言 71 5.2. 材料與方法 71 5.3. 結果 73 5.4. 討論 75 引用文獻 76 第六章 結論與討論 84 引用文獻 87zh_TW
dc.language.isoen_USzh_TW
dc.publisher植物病理學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1208200815252300en_US
dc.subjectroot rot/vine decline of muskmelonen_US
dc.subject洋香瓜黑點根腐病zh_TW
dc.subjectMonosporascus cannonballusen_US
dc.subjectgraftingen_US
dc.subjectascospore germinationen_US
dc.subjectpopulation dynamicen_US
dc.subject洋香瓜黑點根腐病菌zh_TW
dc.subject嫁接zh_TW
dc.subject子囊孢子發芽zh_TW
dc.subject族群變化zh_TW
dc.title洋香瓜黑點根腐病菌之生態與洋香瓜黑點根腐病之嫁接管理zh_TW
dc.titleThe ecology of Monosporascus cannonballus and grafting management of root rot/vine decline of muskmelonen_US
dc.typeThesis and Dissertationzh_TW
item.grantfulltextnone-
item.openairetypeThesis and Dissertation-
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextno fulltext-
Appears in Collections:植物病理學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.