Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorWei-Ping Dowen_US
dc.contributor.authorLai, Pei-Yingen_US
dc.identifier.citation1. W.C. Bigelow, D. L. Pickett, and W. A. Zisman,“Oleophobic Monolayers: I. Films Adsorbed from Solution in Non-Polar Liquids”, Journal of Colloid Science, 1, 513(1946). 2. A. Ulman,“Formation and Structure of Self-Assembles Monolayers”, Chemical Reviews, 96, 1533(1996). 3. R. G. Nuzzo, and D. L. Allara,“Adsorption of Bifunctional Organic Disulfides on Gold Surfaces”, Journal of the American Chemical Society, 105, 4481(1983). 4.顏亞佩,“掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究”,國立中央大學化學系碩士論文,民國92年。 5. F. Schreiber,“Structure and Growth of Self-Assembling Monolayers”, Progress in Surface Science, 65, 151(2000). 6. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides,“Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology”, Chemical Reviews, 105, 1103(2005). 7. A. Michota, A. Kudelski, and J. Bukowska,“Chemisorption of Cysteamine on Silver Studied by Surface-Ehance Raman Scattering”, Langmuir, 16, 10236(2000). 8.A. Kudelski,“Raman and Electrochemical Characterization of 2-Mercaptoethanesulfonate Monolayers on Silver: A Comparison with Monolayers of 3-Mercaptopropionic acid”, Langmuir, 18, 4741(2002). 9. A. Kudelski,“Structures of Monolayers Formed from Different HS-(CH2)2-X thiols on Gold,silver and Copper Comparative Studies by Surface-Enhanced Raman scattering”, Journal of Raman Spectroscopy, 34, 853(2003). 10. A. Michota, A. Kudelski, and J. Bukoeska,“Influence of Electrolytes on the Structure of Cysteamine Monolayer on Silver Studied by Surface-Enhance Raman Scattering”, Journal of Raman Spectroscopy, 32, 345(2001). 11. A. Kudelski,M. Pecul and J.Bukowska,“Interaction of 2-Mercaptoethane- sulfonate Monolayers on Silver with Sodium Cations”, Journal of Raman Spectroscopy, 33, 796(2002). 12. M.J. Esplandiu, H. Hagenstrom, and D.M. Kolb,“Functionalized Self- Assembled Alkanethiol Monolayers on Au(111) Electrode: 1.Surface Structure and Electrochemistry”, Langmuir, 17, 828(2001). 13. 張勁燕,“深次奈米矽製程技術”,第六章,五南圖書出版書局,民國91年。 14. P. C.Andricacos, C. Uzoh, J. O Dukovic, J. Horkans, and H.Deligiami,“Damascene Copper Electroplating for Chip Interconnections”, IBM Journal of Research and Development, 42, 567(1998). 15. Z. Nagy, J. P. Blaudeau, N. C.Hung, L. A. Curtiss, and D. J. Zurawski,“Chloride Ion Catalysis of the Copper Deposition Reaction”, Journal of The Electrochemical Society, 142, C87(1995). 16. W. P. Dow, H. S. Huang, M. Y. Yen, and H. C. Huang,“Roles Of Chloride Ion in MicroVia Filling by Copper Electrodeposition II. Studies Using Electron Paramagnetic Resonance and Galvanostatic Measurements”, Journal of The Electrochemical Society, 152, C77(2005). 17. N. Zukauskaite, and A. Malinauskas,“Electrocatalysis by a Brightener in Copper Electrodeposition”, Sov. Electrochem., 24, 1564(1989). 18. J. P. Healy, and D.Pletcher,“The Chemistry of the Additives in an Acid Copper Electroplating Bath Part II. The Instability of 4,5-dithiaoctane-1,8- disulphonic Acid in the Bath on Open Circuit”, The Journal of Physical Chemistry, 338, 167(1992). 19. E. Mattsson, and J. O. M. Bockris“Galvanostic Studies of the Kinetic of Deposition and Dissolution in the Copper + Copper Sulphate System”, Transactions of the Faraday Society, 55, C1589(1959). 20. Z. V. Feng, A. A. Gewirth, and X. Li“Inhibition Due to the Interaction of Polyethylene Glycol, Chloride, and Copper in plating Bath: A Surface Enhanced Raman Study”, The Journal of Physical Chemistry B, 107, 9415(2003). 21. J. J. Kelly, and A. C. West,“Leveling of 200 nm Features by Organic Additives”, Electrochemical and Solid-State Letters, 2, 561(1999). 22. P. Taephaisitphongse, Y. Cao, and A. C. West,“Electrochemical and Fill Studies of a Multicomponent Additive Package for Copper Deposition”, Journal of the Electrochemical Society, 148, 492(2001). 23.M. F. Toney, J. N. Howard, J. Richer, G. L. Borges, J. G. Gorfon, and O. R.Melroy,“Electrochemical Deposition of Copper on a Gold Electrode in Sulfuric Acid:Resolution of the Interfacial Structure”,Physical. Review Letters, 75, 4472(1995). 24. H. Matsumoto, I. Oda, J. Inukai, and M. Ito,“Coadsorption of Copper and Halogens on Pt(111) and Au(111) Electrode Surface Studies by Scanning Tunneling Microscopy”, Journal of Electroanalytical Chemistry, 356, 275(1993). 25. H. Matsumoto, I. Oda, J. Inukai, and M. Ito,“Structures of Copper and Halides on Pt(111), Pt(100) and Au(111) Electrode Surfaces Studied by In-Situ Scanning Tunneling Microscopy”, Journal of Electroanalytical Chemistry, 379, 223(1994). 26. S. Wu, J. Lipkowski, T. Tyliszczak, and A. P. Hitchcock,“Effect of Anion Adsorption on Early Stages of Copper Electrocrystallization at Au(111) Surface”, Progress in Surface Science, 50, 227(1995). 27. J. Hotlos, O. M. Magnussen, and R. J. Behm,“Effect of Trace Amounts of Cl- in Cu Underpotential Deposition on Au(111) in Perchlorate Solutions: an In-Situ Scanning Tunneling Microscopy Study”, Surface Science, 335, 129(1995). 28. A. W. Czanderna, D. E. King, and D. Spaulding,“Metal Overlayers on Organic Functional-Groups of Self-Organized Molecular Assembles 1. X-Ray Photoelectron-Spectroscopy of Interactions of Cu/COOH on 11- Mercaptoundecanoic acid”, Journal of Vacuum Science and Technology, A9,2607(1991). 29. M. J. Tarlov,“Silver Metalization of Octadecanethiol Monolayers Self- Assembled on Gold”, Langmuir, 8, 80(1992). 30. D. R. Jung, and A. W. Czanderna,“Chemical and Physical Interactions at Metal Self-Assembled Organic Monolayer Interfaces”, Critical. Reviews in Solid State and Materials Sciences, 19, 1(1994). 31. G. C. Herdt, D. R. Jung, and A. W. Czanderna,“Metal Overlayers on Organic Functional-Groups of Self-Organized Monolayer Assemblites Ion-Scattering Spectroscopy and X-Ray Photoelectron-Spectroscopy of Ag/COOH Interfaces”, Progress in Surface Science, 50, 103(1995). 32. M. A. Schneeweiss, H. Hagnestrom, M. J. Esplandiu, and D. M. Kolb,“Electrolytic Deposition onto Chemically Modified Electrodes”, Applied Physics. A, 69, 537(1999). 33. D. R. Jung, and A. W. Czanderna,“Chemical and Physical Interaction at Metal/Self-Assembled Organic Monolayer Interfaces”, Critical Reviews in Solid State and Materials Sciences, 19, 1(1994). 34. G. C. Herdt, D. R. Jung, and A. W. Czanderna,“Weak Interactions between Deposited Metal Overlayers and Organic Functional Groups of Self- Assembled Monolayers”, Progress in Surface Science, 50, 103(1995). 35. J. A. M. Sondag-Huethorst, and L. G. J. Fokkink,“Electrochemical Characterization of Functionalized Alkanethiol Monolayers on Gold”, Langmuir, 11, 2237(1995). 36. F. P. Zamborini, J. K. Campbell, and R. M. Crooks,“Spectroscopic, Voltammetric, and Electrochemmical Scanning Tunneling Microscopic Study of Underpotentially Deposited Cu Corrosion and Passivation with Self-Assembled Organomercaptan Monolayers”, Langmuir, 14, 640(1998). 37. G. K.Jennings, and P. E. Laibinis,“Underpotentially Deposited Metal Layers of Silver Provide Enhanced Stability to Self-Assembled Alkanethiol Monolayers on Gold”, Langmuir, 12, 6173(1996). 38. L. Sun, and R. M. Crooks,“Imaging of Defects Contained within n-Alkylthiol Monolayers by Combination of Underpotential Deposition and Scanning Tunneling Microscopy: Kinetics of Self-Assembly”, Journal of The Electrochemical Society, 138, L23(1991). 39. J. A. M. Sondag-Huethorst, and L. G. J. Fokkink,“Electrochemical Characterization of Functionalized Alkanethiol Monolayers on Gold”, Langmuir, 11, 2237(1995). 40. C. M. Whelan, M. R. Smyth, and C. J. Barnes,“The Influence of Heterocyclic Thiols on the Electrodeposition of Cu on Au(111)”, Journal of Electroanalalytical. Chemistry, 441, 109(1998). 41. M. Nishizawa, T. Sunagawa, and H. Yoneyama,“Underpotential Deposition of Copper on Gold Electrodes through Self-Assembled Monolayers of Propanethiol”, Langmuir, 13, 5215(1997). 42. S. E. Gilbert, O. Cavalleri, and K. Kern,“Electrodeposition of Nano- particles on Decanethiol-Covered Au(111) Surfaces: An In-Situ STM Investigation”, The Journal of Physical Chemistry, 100, 12123(1996). 43. O. Cavalleri, S. E. Gilbert, and K. Kern,“Growth Manipulation in Electro- deposition with Self-Assembled Monolayers”,Chemical Physics Letters, 269, 479(1997). 44. H. Hagenstrom, M. A. Schneeweiss, and D. M. Kolb,“Modification of a Au(111) Electrode with Etanethiol.2.Copper Electrodeposition”, Langmuir, 15, 7802(1999). 45. M. Petri, D. M. Kolb, U. Memmert, and H. Meyer,“Adsorption of Mercaptopropionic Acid onto Au(111) Part II. Effect on Copper Electrodeposition”, Electrochimica Acta, 49, 183(2003). 46. W. P. Dow, Y. D. Chiu, and M. Y. Yen, “Microvia Filling by Cu Electroplating Over an Au Seed Layer Modified by a Disulfide“ ,J. Elecrochem. Soc., 156, D155(2009) 47. T. P. Moffat, D. Wheeler, M. D. Edelstein,D. Josell, “Superconformal film growth:Mechanism and quantification”, Journal of The Electrochemical Society, 151 (4) C262-C271 (2004) 48. Gre’ goire Herzog and Damien W. M. Arrigan, “Application of Disorganized Monolayer Films on Gold Electrodes to the Prevention of Surfactant Inhibition of the Voltammetric Detection of Trace Metals via Anodic Stripping of Underpotential Deposits: Detection of Copper”, Anal. Chem. 75, 319-323 (2003) 49. 劉詠芳,“In-situ 掃描式電子穿隧顯微鏡在羥基及羧基硫醇單分子膜自組裝行為的研究“ ,國立成功大學化工系碩士論文,民國97年。 50. K. Hansma and J. Tersoff,“Scanning tunneling microscopy“ ,J. Appl. Phys. 61, R1(1987). 51. Clavilier, J., R. Faure, G. Guinet and R. Durand, “Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes,”J. Electroanal.Chem., 107, 205–209 (1980). 52. Batina, N., A. S. Dakkouri and D. M. Kolb, “The surface structure of flame-annealed Au(100) in aqueous solution: An STM study,” J. Electroanal. Chem., 370, 87–94(1994). 53. Kolb, D. M., “Reconstruction phenomena at metal-electrolyte interfaces,” Prog. Surf. Sci., 51, 109–173(1996). 54. A. Hamelin,“Cyclic Voltammetry at Gold Single-Crystal Surfaces.Part 1. Behaviour at Low- Index Faces”, Journal of Electroanalytical Chemistry, 407, 1(1996). 55. Su, J. W., “Self-Assembled Behavior of Functionalized Alkanethiols on Au(111) and Their Effects on Copper Electrodeposition,” Master Thesis, National Chung Hsing Univ., Taichung, Taiwan (2010).en_US
dc.description.abstract近年來,因為電鍍銅是連結現代半導體架構的重要製造過程,所以,電鍍銅獲得各界高度興趣。在電鍍銅製程的溶液中,硫醇分子為常見的有機添加劑,其分子可與氯離子促進銅沉積,這種行為已被推定為可促進銅沉積於填孔電鍍,相較之下,其餘矽晶片上曝露的區域,藉由PEG的阻斷行為可抑制銅沉積。 自組裝單分子膜(SAM)可有效改變表面的特性,在此項研究,藉由掃描穿隧式電子顯微鏡(STM)和循環伏安儀(CV),觀察在0.1M硫酸下,巰基乙酸(MAA)及3-巰基丙烷磺酸鈉鹽(MPS)吸附在金(111)電極上的空間排列及自組裝單分子膜的覆蓋率等特性。伏安法可研究穩定的硫醇分子在金(111)電極得到電位基準,同時,藉由分子解像STM圖,可用來探討分子末端官能基為羧酸根和磺酸根,其時間對金(111)電極電位的影響,這些硫醇分子與銅離子相互作用強烈,伏安法結果顯示銅離子附著在磺酸根較強,但是STM影像無法分辨吸附在電極表面上的銅離子。 分子量為4000~8000的PEG常被用來研究這些硫醇分子,對於銅沉積的抑制效果,由STM結果顯示,在0.1M硫酸得系統中,無論有沒有PEG,銅沉積皆會3D成長,且銅沉積速率為緩慢,但當含有MAA和MPS存在在鍍液中,明顯阻擋和加速銅沉積。這些結果與銅的沉積在凹槽息息相關,當MPS是可以促進填孔電鍍,而MAA卻不能達到填孔電鍍。zh_TW
dc.description.abstractCopper electrodeposition has received interests in recent years because it is an important process to fabricate interconnects in modern semiconductor architecture. Thiol molecules are common organic additives in copper plating solution, as they when coupled with chloride ions activate Cu deposition. This act of activation is presumed to facilitate superfilling or bottom-up filling of Cu deposit. By contrast, exposed areas on a silicon wafer are shown to be largely deactivated by the blocking act of polyethylene glycol (PEG). Self-assembled monolayer (SAM) is effective in changing characteristics of surfaces. In this study, the spatial arrangements and coverages of SAMs of mercaptoacetic acid (MAA) and 3-Mercapto-1-propanesulfonate sodium (MPS) adsorbed on Au(111) electrode have been characterized by scanning tunneling microscope (STM) and cyclic voltammetry (CV) in 0.1 sulfuric acids. Voltammetry was used study the stability of these thiol molecules on the Au(111) electrode as a function of potential; meanwhile, molecular-resolution STM imaging was used to explore the organization of these molecules as a function of time and electrode potential. with their –COOH and –SO3 terminal groups, these thiol molecules could interact strongly with copper cations. Voltammetric results show that copper cations were more strongly clung to –COOH. STM imaging was not able to identify adsorbed copper cations on the electrode surface. PEGs with molecular weights of 4000-8000 were used to study the suppressing effect of these molecules on Cu deposition. STM results show that Cu deposit grew in layers and 3D in 0.1 M H2SO4 with and without PEGs. The rate of Cu deposition was evidently fast. The presence of MAA and MPS in the electroplating bath evidently blocked and facilitated Cu deposition. These results are closely relevant to the deposition of Cu in recessed features, as MPS was able to induce superfilling; whereas MAA failed to implement superfilling.en_US
dc.description.tableofcontents第1章 緒論 16 第2章 文獻回顧與理論 17 2.1 自組裝單分子膜(Self-assmbled monolayers,SAMs) 17 2.1.1自組裝單分子膜發展 17 2.1.2自組裝單分子膜的特性 17 2.1.3自組裝單分子膜系統的分類 18 2.1.3自組裝分子在單晶電極之相關研究 20 2.2 銅製程技術 22 2.3電鍍溶液與添加劑簡介 24 2.3.1無機添加劑 24 2.3.2有機添加劑 26 2.4低電位沉積(UPD)現象 28 2.4.1銅在金(111)上低電位沉積 29 2.4.2陰離子對UPD的影響 29 2.4.3自組裝單層薄膜修飾在金(111)上對UPD的影響 31 2.5自組裝分子膜技術應用於電化學鍍銅 34 第3章 研究動機與目的 36 第4章 實驗藥品、裝置與步驟 37 4.1氣體及耗材 37 4.2藥品 37 4.3 儀器設備 37 4.3.1循環伏安儀(Cyclic Voltammogram,CV) 37 4.3.2電化學-掃瞄式電子穿隧顯微鏡(Electrochemistry-Scanning Tunneling Microscopy,EC-STM) 40儀器操作原理 40取像方法 42儀器裝置介紹 43 4.4實驗步驟 46 4.4.1黃金單晶CV電極製備 46 4.4.2黃金單晶STM電極製備 47 4.4.3循環伏安儀掃瞄的前處理 47 4.4.4掃描式電子穿隧顯微鏡的前處理 47 4.4.5製作STM探針 48 4.4.6自組裝單分子膜的製備 48 第5章 實驗結果與討論 49 5.1金(111)電極的重排現象 49 5.1.1金(111)電極在0.1M硫酸中之循環伏安圖 49 5.1.2 STM 觀察金(111)電極之重排現象 49 5.2功能性硫醇分子自組裝於金(111)上電性與結構探討 52 5.2.1循環伏安儀檢測MAA和MPS單分子膜的電化學特性 52 MAA在不同濃度硫酸下修飾金(111)電極 52 MPS在不同濃度硫酸下修飾金(111)電極 53 5.2.2 單分子膜在鹼性溶液之脫附曲線 53 5.3 STM觀測功能性硫醇分子自組裝單分子膜在金(111)電極上 58 5.3.1 10-4M MAA在0.1M硫酸下修飾金(111)電極 58 5.3.2 10-2M MAA在0.1M 硫酸下修飾金(111)電極 58 5.3.3 10-2M MPS在不同濃度硫酸下修飾金(111)電極 59 5.4 功能性硫醇分子修飾於金(111)電極上對吸附銅離子的影響 68 5.4.1 循環伏安儀檢測MAA和MPS單分子膜修飾於金(111)電極上對吸附銅離子的電化學特性 68 MAA與MPS吸附銅離子 68 MAA共吸附銅離子 68 MAA與MPS共吸附銅離子 69 MAA與MPS共吸附不同濃度銅離子 69 MAA與MPS在不同濃度硫酸下共吸附銅離子 70 5.4.2 STM觀測功能性硫醇分子吸附銅離子在金(111)電極上 78 10-4M MAA吸附銅離子五分鐘在0.1M硫酸下 78 10-2M MAA共吸附銅離子五分鐘在0.1M硫酸下 78 10-2M MPS共吸附銅離子五分鐘在0.1M硫酸下 79 5.5 PEG及氯離子共吸附功能性硫醇分子對於金(111)電極上的影響 86 5.5.1 循環伏安儀檢測MAA共吸附銅離子對於金(111)電極上的電化學特性 86 5.5.2 循環伏安儀檢測MPS共吸附銅離子對於金(111)電極上的電化學特性 87 5.6 聚乙二醇(Polyethylene Glycols,PEG) 對於功能性硫醇分子修飾的金(111)電極上的影響 94 5.6.1 循環伏安儀檢測PEG對於金(111)電極上的電化學特性 94 5.6.2 循環伏安儀檢測PEG對於MAA修飾金(111)電極上的電化學特性 94 5.6.3 循環伏安儀檢測PEG對於MPS修飾金(111)電極上的電化學特性 95 5.7 STM觀測PEG對於功能性硫醇分子自組裝單分子膜在金(111)電極上的影響 99 5.7.1 PEG對於MAA在0.1M硫酸下修飾金(111)電極 99 5.7.2 PEG對於MPS在0.1M硫酸下修飾金(111)電極 99 5.8 PEG、氯離子對於功能性硫醇分子修飾的金(111)電極上鍍銅的影響 107 5.8.1 循環伏安儀檢測PEG、氯離子對於MAA修飾的金(111)電極上鍍銅的電化學特性 107 在0.1M硫酸下10-2M MAA修飾的金(111)電極上鍍銅 107 在2 M硫酸下10-2M MAA修飾的金(111)電極上鍍銅 108 在pH 3下10-2M MAA修飾的金(111)電極上鍍銅 108 5.8.2 循環伏安儀檢測PEG、氯離子對於MPS修飾的金(111)電極上鍍銅的電化學特性 120 在0.1M硫酸下10-2M MPS修飾的金(111)電極上鍍銅 120 在2 M硫酸下10-2M MPS修飾的金(111)電極上鍍銅 121 在pH 3下10-2M MPS修飾的金(111)電極上鍍銅 121 5.8.3 比較PEG、氯離子對於MAA或MPS修飾的金(111)電極上鍍銅的電化學特性 134 5.8.4 STM觀測PEG、氯離子對於MAA修飾的金(111)電極上鍍銅的電化學特性 136 金(111)鍍銅 136金(111)在含PEG的鍍液中鍍銅 136 5.8.5 STM觀測PEG、氯離子對於MAA修飾的金(111)電極上鍍銅的電化學特性 140 MAA修飾金(111)鍍銅 140 MAA修飾金(111)在含氯離子的鍍液中鍍銅 140 MAA修飾金(111)在含PEG的鍍液中鍍銅 141 MAA修飾金(111)在含PEG及氯離子的鍍液中鍍銅 141 5.8.6 STM觀測PEG、氯離子對於MPS修飾的金(111)電極上鍍銅的電化學特性 153 5.9 PEG、氯離子及功能性硫醇分子應用在直通矽晶穿孔(Through-Silicon Via,TSV)電鍍銅 158 第6章 結論 161 6.1 MAA及MPS自組裝單分子膜於金(111)上電性及結構的探討 161 6.2 MAA及MPS吸附銅離子於金(111)上電性及結構的探討 161 6.3 PEG對於MAA、MPS自組裝單分子膜於金(111)上電性及結構的探討 161 6.4 PEG及氯離子對於MAA、MPS自組裝單分子膜於金(111)上,不同濃度硫酸下鍍銅電性及結構的探討 161 6.5 實際應用在填孔電鍍於TSV上 162 第7章 未來發展方向 163 第8章 參考文獻 165zh_TW
dc.subjectself-assembled monolayersen_US
dc.subjectcyclic voltammetryen_US
dc.subjectscanning tunneling microscopeen_US
dc.titleA Study of Electrodeposition of Copper on Au(111) Electrode by Cyclic Voltammetry and Scanning Tunneling Microscopyen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.