Please use this identifier to cite or link to this item:
標題: 植物酚化物 caffeic acid 對桃褐腐病菌的角質分解酵素基因 MfCUT1 表現之調控
The regulation of Monilinia fructicola cutinase gene MfCUT1 expression by plant phenolic caffeic acid
作者: 邱秋閔
Chiu, Chiu-Min
關鍵字: Monilinia fructicola;桃褐腐病菌;caffeic acid;cutinase;redox;植物酚化物;角質分解酵素;氧化還原
出版社: 植物病理學系所
引用: 參考文獻 1. Alı′a, M., Ramos, S., Mateos, R., Granado-Serrano, A. B., Bravo, L., and Goya, L. 2006. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide. Toxicology and Applied Pharmacology 212: 110-118. 2. Barthelman, M., B Bair III, W., Stickland, K. K., Chen, W. X., Timmermann, B. N., Valcic, S., Dong, Z., and Bowden, G. T. 1998. (-)-Epigallocatechin-3-gallate inhibition of ultravioletB-induced Ap-1 activity. Carcinogenesis 19: 2201-2204. 3. Biggs, A. R., and Northover, J. 1988. Early and later-season susceptibility of peach fruits to Monilinia fructicola. Plant Disease 72: 1070-1074. 4. Bostock, R. M., Wilcox, S. M., Wang, G., and Adaskaveg, J. E. 1999. Suppression of Monilinia fructicola cutinase production by peach fruit surface phenolic acids. Physiological and Molecular Plant Pathology 54: 37-50. 5. Bostock, R. M., Wilcox, S. M., Wang, G., and Adaskaveg, J. E. 1999. Suppression of Monilinia fructicola cutinase production by peach fruit surface phenolic acids. Physiological and Molecular Plant Pathology 54: 37-50. 6. Branduardi, P., Fossati, T., Sauer, M., Pagani, R., Mattanovich, D., and Porro, D. 2007. Biosynthesis of vitamin C by yeast leads to increased stress resistance. PLoS ONE 2: e1092. 7. Choi, H. S., and Moore, D. D. 1993. Induction of c-fos and c-jun gene expression by phenohic antioxidants. Molecular Endocrinology 7: 1596-1602. 8. Chumley, F. G., and Valent, B. 1990. Genetic analysis of melanin-defcient, nonpathogenic mutants of Magnaporthe grisea. Molecular Plant-Microbe Interactions 3: 135-143. 9. Collinson, L. P., and Dawes, I. W. 1994. Isolation, characterization and overexpression of the yeast gene, GLRI, encoding glutathione reductase. Gene 156: 123-127. 10. Cruickshank, R. H., and Wade, G. C. 1992. Production of appressoria by Monilinia fructicola. Mycological Research 96: 425-428. 11. Davies, K. A., DeLorono, I., Foster, S. J., Li, D., Johnstone, K., and Ashby, A. M. 2000. Evidence for a role of cutinase in pathogenicity of Pyrenopeziza brassicae on brassicas. Physiological and Molecular Plant Pathology 57: 63-75. 12. Deiana, S., Gessa, C., Marchetti, M., and Usai, M. 1995. Phenolic acid redox properties: pH influence on iron (III) reduction by caffeic acid. Soil Science Society of American Journal 59: 1301-1307. 13. Deising, H., Nicholson, R. L., Haug, M., Howard, R. J., and Mendgen, K. 1992. Adhesion pad formation and the involvement of cutinase and esterases in the attachment of uredospores to the host cuticle. Plant Cell 4: 1101-1111. 14. Dickman, M. B., and Patil, S. S. 1986. Cutinase deficient mutants of Colletotrichum gloeosporioides are nonpathogenic to papaya fruit. Physiological and Molecular Plant Pathology 28: 235-242. 15. Farah Diba, A. B., Abdul Munir, A. M., Aidil Abdul, H., Zamrod, Z., Mahadi, N. M., and Sullivan, P. 2005. Induction and expression of cutinase activity during saprophytic growth of the fungal plant pathogen, Glomerella cingulata. Asia Pacific Journal of Molecular Biology and Biotechnology 13: 63-69. 16. Gradziel, T. M. 1994. Changes in susceptibility to brown rot with ripening in 3 clingstone peach genotypes. Journal of the American Society for Horticultural Science 119: 101-105. 17. Huang, M. T., Smart, R. C., Wong, C. Q., and Conney, A. H. 1988. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Research 48: 5941-5946. 18. Inoue, Y., Matsuda, T., Sugiyama, K. I., Izawa, S., and Kimur, A. 1999. Genetic analysis of glutathione peroxidase in oxidative stress response of Saccharomyces cerevisiae. Journal of Biological Chemistry 274: 27002-27009. 19. Izawa, S., Inoue, Y., and Kimura, A. 1995. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Letters 368: 73-76. 20. Jamieson, J. D. 1992. Saccharomyces cerevisiae has distinct adaptive responses to both hydrogen peroxide and menadione. Journal of Bacteriology 174: 6678-6681. 21. Kang, K. A., Lee, K. H., Zhang, R., Plao, M., Chae, S., Kim, K. N., Jeon, Y. J., Park, D. B., You, H. J., Kim, J. S., and Hyun, J. W. 2006. Caffeic acid protects hydrogen peroxide induced cell damage in WI-38 human lung fibroblast cells. Biological and Pharmaceutical Bulletin 29: 1820-1824. 22. Kolattukudy, P. E. 1985. Enzymatic penetration of the plant cuticle by fungal pathogens. Annual Review of Phytopathology 23: 233-250. 23. Kolattukudy, P. E., Rogers, L. M., Li, D. X., Hwang, C. S., and Flaishman, M. A. 1995. Surface signaling in pathogenesis. Proceedings of the National Academy of Sciences U.S.A 92: 4080-4087. 24. Kolattukudy, P. E., Rogers, L. M., Li, D. X., Hwang, C. S., and Flaishman, M. A. 1995. Surface signaling in pathogenesis. Proceedings of the National Academy of Sciences, USA. 92: 4080-4087. 25. Kuboto, N., Mimura, H., and Shimamura, K. 2000. Differences in phenolic levaes among mature peach and nectarine cultivas and their relation to astrigency. Journal of the Japanese Society for Horticultural Science 69: 35-39. 26. Kuge, S., and Jones, N. 1994. YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO Jounal 13: 655-664. 27. Lee, M. H., and Bostock, R. M. 2006. Induction, regulation, and role in pathogenesis of appressoria in Monilinia fructicola. Phytopathology 96: 1072-1080. 28. Lee, M. H., and Bostock, R. M. 2007. Fruit exocarp phenols in relation to quiescence and development of Monilinia fructicola infections in Prunus spp.: A role for cellular redox? Pytopathology 97: 269-277. 29. Li, D., Ashby A. M., and Johnstone, K. 2003. Molecular evidence that the extracellular cutinase Pbc1 is required for pathogenicity of pyrenopeziza brassicae on oilseed rape. Molecular Plant-Microbe Interactions 16: 545–552. 30. Lin, T. S., and Kolattukudy, P. E. 1978. Induction of a biopolyester hydrolase (cutinase) by low levels of cutin monomers in Fusarium solani f. sp. pisi. Journal of Bacteriology 133: 942-951. 31. Medved, I., Brown, M. J., Bjorksten, A. R., Murphy, K. T., Petersen, A. C., Sostaric, S., Gong, X., and McKenna, M. J. 2004. N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. Journal of Applied Physiology 97: 1477-1485. 32. Miller, N. J., and Rice-Evans, C. A. 1997. Factors influencing the antioxidant activity determined by the ABTS+ radical cation assay. Free Radical Research 26: 195-197. 33. Molina, L., and Kahmann, R. 2007. An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19: 2293–2309. 34. Molina, M. F., Sanchez-Reus, I., Iglesias, I., and Benedi, J. 2003. Quercetin, a flavonoid antioxidant, prevents and protects against ethanol-induced oxidative stress in mouse liver. Biological and Pharmaceutical Bulletin 26: 1398-1402. 35. Moye-Rowley, W. S., Harshman, K. D., and Parker, C. S. 1989. Yeast YAP1 encodes a novel form of the jun family of transcriptional activator proteins. Genes and Development 3: 283-292. 36. Mutoh, N., Kawabata, M., and Kitajima, S. 2005. Effects of four oxidants, menadione, 1-chloro-2,4-dinitrobenzene, hydrogen peroxide and cumene hydroperoxide, on fission yeast Schizosaccharmoyces pombe. The Journal of Biochemistry 138: 797-804. 37. Nardini, M., D’Aquino, M., Tomassi, G., Gentili, V., Di Felice, M., and Scaccini, C. 1995. Inhibition of human low-density-lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radical Biology and Medicine 19: 541-552. 38. Neradil, J., Veselska, R., and Slanina, J. 2003. UVC-protective effect of caffeic acid on normal and transformed human skin cells in vitro. Folia Biologica 49: 197-202. 39. Nogae, I., and Johnston, M. 1990. Isolation and characterization of the ZWFI gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene 96: 161-169. 40. Pascholati, S. F., Deising, H., Leite, B., Anderson, D., and Nicholson, R. L. 1993. Cutinase and nonspecific esterase activities in the conidial mucilage of Colletotrichum graminicola. Physiological and Molecular Plant Pathology 42: 37-51. 41. Patsoukis, N., and Georgiou, C. 2007. Effect of glutathione biosynthesis-related modulators on the thiol redox state enzymes and on sclerotial differentiation of filamentous phytopathogenic fungi. Mycopathologia 163: 335-347. 42. Penninckx, M. 2000. A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme and Microbial Technology 26: 737–742. 43. Re, R., Pellegrini, N., Proteggente. A, Pannala, A., Yang, M., and Rice-Evans, C. A. 1999. Antioxidants activity applying an improved ABTS+ radical cation decolorization assay. Free Radical Biology and Medicine 26: 1231-1237. 44. Richman, P. G., and Meister, A. 1975. Regulation of γ-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. Journal of Biological Chemistry 250: 1422-1426. 45. Salinas, J., Warnaar, F., and Verhoeff, K. 1986. Production of cutin hydrolyzing enzymes by Botrytis cinerea in vitro. Journal of Phytopathology 116: 299-307. 46. Sorensen, A. D. M., Haahr, A. M., Becker, E. M., Skibsted, L. H., Bergensthal B., and Nilsson, L. 2008. Interactions between iron, phenolic compounds, emulsifiers, and pH in omega-3-enriched oil-in-water emulsions. Journal of Agricultural and Food Chemistry 56: 1740-1750. 47. Stipanuk, M. H., Coloso, R. M., Garcia, R. A., and Banks, M. F. 1992. Cysteine concentration regulates cysteine metabolism to glutathione, sulfate and taurine in rat hepatocytes. The Jounal of Nutrition 122: 420-427. 48. Toone, W. M., and Jones, N. 1999. AP-1 transcription factor in yeast. Genetics and Development 9: 55-61. 49. Van Kan, J. A. L., Van’t Klooster, J. W., Wagemakers, C. A. M., Dees, D. C. T., and Van der Vlugt-Bergmans, C. J. B. 1997. Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato. Molecular Plant-Microbe Interactions 10: 30-38. 50. Vieira O., Laranjinha J., Madeira V., and Almeida L., 1998. Cholesteryl ester hydroperoxide formation in myoglobin-catalyzed low density lipoprotein oxidation: Concerted antioxidant activity of caffeic and p-coumaric acids with ascorbate. Biochemical Pharmacology 55: 333-340. 51. Wang, G. Y., Michailides, T. J., Hammock, B. D., Lee, Y. M., and Bostock, R. M. 2002. Molecular cloning, characterization, and expression of a redox-responsive cutinase from Monilinia fructicola (Wint.) Honey. Fungal Genetics and Biology 35: 261–276. 52. Yamada, Y., Yasui, H., and Sakura, H. 2006. Suppressive effect of caffeic acid and its derivatives on the generation of UVA-induced reactive oxygen species in the skin of hairless mice and pharmacokinetic analysis on organ distribution of caffeic acid in ddY mice. Photochemistry and Photobiology 82: 1668-1676. 53. Yoshioka, K., Deng, T., Cavigelhi, M., and Karin, M. 1995. Antituimnour promotion by phenohic antioxidarits: Inhibition of AP-1 activity through induction of Fra expression. Proceedings of the National Academy of Sciences, USA. 92: 4972-4976.
植物酚化物 caffeic acid 對桃褐腐病菌的角質分解酵素基因 MfCUT1 表現之調控

Caffeic acid (CA) 為一種植物酚化物,於桃子果實發育過程以第二期青果果表含量最高,此時期亦為桃褐腐病之抗病時期。植物酚化物對細胞之影響具有抗氧化及氧化之兩面特性。先前研究指出 CA 可抑制 Monilinia fructicola 角質分解酵素基因 MfCUT1 之表現,並促進細胞內 glutathione 增加,為了解此一抑制現象是否經細胞內氧化還原狀態之改變而進行調控,本研究建立 medium shift 之系統以探討細胞內氧化狀態與 MfCUT1 表現之關係。利用 2’, 7’-dichlorofluoresce diacetate (DCFDA) 測定細胞內氧化物質之含量及 5,5''-Dithio-2-nitrobenzoic acid (DTNB) 呈色法測定細胞內還原態 glutathione (GSH) 之含量, 顯示 CA 在抑制 MfCUT1 表現同時亦造成細胞內趨向還原之狀態。CA 處理明顯促進 glutathione reductase (GR) 之活性,顯示細胞內環境趨向還原狀態。另外使用 glutathione 合成抑制劑 buthionine sulfoximine (BSO) 處理可促進 MfCUT1 表現。而使用 CA 處理可影響glutathione peroxidase、glutathione reductase (GR)、glucose-6-phosphate dehydrogenase 及 yAP-1 like 基因之表現。顯示 caffeic acid 可藉由調節細胞內 glutathione 氧化還原狀態做為訊號傳遞路徑之一而抑制 MfCUT1 之表現。

The regulation of Monilinia fructicola cutinase gene MfCUT1 expression by plant phenolic caffeic acid
Monilinia fructicola causes brown rot blossom blight and fruit rot in stone fruits. Infections occur in immature fruit and can remain quiescent, but then develop into rotting lesions during fruit ripening. In a previous study, we provided evidence for a role of host exocarp phenols, notably chlorogenic acid and caffeic acid (CA), in suppression of green fruit infections. CA inhibited the formation of appressoria, the production of virulence factors (cutinase, polygalacturonase), and lesion development. The inhibition of the expression of the cutinase gene, MfCUT1, is associated with changes in intracellular glutathione pools. In this study we used 2', 7'-dichlorofluorescein diacetate (DCFDA) and total glutathione measurement to demonstrate that exogenous CA can alter the intracellular redox status in M. fructicola. Genes involved in the GSH cycle, including glutathione peroxidase (GPx), glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD), were isolated and the effect of CA on enzyme activities and gene expression was determined. Addition of buthionine sulfoximine (BSO), a specific inhibitor of γ-glutamylcysteine synthetase involved in GSH synthesis, increased the expression of MfCUT1. An ortholog of yAP-1, a redox-regulated transcription factor involved in oxidative stress management in yeast, was isolated and its expression shown to be up-regulated by CA. Our results suggest that CA inhibits MfCUT1 expression in part by altering the intracellular redox potential as reflected by an increase in the level of reduced GSH.
其他識別: U0005-1908200918463600
Appears in Collections:植物病理學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.