Please use this identifier to cite or link to this item:
標題: 影響Fusarium proliferatum產生fumonisin B1之因子探討
Factors Affecting Fumonisin B1 Production by Fusarium proliferatum
作者: 林秀橤
Lin, Shiou-Ruei
關鍵字: fumonisin B1;伏馬鐮孢毒素B1;Fusarium proliferatum;corn;teamine;Fusarium proliferatum;玉米;茶胺酸
出版社: 植物病理學系所
引用: 劉嵋恩。1988。植病研究法。茂昌出版社。台北市。 pp.380-381。 顧謙、陸錦時、葉保存。2002。茶葉化學。中國科學技術大學出版社。安徽省合肥市。70-78 pp.。 行政院衛生署。2004。食品中黴菌毒素檢驗方法—玉米及其製品中伏馬鐮孢毒素B1和B2之檢驗。行政院衛生署公告。台北。署授食字第0939316919號公告。 Abbas, H. K., Cartwright, R. D., Shier, W. T., Abouzied, M. M., Bird, C. B., Rice, L. G., Ross, P. F., Sciumbato, G. L., and Meredith, F. I. 1998. Nature occurrence of fumonisins in rice with Fusarium sheath rot disease. Plant Dis. 82:22-25. Bailly, J. D., Raymond, I., Le Bars., P., Guyomard, Y., Abadie, J., Le Bars, J., Guerre, P., Delverdier, M., and Burgat, V. 1996. Leucoencephalomalacie des equides cas rapports au CNITV. Revue Med. Vet. 147: 787-796. Bela, F.,and Endre, B. 1996. Occurrence of the equine leucoencephalomalacia(ELEM) caused by fumonisin-B1 mycotoxin in Hungary. Magy Allatorv Lapja. 8: 484-487. Bennett, G. A., Richard, J. L., and Eckhoff, S. R. 1996. Distribution of fumonisins in food and feed products prepared from contaminated corn. Adv. Exp. Med. Biol. 392:317-322. Bezuidenhout, S. C., Gelderblom, W. C. A., Gorst-Allman, C. P., Horak, R. M., Marasas, W. F. O., Spiteller, G., and Vleggaar, R..1988. Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J. Chem. Soc. Chem. Commun. 743-745. Blackwell, B. A., Miller, J. D., and Savard, M. E. 1993. Production of carbon 14-labelled fumonisin in liquid culture. J. AOAC Int 77:506-551. Bhat, R. V., Prathaphumar, H. S., and Rao, V. S. 1997. A foodborne disease outbreak due to the consumption of moldy sorghum and maize containing fumonisin mycotoxins. Clin. Toxicol. 35:249-255. Bluhm, B. H, and Woloshuk, C. P. 2005. Amylopectin induces Fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Mol. Plant Microb. Int. 18: 1333-1339. Cerrillo, G. N., Rodriguez, F. S., Gordo, L. G., de Mendoza-Salcedo, M. H., and Cordero, V. R. 1996. Clinical and pathological aspects of an outbreak of equine leucoencephalomalacia in Spain. J. Vet. Med. A 43:467-72. Chatterjee, D., Mukherjee, S. K., and Dey, A., 1995. Nuclear disintegration in chicken peritoneal macrophages exposed to fumonisin B1 from Indian maize. Lett. Appl. Microbiol. 20:184-185. Chen, J., Mirocha, C. J., Xie, W., Hogge, L., and Olson, D. 1992. Production of mycotoxin fumonisin B1 by Alternaria alternate f. sp. lycopersici. Appl. Environ. Microbiol. 58(12):3928-3931. Da Silva, J. B., Pozzi, C. R., Mallozzi, A. B., Ortega, E. M., and Correa, B. 2000. Mycoflora and occurrence of aflatoxin B1 and fumonisin B1 during storage of Brazilian sorghum. J. Agri. Food Chem. 48:4352-4356. Desjardins, A. E,, and Plattner, R. D. 1998. Distribution of fumonisins in maize ears infected with strains of Fusarium moniliforme that differ in fumonisin production. Plant Dis. 82:953-958. Duvick, J., Rood, T., and Grant, S. 1994. Isolation of fumonisin-metabolizing fungi from maize seed. Page 56 in: Abstr. Int. Mycol. Congr., 5th. Fanelli, C., Taddei, F., Trionfetti Nisini, P., Jestoi, M., Ricelli, A., Visconti, A., and Fabbri, A. A. 2003. Use of resveratrol and BHA to control growth and mycotoxin production in wheat and maize seeds. Aspects Appl Biol. 68: 63-71. Farrar, J. J., and Davis, R. M. 1991. Relationships among ear morphology, western flower thrips and Fusarium ear rot of corn. Phytopathology 81:661-666. Fazeks, B., Bajmocy, E., Glavits, R., Fenyvesi, A., and Tenyi, J. 1998. Fumonisin B1 contamination and experimental acute fumonisin toxicosis in pigs. J.Vet. Med. B 45: 171-181. Gelderblom, W. C. A., Jaskiewicz, K., Marasas, W. F. O., Thiel, P. G., Horak, R. M., Vleggarr, R., and Kriek, N. P. J. 1988. Fumonisins- novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl. Environ. Microbiol. 54(7):1806-1811. Gemma, C., Rosa Bragulat, M., and Javier Cabanes, F. 1999. Surveillance of fumonisins in maize-based feeds and cereals from Spain. J. Agric. Food Chem. 47:4707-4710. Gumprecht, L. A., Beasley, V. R., Weigel, R. M., Parker, H. M., Tumbleson, M. E., Bacon, C. W., Meredith, F. I., and Haschek, W.M. 1998. Development of fumonisin-induced hepatotoxicity and pulmonary edema in orally dosed swine: morphological and biochemical alterations. Toxicol. Pathol. 26(6): 777-788. Harrison, L. R., Colvin, B. M., Greene, J. T., Newman, L. E., and Cole, J. R. 1990. Pulmonary edema and hydrothorax in swine produced by fumonisin B1, a toxic metabolite of Fusarium moniliforme. J. Vet. Diagn. Invest. 2: 217-221. Hope, R., Jestoi, M., and Magan, N. 2003. Multi-target environmental approach for control of growth and toxin production by Fusarium culmorum using essential oils and antioxidants. Adv. Stored Product Prot. 7: 486-492. Keller, S. E., Sullivan, T. M., and Chhirtel, S. 1997. Factors affecting the growth of Fusarium proliferatum and the production of fumonisin B1: oxygen and pH. J. Ind. Microbiol. Biotechnol. 19(4):305-309. Kim, E. K., Kim, Y. B., Shon, D. H., Ryu, D., and Chung, S. H. 1998. Natural occurance of fumonisin B1 in Korean rice and its processed foods by enzyme-linked immunosorbent assay. Food Sci. Biotechnol. 7:221-224. LeBars, J., LeBars, P., Dupuy, J.,and Boudra, H. 1994. Biotic and abiotic factors in fumonisin B1 production and stability. J. AOAC Int. 77:517-521. Lemmer, E. R. P. M., Hall, N., Omori, M. Omori, E. G., Shephard, W. C. A., Gelderblom, J. P., Cruse, R. A., Barnard, W. F. O., Marasas, R. E., Kirsch, S., and Thorgeirsson, S. 1999. Histopathology and gene expression changes in rat liver during feeding of fumonisin B1, a carcinogenic mycotoxin produced by Fusarium moniliforme. Carcinogenesis 20: 817-824. Liu, C., Liu, F., Xu, W., Kofoet, A., Humpf, H.U., and Jiang, S. 2005. Occurrence of fumonisin B1 and B2 in asparagus from Shandong province, P. R. China. Food Addit. Contam. 22:673-676. Logrieco, A., Doko, B., Moretti, A., Frisullo, S., and Visconti, A. 1998. Occurrence of fumonisin B1 and B2 in Fusarium proliferatum infected asparagus plants. J. Agric. Food Chem. 46:5201-5204. Lu, Z., Dantzer, R. W., Hopmans, E. C., Prisk, V., Cunnick, J. E., Murphy, P. A., and Hendrich, S. 1997. Reaction with fructose detoxifies fumonisin B1 while stimulating liver-associated natural killer cell activity in rats. J. Agric. Food Chem. 45(3): 803-809. Magan, N. 2006. Mycotoxin contamination of food in Europe: early diction and prevention strategies. Mycopathologia 162: 245-253. Magan, N., Hope, R. Cairns, V. , and Aldred., D. 2003. Post-harvest fungal ecology: impact of fungal growth and mycotoxin accumulation in stored grain. J. Plant Pathol. 109: 723-730. Marasas, W. F. O., Kellerman, T. S., Gelderblom, W. C. A., Coetzer, J. A. W., Thiel, P. G., and Van der Lugt, J. J. 1988. Leukoencephalomalacia in a horse induced by fumonisin B1 isolated from Fusarium moniliforme. J. Vet. Res. 55: 197-203. Marine, S., Sanchis, I., Vinas, Canela, R. and Magan, N. 1995. Effect of water activity and temperature on growth and fumonisin B1 and B2 production by Fusarium proliferatum and F. moniliforme on maize grain.. App. Microbiol.. 21:298-301. Martins, W. L., Martins, H. M., and Bernardo, F. 2001. Fumonisins B1 and B2 in black tea and medicine plants. J. Food Prot. 64:1268-1270. Miller, J.D. 1995. Fungi and mycotoxins in grain: implications for stored product research. J. Stored Prod. Res. 31:1-6. Miller, J.D. 2001. Factors that affect the occurrence of fumonisin. Environ. Health Perspectives 109: 321-324. Miller, J.D., Savard, M.E., and Rpior, S. 1994. Production and purification of fumonisins from a stirred jar fermentor. Nat Toxins. 2:354-359. Munkvold, G. P., and Desjardins, A. E. 1997. Fumonisins in maize. Can we reduced their occurrence? Plant Dis.81:556-565. Munkvold, G. P., McGee, D. C., and Carlton, W. M. 1996. Importance of different pathways for maize kernel infection by Fusarium moniliforme. Phytopathology 87(2): 209-217. Murphy, P. A., Hendrich, S., Hopmans, E. C., Hauck, C. C., Lu, Z., Buseman, G., and Munkvold, G.. 1996. Effect of processing on fumonisin content of cron. Pages: 323-334 in: Fumonisin in Food. Jackson, L. S., Devries, J. W., and Bullerman, L. B., eds. Plenum Press, New York. Nelson, P. E., Plattner, R. D., Shackelford, D. D., Desjardins, A. E. 1992. Fumonisin B1 production by Fusarium species other than F. moniliforme in section Liseola and by some related species. Appl. Environ. Microbiol. 58: 984-989. Omurtag, G.Z., and Yazicioglu, D. 2004. Determination of fumonisin B1 and B2 in herbal tea and medicinal plants in Turkey by high-performance liquig chromatography. J. Food Prot. 67:1782-1786. Osweiler, G.D., Ross, P.F., Wilson, T.M. ,Witte, S.T., Carson, T.L., Rice, L.G., Nelson, H.A. 1992. Characterization of an epizootic of pulmonary edema in swine associated with fumonisins in corn screenings. J Vet Diagn Invest 4:53-9. Park, D. L., Rua, S. M., Jr., Mirocha, C. J., Abd-Alla, E. S. A. M., and Weng, C. Y. 1992. Mutagenic potential of fumonisin contaminated coen following ammonia decontamination procedure. Mycopathologia 117:105-108. Patchimasiri, T., Sailasuta, A., and Kawtheerakul, K. 1998. Pathological findings in swine in association with fumonisin contaminated feed. Thai. J. Vet. Med. 28: 71-82. Raoofi, A., Mardjanmehr, S.H., Khosravi, A.R., Kojouri, G.A., Lotfollahzaheh, Nekoie, S., and Jafarian, M. 2003. Equine leukoencephalomalacia in Iran. J. Eq. Vet. Sci. 23: 469-70. Rheeder, J. P., Walter, F. O., and Vismer, H. F. 2002. Production of fumonisin analogs by Fusarium species. Appl. Environ. Microbiol. 68(5):2101-2105. Rosiles, M. R., Bautista, J., Fuentes, V. O., and F. Ross. 1998. An outbreak of equine leukoencephalomalacia at oaxaca, mexco, associated with fumonisin B1. J. Vet. Med. 45: 299-302. Ross, P. F., Rice, L. G., Reagor, J. C., Osweiler, G. D., Wilson, T. M., Nelson, H. A., Owens, D. L., Plattner, R. D., Harlin, K. A., Richard, J. L., Colvin, B. M., and Banton, M.I. 1991. Fumonisin B1 concentrations in feeds from 45 confirmed equine leucoencephalomalacia cases. J Vet Diagn Invest 3: 238-41. Ryu, D., Munimbazi, C., and Bullerman, L. B., 1999. Fumonisin B1 production by Fusarium moniliforme and Fusarium proliferatum as affected by cycling temperatures. J. Food Prot. 65:1456-1460. Schrodter, R. 2004. Influence of harvest and storage conditions on trichothecenes levels in various cereals. Toxicol. Lett. 153: 47-49. Scott, P.M., and Lawrence, G.A. 1993. Stability and problems in recovery of fumonisins added to corn-based foods. J. AOAC Int. 77:541-545. Seefelder, W., Gossmann, M., and Humpf, H. U. 2002. Analysis of fumonisin B1 in Fusarium proliferatum-infected asparagus spears and garlic bulbs from Germany by liquid chromatography-electrospray ionization mass spectrometry. J. Agric. Food Chem. 50:2778-2781. Sydenham, E.W., Marasas. W. F. O., Shephard, G.S., Thiel, P.G., and Hirooka, E.Y. 1992. Fumonisin concentration in Brazilian feeds associated with field outbreaks of confirmed and suspected animal mycotoxicoses. J. Agric. Food Chem. 40:994-7. Sydenham, E. W., Stockenstrom, S., Pieter, G., Thiel, G. S., Shephard, Koch, K. R. , and Marasas, W. F. O. 1995. Potential of alkaline hydrolysis for the removal of fumonisins from contaminated corn. J. Agric. Food Chem. 43 (5): 1198–1201. Tseng, T.C., and Tu, J.C. 1997. Mycoflora and mycotoxins in adzuki and mung beans produced in Ontario, Canada. Microbios. 90:87-95. Thiel, P. G., Shephard, G. S., Sydenham, E. W., Marasas, W. F. O., Nelson, P. E., Wilson T. M 1991. Levels of fumonisin B1 and B2 in feeds associated with confirmed cases of equine leucoencephalomalacia. J. Agric. Food Chem. 39: 109-11. Thiel, P. G., Marasas, W. F. O., Sydenham, E. W., Shephard, G. S., Geldweblom, W. C., and Niewenhuis, J. J. 1991. Survey of fumonisin production by Fusarium species. Appl. Environ. Microbiol. 57(4): 1089-1093. Voss, K. A., Chamberlain, W. J., Bacon, C. W., Herbert, R. A., Walters, D. B. and Norred, W. P.. 1995. Subchronic feeding study of the mycotoxin fumoisin B1 in B6C3F1 mice and Fischer 344 rats. Fundam. Appl. Toxicol. 24, 102-110. Wilson, T. M., Ross, P. F., Rice, L. G., Osweiler, G. D., Nelson, H. A., Owens, D. L., Plattner, R. D., Reggiardo, C., Noon, T. H., and Pickrell, J. W. 1990. Fumonisin B1 levels associated with an epizootic of equine leucoencephalomalacia. J. Vet. Diagn. Invest. 2: 213-21.
鐮孢菌屬Liseola群的真菌會產生伏馬鐮孢毒素 (Fumonisin B1, FB1)。這種真菌毒素可引起馬的腦白質部軟化症、豬的肺水腫、大鼠肝病或腎病,干擾禽類的免疫系統及可能引發人類的食道癌等疾病。利用Nash-PCNB選擇性培養基分離水稻與玉米等穀粒上的真菌,共計獲得17株Liseola群的鐮孢菌。隨後以Fumonisin kit及HPLC檢測各菌株是否可產生FB1,結果發現ST-P01 (來自玉米飼料)、PR-14、PR-33、PR-44及PR-143 (來自稻穀)等五菌株均具有產生FB1的能力;其中以ST-P01菌株產生FB1的量最高,達581.52 ppm。利用孢子形態、大小、產孢方式及ITS序列比對等方法,將ST-P01、PR-14、PR-33、PR-44及PR-143等五菌株的學名鑑定為Fusarium proliferatum (Matsushima) Nirenberg。進一步,利用玉米液態培養基培養ST-P01菌株,評估溫度、培養日數、培養基質種類、培養基基質型式、培養方式、培養基酸鹼度、濕度及病原菌接種濃度等因子對其產生FB1的影響,結果發現靜置培養ST-P01五日後,才可測到FB1的產生,且在32℃的產毒量最高。以小麥、燕麥、裸麥、蕎麥、糙米、紫糯米、白米、小米及玉米等九種液態培養基質分別培養ST-P01菌株,結果發現其在紫糯米粉液態培養基產生FB1的量最高,達431 ppm,其次在玉米粉液態培養基上的產量則為351 ppm;至於以燕麥粉液態培養的產毒量最少,僅有75 ppm;此外,在靜置方式培養ST-P01五天後,固態培養基中FB1產量遠高於液態培養,達5000倍;但在液態培養中,震盪培養ST-P01所產生FB1之量顯著高於靜置培養者。以不同酸鹼值之玉米粉液態培養基培養ST-P01,發現在培養基pH值2時,其產毒量最多,達453 ppm;而在pH值6時產生FB1最少,僅有19 ppm。在不同相對濕度條件下,將ST-P01培養15天後,除在相對濕度(R.H.)97.5%時可產生FB1外,其餘在RH 7、20、34.5及75.5%時,均無法產生。以不同ST-P01孢子濃度(1*105、106及107 conidia/ml)分別接種於液態玉米培養基中,發現三者的最初接種濃度不會影響FB1的產量。比較ST-P01、PR-14、PR-44及PR-143培養條件,發現ST-P01適合於32℃在pH值2之培養基培養,而PR-44則適合於28℃在pH值6之培養基培養,兩者才可產生高量的FB1。至於其餘兩菌株產生FB1量均低於偵測範圍。調控玉米的儲存條件,發現於4℃下保存受汙染之穀物,經過15天其不會有菌絲長出,亦不會產生FB1。此外,篩選多種添加物可否降低伏馬鐮孢毒素B1的產生,結果發現茶胺酸可降低ST-P01產生FB1毒素達34%。

Fusarium species of the Section Liseola could produce fumonisins. This mycotoxin was associated with equine leukoencephalomacia, procine pulmonary edema nephrotoxicity, liver or kidney cancer in rats, immunosuppression in poultry, and high rate of human esophageal cancer. Seventeen Fusarium isolates in the Section Liseola were isolated from rice and corn by Nash-PCNB selective medium, and evaluated their ability of producing FB1 by Fumonisin kit and HPLC. Five isolates, ST-P01(from corn feed), PR-14, PR-33, PR-44, and PR-143(from rice), were able to produce FB1, especially isolate ST-P01 was able to produce the highest amount of FB1, up to 581.52 ppm. Isolates ST-P01, PR-14, PR-33, PR-44, and PR-143 were identified as Fusarium proliferatum (Matsushima) Nirenberg by conidia morphology, conidigenous cells, and ITS sequencing. Furthermore, the factors affecting FB1 production were evaluated including temperature, culture time, culture substrates, culture methods, pH value of culture medium, relative humidity, and inoculum density. The FB1 production by isolate ST-P01 could be detected five days after its static culturing, and FB1 yield was the highest at 32℃ compared to the other temperature treatment. Isolate ST-P01 produced the highest amount of FB1 up to 431 ppm in purple glutinous rice meal liquid media among nine substrates, including purple glutinous rice, unpolished rice, rice, millet, wheat, corn, oat, naked barley, and buckwheat. Isolate ST-P01 cultured in corn meal liquid media produced 351 ppm. The less one was 75 ppm when isolate ST-P01 cultured in oat meal liquid media. In addition, isolate ST-P01 cultured staticly in corn solid media produced 5000 times more FB1 than in liquid media. Isolate ST-P01 produced more amount of FB1 cultured in corn meal liquid with shaking compared to with static. Isolate ST-P01 cultured in corn meal liquit media with pH 2 produced the highest amount of FB1 at 453 ppm. On the contrary, it cultured in corn meal liquid media with pH 6 produced the lowest amount of FB1 at 19 ppm. Among five relative humidities including 7, 20, 34.5, 75.5 and 97.5%, isolate ST-P01 could produce FB1 only at RH 97.5%. Three initial inoculum density of isolate ST-P01, 105, 106, and 107 conidia/ml, inoculated into liquid corn meal media did not make difference on producing FB1. In our studies, among four isolates tested, ST-P01 was able to produce largest amount of FB1 when it was cultured at 32℃ in medium with pH 2. However, isolate PR-44 was suitable for FB1 production at 28℃ in medium with pH 6. By manipulalting the conditions for corn storage, it was found that the inoculated corn kernels stored at 4 ℃ for 15 days did not grow out the fungal mycelia and produce FB1. In addition, amendment of FB1-solution with teamine could reduce 34% of FB1.
其他識別: U0005-2008200921255900
Appears in Collections:植物病理學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.