Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributorRong-Ho Leeen_US
dc.contributor.authorDai, Lien-Guoen_US
dc.identifier.citationReferences 1: 1. Hiroshi Mizuno. Adipose-derived Stem Cells for Tissue Repair and Regeneration:Ten Years of Research and a Literature Review. J Nippon Med Sch 2009; 76: 56―66 2. Ahlborn, P., Schachner, M., Irintchev, A., 2007. One hour electrical stimulation accelerates functional recovery after femoral nerve repair. Exp. Neurol. 208, 137–144. 3. Alastair J. Sloan and Rachel J. Waddinton. Dental pulp stem cells: what, where, how? International Journal of Paediatric Dentistry 2009; 19: 61–70 4. A.L., Prevette, D.M., Wang, S., 1995. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 373, 344–346. 5. Al-Majed, A.A., Brushart, T.M., Gordon, T., 2000a. Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur. J. Neurosci. 12, 4381–4390 6. Ann, E.S., Mizoguchi, A., Okajima, S., Ide, C., 1994. Motor axon terminal regeneration as studied by protein gene product 9.5 immunohistochemistry in the rat. Arch. Histol. Cytol. 57, 317–330. 7. Ard MD, Bunge RP, Bunge MB. Comparison of the Schwann cell surface and Schwann cell extracellular matrix as promoters of neurite growth. J Neurocytol. 1987 Aug;16(4):539-55. 8. Asher, R.A., Morgenstern, D.A., Moon, L.D., Fawcett, J.W., 2001. Chondroitin sulphate proteoglycans: inhibitory components of the glial scar. Prog. Brain Res. 132, 611–619. 9. Barras, F.M., Pasche, P., Bouche, N., Aebischer, P., Zurn, A.D., 2002. Glial cell linederived neurotrophic factor released by synthetic guidance channels promotes facial nerve regeneration in the rat. J. Neurosci. Res. 70, 746–755. 10. Berchtold, N.C., Chinn, G., Chou, M., Kesslak, J.P., Cotman, C.W., 2005. Exercise primes a molecular memory for brain-derived neurotrophic factor protein induction in the rat hippocampus. Neuroscience 133, 853–861. 11. Bhatheja, Kanav; Field, Jeffrey (2006). "Schwann cells: Origins and role in axonal maintenance and regeneration". The International Journal of Biochemistry & Cell Biology 38 (12): 1995–9 12. Bini, T.B., Gao, S., Xu, X., Wang, S., Ramakrishna, S., Leong, K.W., 2004. Peripheral nerve regeneration by microbraided poly(L-lactide-co-glycolide) biodegradable polymer fibers. J. Biomed. Mater. Res. A 68, 286–295. 13. Bovolenta, P., Fernaud-Espinosa, I., 2000. Nervous system proteoglycans as modulators of neurite outgrowth. Prog. Neurobiol. 61, 113–132. 14. Boyd, J.G., Gordon, T., 2003a. Glial cell line-derived neurotrophic factor and brainderived neurotrophic factor sustain the axonal regeneration of chronically axotomized motoneurons in vivo. Exp. Neurol. 183, 610–619. 15. Boyd, J.G., Gordon, T., 2003b. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol. Neurobiol. 27, 277–323. 16. Bradley, W.G., Asbury, A.K., 1970. Duration of synthesis phase in neuilemma cells in mouse sciatic nerve during degeneration. Exp. Neurol. 26, 275–282. 17. Brandt, J., Dahlin, L.B., Lundborg, G., 1999. Autologous tendons used as grafts for bridging peripheral nerve defects. J. Hand Surg. Br. 24, 284–290. 18. Brandt J, Dahlin LB, Kanje M, Lundborg G. Functional recovery in a tendon autograft used to bridge a peripheral nerve defect. Scand J Plast Reconstr Surg Hand Surg 2002;36:2–8. 19. Braga-Silva, J., 1999. The use of silicone tubing in the late repair of the median and ulnar nerves in the forearm. J. Hand Surg. Br. 24, 703–706. 20. Brunelli GA, Battiston B, Vigasio A, Brunelli G, Marocolo D. Bridging nerve defects with combined sceletal muscle and vein conduits. Microsurgery 1993;14:247–251. 21. Cao H, Liu T, Chew SY. The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev. 2009 Oct 5;61(12):1055-64. Epub 2009 Jul 28. 22. Chang CJ, Hsu SH, Yen HJ, Chang H, Hsu SK.Effects of unidirectional permeability in asymmetric poly(DL-lactic acid-co-glycolic acid) conduits on peripheral nerve regeneration: an in vitro and in vivo study. J Biomed Mater Res B Appl Biomater. 2007 Oct;83(1):206-15. 23. Chew, S.Y., Mi, R., Hoke, A., Leong, K.W., 2007. Aligned protein–polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Adv. Funct. Mater. 17, 1288–1296. 24. Chiu DTW, Janecka I, Krizec TJ, Wolf M, Lovelace RE. Autogenous vein graft as a conduit for nerve regeneration. Surgery 1982; 91:226–233. 25. Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration Xiaosong Gu *, Fei Ding, Yumin Yang, Jie Liu Progress in Neurobiology 93 (2011) 204–230 26. Fitzgerald M, Chiego JD, Heys DR. Autoradiographicanalysis of odontoblast replacement following pulp exposure in primate teeth. Arch Oral Biol 1990; 35:707–715.6 27. Freier, T., Montenegro, R., Shan Koh, H., Shoichet, M.S., 2005b. Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26, 4624–4632. 28. Geremia, N.M., Gordon, T., Brushart, T.M., Al-Majed, A.A., Verge, V.M., 2007. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp. Neurol. 205, 347–359. 29. Gigo-Benato, D., Geuna, S., Rochkind, S., 2005. Phototherapy for enhancing peripheral nerve repair: a review of the literature. Muscle Nerve 31, 694–701. 30. Gigo-Benato, D., Geuna, S., de Castro Rodrigues, A., Tos, P., Fornaro, M., Boux, E., Battiston, B., Giacobini-Robecchi, M.G., 2004. Low-power laser biostimulation enhances nerve repair after end-to-side neurorrhaphy: a double-blind randomized study in the rat median nerve model. Lasers Med. Sci. 19, 57–65. 31. Gomez-Pinilla, F., Ying, Z., Roy, R.R., Molteni, R., Edgerton, V.R., 2002. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J. Neurophysiol. 88, 2187–2195. 32. Grimpe, B., Silver, J., 2002. The extracellular matrix in axon regeneration. Prog. Brain Res. 137, 333–349. 33. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S.Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97:13625–13630. 34. Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res 2002; 81:531–535 35. Gu JH, Ji YH, Dhong ES, Kim DH, Yoon ES. Transplantation of adipose derived stem cells for peripheral nerve regeneration in sciatic nerve defects of the rat. Curr Stem Cell Res Ther. 2012 Sep 1;7(5):347-55. 36. Gulati, D., Aggarwal, A., Singh, A.P., 2009. Complications of titanium and stainless steel elastic nail fixation of pediatric femoral fractures. J. Bone Joint Surg. Am. 91, 2040–2041 (author reply 2041). 37. He, C., Chen, Z., Chen, Z., 1992. Enhancement of motor nerve regeneration by nerve growth factor. Microsurgery 13, 151–154. 38. Henderson, C.E., Camu, W., Mettling, C., Gouin, A., Poulsen, K., Karihaloo, M., Ruilamas, J., Evans, T., McMahon, S.B., Armanini, M.P., 1993. Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363, 266–270. 39. Huang, E.J., Reichardt, L.F., 2001. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736. 40. Hsu, S. H.; Lu, P. S.; Ni, H. C.; Su, C. H. Fabrication and evaluation of microgrooved polymers as peripheral nerve conduits. Biomed Microdevices. 9(5):665-674; 2007. 41. Hsu, S. H.; Ni, H. C. Fabrication of the microgrooved/microporous polylactide substrates as peripheral nerve conduits and in vivo evaluation. Tissue Eng. Part A. 15(6):1381-1390; 2009. 42. Ijkema-Paassen, J., Jansen, K., Gramsbergen, A., Meek, M.F., 2004. Transection of peripheral nerves, bridging strategies and effect evaluation. Biomaterials 25, 1583–1592. 43. Irintchev, A., Angelov, D.N., Guntinas-Lichius, O., 2010. Regeneration des N. facialis im Vergleich zu anderen peripheren Nerven (German). Hals-Nasen-Ohren Heilkunde (HNO) 58, 426–432. 44. Kiyoshi Sakai, Akihito Yamamoto, Kohki Matsubara, Shoko Nakamura, Mami Naruse, Mari Yamagata, Kazuma Sakamoto, Ryoji Tauchi, Norimitsu Wakao, Shiro Imagama, Hideharu Hibi, Kenji Kadomatsu, Naoki Ishiguro, and Minoru Ueda. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms The Journal of Clinical Investigation. 2012 January Volume 122 Number 1. 45. Li, B., Ma, Y.X., Wang, S., Moran, P.M., 2005. A technique for preparing protein gradients on polymeric surfaces: effects on PC12 pheochromocytoma cells. Biomaterials 26, 1487–1495. 46. Merle, M., Dellon, A.L., Campbell, J.N., Chang, P.S., 1989. Complications from siliconpolymer intubulation of nerves. Microsurgery 10, 130–133. 47. Mligiliche, N.L., Tabata, Y., Kitada, M., Endoh, K., Okamato, K., Fujimoto, E., Ide, C., 2003. Poly lactic acid–caprolactone copolymer tube with a denatured skeletal muscle segment inside as a guide for peripheral nerve regeneration: a morphological and electrophysiological evaluation of the regenerated nerves. Anat. Sci. Int. 78, 156–161. 48. Millesi H. Meissl G. and Berger A: The Interfascicular Nerve-Grafting of the Median and Ulnar Nerves. J. Bone Joint Surg .. 54A: 727. 1972. 49. Mohammad, J.A., Warnke, P.H., Pan, Y.C., Shenaq, S., 2000. Increased axonal regeneration through a biodegradable amnionic tube nerve conduit: effect of local delivery and incorporation of nerve growth factor/hyaluronic acid media. Ann. Plast. Surg. 44, 59–64. 50. Nishira Y, Brandt J, Nilsson A, Kanje M, Dahlin LB. Addition of cultured Schwann cells to tendon autografts and freeze-thawed muscle grafts improves peripheral nerve regeneration. Tissue Eng 2004;10:157–164. 51. Noble, J., Munro, C.A., Prasad, V.S., Midha, R., 1998. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J. Trauma 45, 116–122. 52. Oppenheim, R.W., Houenou, L.J., Johnson, J.E., Lin, L.F.H., Li, L., Lo, A.C., Newsome, Fine, E.G., Decosterd, I., Papaloı‥zos, M., Zurn, A.D., Aebischer, P., 2002. GDNF and NGF released by synthetic guidance channels support sciatic nerve regeneration across a long gap. Eur. J. Neurosci. 15, 589–601. 53. Ozgenel, G.Y., 2003. Effects of hyaluronic acid on peripheral nerve scarring and regeneration in rats. Microsurgery 23, 575–581. 54. Paul J. Kingham , Daniel F. Kalbermatten , Daljeet Mahay , Stephanie J. Armstrong Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Experimental Neurology 207 (2007) 267–274 55. Perry, V.H., Brown, M.C., Gordon, S., 1987. The macrophage response to central and peripheral nerve injury. A possible role for macrophages in regeneration. J. Exp. Med. 165, 1218–1223. 56. Rich, K.M., Alexander, T.D., Pryor, J.C., Hollowell, J.P., 1989. Nerve growth factor enhances regeneration through silicone chambers. Exp. Neurol. 105, 162–170. 57. Risitano G, Cavallaro G, Lentini M. Autogenous vein and nerve grafts: A comparative study of nerve regeneration in the rat. J Hand Surg B 1989;14:102–104. 58. Rita Levi-Montalcini & Pietro Calissano: The Nerve-Growth Factor. Scientific American 1979, 240, pp. 44-53. 59. Rochkind S. Phototherapy in peripheral nerve regeneration: From basic science to clinical study. Neurosurg Focus. 2009 Feb;26(2):E8. 60. Rutishauser, U., 1993. Adhesion molecules of the nervous system. Curr. Opin. Neurobiol. 3, 709–715. 61. Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res 2005; 8: 191–199. 62. Skouras, E., Merkel, D., Grosheva, M., Angelova, S.K., Schiffer, G., Thelen, U., Kaidoglou, K., Sinis, N., Igelmund, P., Dunlop, S.A., Pavlov, S., Irintchev, A., Angelov, D.N., 2009. Manual stimulation, but not acute electrical stimulation prior to reconstructive surgery, improves functional recovery after facial nerve injury in rats. Restor. Neurol. Neurosci. 27, 237–251. 63. Son, Y.J., Thompson, W.J., 1995. Schwann cell processes guide regeneration of peripheral axons. Neuron 14, 125–132. 64. Sufan, W., Suzuki, Y., Tanihara, M., Ohnishi, K., Suzuki, K., Endo, K., Nishimura, Y., 2001. Sciatic nerve regeneration through alginate with tubulation or nontubulation repair in cat. J. Neurotrauma 18, 329–338. 65. Sunderland, S., 1951. A classification of peripheral nerve injuries producing loss of function. Brain 74, 491–516 66. Suzuki, K., Kawauchi, A., Nakamura, T., Itoi, S.I., Ito, T., So, J., Ukimura, O., Hagiwara, A., Yamagishi, H., Miki, T., 2009. Histologic and electrophysiological study of nerve regeneration using a polyglycolic acid-collagen nerve conduit filled with collagen sponge in canine model. Urology 74, 958–963. 67. Tecles O, Laurent P, Zygouritsas S, et al. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol 2005; 50: 103–108. 68. Tos P, Battiston B, Nicolino S, Raimondo S, Fornaro M, Lee JM, Chirila L, Geuna S, Perroteau I. Comparison of fresh and predegenerated muscle-vein-combined guides for the repair of rat median nerve. Microsurgery 2007;27:48–55. 69. Vogelin, E., Baker, J.M., Gates, J., Dixit, V., Constantinescu, M.A., Jones, N.F., 2006. Effects of local continuous release of brain derived neurotrophic factor (BDNF) on peripheral nerve regeneration in a rat model. Exp. Neurol. 199, 348–353. 70. Waitayawinyu, T., Parisi, D.M., Miller, B., Luria, S., Morton, H.J., Chin, S.H., Trumble, T.E., 2007. A comparison of polyglycolic acid versus type 1 collagen bioabsorbable nerve conduits in a rat model: an alternative to autografting. J. Hand Surg. Am. 32, 1521–1529. 71. Wall, P.D., Devor, M., Inbal, R., Scadding, J.W., Schonfeld, D., Seltzer, Z., Tomkiewicz, M.M., 1979. Autotomy following peripheral nerve lesions: experimental anaesthesia dolorosa. Pain 7, 103–111. 72. Wang, H.B., Mullins, M.E., Cregg, J.M., Hurtado, A., Oudega, M., Trombley, M.T., Gilbert, R.J., 2009. Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J. Neural Eng. 6, 016001. 73. Wang, K.K., Nemeth, I.R., Seckel, B.R., Chakalis-Haley, D.P., Swann, D.A., Kuo, J.W., Bryan, D.J., Cetrulo Jr., C.L., 1998. Hyaluronic acid enhances peripheral nerve regeneration in vivo. Microsurgery 18, 270–275. 74. Yang, Y., Liu, M., Gu, Y., Lin, S., Ding, F., Gu, X., 2009. Effect of chitooligosaccharide on neuronal differentiation of PC-12 cells. Cell Biol. Int. 33, 352–356. 75. Yang X, Zhang W, van den Dolder J, et al. Multilineage potential of STRO-1+ rat dental pulp cells in vitro. J Tissue Eng Regen Med 2007; 1: 128–135. 76. Yang X, Walboomers XF, van den Beucken JJ, Bian Z, Fan M, Jansen JA. Hard tissue formation of STRO- 1-selected rat dental pulp stem cells in vivo. Tissue Eng Part A 2008; Epub ahead of print. 77. Zhang, J.Y., Luo, X.G., Xian, C.J., Liu, Z.H., Zhou, X.F., 2000. Endogenous BDNF is required for myelination and regeneration of injured sciatic nerve in rodents. Eur. J. Neurosci. 12, 4171–4180. References 2: 1. Acheson, A.; Barker, P. A.; Alderson, R. F.; Miller, F. D.; Murphy, R. A. Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF. Neuron 7(2):265-275; 1991. 2. Alluin, O.; Wittmann, C.; Marqueste, T.; Chabas, J. F.; Garcia, S.; Lavaut, M. N.; Guinard, D.; Feron, F.; Decherchi, P. Functional recovery after peripheral nerve injury and implantation of a collagen guide. Biomaterials 30(3):363-373; 2009. 3. Arthur, A.; Rychkov, G.; Shi, S.; Koblar, S. A.; Gronthos, S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26(7):1787-1795; 2008. 4. Badache, A.; De Vries, G. H. 1998. Neurofibrosarcoma-derived Schwann cells overexpress platelet-derived growth factor (PDGF) receptors and are induced to proliferate by PDGF BB. J. Cell. Physiol. 177:334-342; 1998. 5. Bunge, R. P. Expanding roles for the Schwann cell: ensheathment, myelination, trophism and regeneration. Curr. Opin. Neurobiol. 3(5):805-809; 1993. 6. Chang, J. C.; Su, H. L.; Hsu, S. H. The use of peptide-delivery to protect human adipose-derived adult stem cells from damage caused by the internalization of quantum dots. Biomaterials. 29(7):925-936; 2008. 7. Cheng, F. C.; Tai, M. H.; Sheu, M. L.; Chen, C. J.; Yang, D. Y.; Su, H. L.; Ho, S. P.; Lai, S. Z.; Pan, H. C. Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. J. Neurosurg. 112(4):868-879; 2010. 8. Clements, I. P.; Kim, Y. T.; English, A. W.; Lu, X.; Chung, A.; Bellamkonda, R. V. Thin-film enhanced nerve guidance channels for peripheral nerve repair. Biomaterials 30 (23-24):3834-3846; 2009. 9. Cordeira, J. W.; Frank, L.; Sena-Esteves, M.; Pothos, E. N.; Rios, M. Brain-derived neurotrophic factor regulates hedonic feeding by acting on the mesolimbic dopamine system. J. Neurosci. 30(7):2533-2541; 2010. 10. di Summa, P. G.; Kalbermatten, D. F.; Pralong, E.; Raffoul, W.; Kingham, P. J.; Terenghi, G. Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neuroscience 181:278-291; 2011. 11. Evans, G. R.; Brandt, K.; Katz, S.; Chavuin, P.; Otto, L.; Bogle, M.; Wang, B.; Meszlenyi, R. K.; Lu, L.; Mikos, A. G.; Patrick, C. W. Jr. Bioactive poly (L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials 23(3):841-848; 2002. 12. Fu, K. Y.; Dai, L. G.; Chiu, I. M.; Chen, J. R.; Hsu, S. H. Sciatic nerve regeneration by microporous nerve conduits seeded with glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor gene transfected neural stem cells. Artif Organs 35(4):363-372; 2011. 13. Fujimura, J.; Ogawa, R.; Mizuno, H.; Fukunaga, Y.; Suzuki, H. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice. Biochem. Biophys. Res. Commun. 333(1):116-121; 2005. 14. Gronthos, S.; Brahim, J.; Li, W.; Fisher, L. W.; Cherman, N.; Boyde, A.; DenBesten, P.; Robey, P. G.; Shi, S. Stem cell properties of human dental pulp stem cells. J. Dent. Res. 81(8):531-535; 2002. 15. Gu, J. H.; Ji, Y. H.; Dhong, E. S.; Kim, D. H. Yoon E. S. Transplantation of adipose derived stem cells for peripheral nerve regeneration in sciatic nerve defects of the rat. Curr Stem Cell Res Ther. 2012 May 8. 16. Guenard, V.; Kleitman, N.; Morrissey, T. K.; Bunge, R. P.; Aebischer, P. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J. Neurosci. 12(9):3310-3320; 1992. 17. Guest, J. D.; Rao, A.; Olson, L.; Bunge, M. B.; Bunge, R. P. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp. Neurol. 148(2): 502-522; 1997. 18. Hare, G.; Evans, P. J.; MacKinnon, S. E.; Best, T. J.; Bain, J. R.; Szalai, J. P.; Hunter, D. A. Walking track analysis: a long-term assessment of peripheral nerve recovery. Plast. Reconstr. Surg. 89(2):251-258; 1992. 19. Henderson, C. E.; Phillips, H. S.; Pollock, R. A.; Davies, A. M.; Lemeulle, C.; Armanini, M.; Simmons, L.; Moffet, B.; Vandlen, R. A.; Simpson, L. C. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science. 266(5187):1062-1064; 1994. 20. Hsu, S. H.; Lu, P. S.; Ni, H. C.; Su, C. H. Fabrication and evaluation of microgrooved polymers as peripheral nerve conduits. Biomed Microdevices. 9(5):665-674; 2007. 21. Hsu, S. H.; Ni, H. C. Fabrication of the microgrooved/microporous polylactide substrates as peripheral nerve conduits and in vivo evaluation. Tissue Eng. Part A. 15(6):1381-1390; 2009. 22. Huang, A. H.; Snyder, B. R.; Cheng, P. H.; Chan, A. W. Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells. 26(10):2654-2663; 2008. 23. Iohara, K.; Zheng, L.; Ito, M.; Tomokiyo, A.; Matsushita, K.; Nakashima, M. Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells 24(11):2493-2503; 2006. 24. Kingham, P. J.; Kalbermatten, D. F.; Mahay, D.; Armstrong, S. J.; Wiberg, M.; Terenghi, G. Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp. Neurol. 207(2):267-274; 2007. 25. Lin, L. F.; Doherty, D. H.; Lile, J. D.; Bektesh, S.; Collins, F. GDNF: a glial cell linederived neurotrophic factor for midbrain dopaminergic neurons. Science 260(5111):1130-1132; 1993. 26. Lopatina, T.; Kalinina, N.; Karagyaur, M.; Stambolsky, D.; Rubina, K.; Revischin, A.; Pavlova, G.; Parfyonova, Y.; Tkachuk, V. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One 6(3):e17899; 2011. 27. Lundborg, G.; Dahlin, L. B.; Danielsen, N.; Gelberman, R. H.; Longo, F. M.; Powell, H. C.; Varon, S. Nerve regeneration in silicone chambers: influence of gap length and of distal stump components. Exp. Neurol. 76(2):361-375; 1982. 28. Madduri, S.; di Summa, P.; Papaloïzos, M.; Kalbermatten, D.; Gander, B. Effect of controlled co-delivery of synergistic neurotrophic factors on early nerve regeneration inrats. Biomaterials 31(32):8402-8409; 2010. 29. McLeod, M., Hong, M.; Mukhida, K.; Sadi, D.; Ulalia, R.; Mendez, I. Erythropoietin and GDNF enhance ventral mesencephalic fiber outgrowth and capillary proliferation following neural transplantation in a rodent model of Parkinson’s disease. Eur. J. Neurosci. 24(2):361-370; 2006. 30. Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L. W.; Robey, P. G.; Shi, S. SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. USA 100(10):5807-5812; 2003. 31. Mosahebi, A.; Woodward, B.; Wiberg, M.; Martin, R.; Terenghi, G. Retroviral labeling of Schwann cells: in vitro characterization and in vivo transplantation to improve peripheral nerve regeneration. Glia 34(1):8-17; 2001. 32. Nosrat, I. V.; Smith, C. A.; Mullally, P.; Olson, L.; Nosrat, C. A. Dental pulp cells provide neurotrophic support for dopaminergic neurons and differentiate into neurons in vitro; implications for tissue engineering and repair in the nervous system. Eur. J. Neurosci. 19(9):2388-2398; 2004. 33. Orbay, H.; Uysal, A. C.; Hyakusoku, H.; Mizuno, H. Differentiated and undifferentiated adipose-derived stem cells improve function in rats with peripheral nerve gaps. J Plast Reconstr Aesthet Surg. 65(5):657-664; 2012. 34. Park, H.J.; Kim, M. N.; Kim, J. G.; Bae, Y. H.; Bae, M. K.; Wee, H. J.; Kim, T. W.; Kim, B. S.; Kim, J. B.; Bae, S. K.; Yoon, S. Up-regulation of VEGF expression by NGF that enhances reparative angiogenesis during thymic regeneration in adult rat. Biochim. Biophys Acta. 1773(9):1462-1472; 2007. 35. Patel, M.; Vandevord, P. J.; Matthew, H. W.; Desilva, S.; Wu, B.; Wooley, P. H. Functional gait evaluation of collagen chitosan nerve guides for sciatic nerve repair. Tissue Eng. Part C Methods 14(4):365-370; 2008. 36. Rappaport, W. D.; Valente, J.; Hunter, G. C.; Rance, N. E.; Lick, S.; Lewis. T.; Neal, D. Clinical utilization and complications of sural nerve biopsy. Am. J. Surg. 166(3):252-256; 1993. 37. Rehman, J.; Traktuev, D.; Li, J.; Merfeld-Clauss, S.; Temm-Grove, C. J.; Bovenkerk, J. E.; Pell, C. L.; Johnstone, B. H.; Considine, R. V.; March, K. L. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292-1298; 2004. 38. Safford, K. M.; Hicok, K. C.; Safford, S. D.; Halvorsen, Y. D.; Wilkison, W. O.; Gimble, J. M.; Rice, H. E. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem. Biophys. Res. Commun. 294(2):371-379; 2002. 39. Santiago, L. Y.; Clavijo-Alvarez, J.; Brayfield, C.; Rubin, J. P.; Marra, K. G. Delivery of adipose-derived precursor cells for peripheral nerve repair. Cell Transplant. 18(2):145-158; 2009. 40. Sasaki, R.; Aoki, S.; Yamato, M.; Uchiyama, H.; Wada, K.; Okano, T.; Ogiuchi, H. Tubulation with dental pulp cells promotes facial nerve regeneration in rats. Tissue Eng. Part A. 14(7):1141-1147; 2008. 41. Sasaki, R.; Aoki, S.; Yamato, M.; Uchiyama, H.; Wada, K.; Ogiuchi, H.; Okano, T.; Ando, T. PLGA artificial nerve conduits with dental pulp cells promote facial nerve regeneration. J Tissue Eng Regen Med. 5(10):823-830; 2011. 42. Sendtner, M.; Stöckli, K. A.; Thoenen, H. Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration. J. Cell Biol. 118(1):139-148; 1992. 43. Sinanan, A. C.; Hunt, N. P.; Lewis, M. P. Human adult craniofacial muscle-derived cells: neural-cell adhesion-molecule (NCAM; CD56)-expressing cells appear to contain multipotential stem cells. Biotechnol. Appl. Biochem. 40(Pt 1):25-34; 2004. 44. Sinis, N.; Schaller, H. E.; Becker, S. T.; Schlosshauer, B.; Doser, M.; Roesner, H.; Oberhoffner, S.; Müller, H. W.; Haerle, M. Long nerve gaps limit the regenerative potential of bioartificial nerve conduits filled with Schwann cells. Restor. Neurol. Neurosci. 25(2):131-141; 2007. 45. Sun, C. Y.; Hu, Y.; Wang, H. F.; He, W. J.; Wang, Y. D.; Wu, T. Brain-derived neurotrophic factor inducing angiogenesis through modulation of matrix-degrading proteases. Chin. Med. J. (Engl) 119(7):589-595; 2006. 46. Sundback, C.; Hadlock, T.; Cheney, M.; Vacanti, J. Manufacture of porous polymer nerve conduits by a novel low-pressure injection molding process. Biomaterials. 24(5):819-930; 2003. 47. Takeda, K.; Shiba, H.; Mizuno, N.; Hasegawa, N.; Mouri, Y.; Hirachi, A.; Yoshino, H.; Kawaguchi, H.; Kurihara, H. Brain-derived neurotrophic factor enhances periodontal tissue regeneration. Tissue Eng. 11(9-10):1618-1629; 2005. 48. Udina, E.; Cobianchi, S.; Allodi, I.; Navarro, X. Effects of activity-dependent strategies on regeneration and plasticity after peripheral nerve injuries. Ann Anat. 193(4):347-353; 2011. 49. Wei, Y.; Gong, K.; Zheng, Z.; Liu, L.; Wang, A.; Zhang, L.; Ao, Q.; Gong, Y.; Zhang, X. Schwann-like cell differentiation of rat adipose-derived stem cells by indirect co-culture with Schwann cells in vitro. Cell Prolif. 43(6):606-616; 2010. 50. Wyatt, S. L.; Spori, B.; Vizard, T. N.; Davies, A. M. Selective regulation of nerve growth factor expression in developing cutaneous tissue by early sensory innervation. Neural Dev. 6:18; 2011. 51. Xu, Y.; Liu, Z.; Liu, L.; Zhao, C.; Xiong, F.; Zhou, C.; Li, Y.; Shan, Y.; Peng, F.; Zhang, C. Neurospheres from rat adipose-derived stem cells could be induced into functional Schwann cell-like cells in vitro. BMC Neurosci. 9:21; 2008. 52. Yamada, K.; Nabeshima, T. Interaction of BDNF/TrkB signaling with NMDA receptor in learning and memory. Drug News Perspect. 17(7):435-438; 2004. 53. Yamauchi, J.; Chan, J. R.; Shooter, E. M. Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proc. Natl. Acad. Sci. U S A. 101(23):8774-8779; 2004. 54. Yokose, S.; Kadokura, H.; Tajima, Y.; Fujieda, K.; Katayama, I.; Matsuoka, T.; Katayama, T. Establishment and characterization of a culture system for enzymatically released rat dental pulp cells. Calcif. Tissue Int. 66(2):139-144; 2000. 55. Zavan, B.; Vindigni, V.; Gardin, C.; D’Avella, D.; Della Puppa, A.; Abatangelo, G.; Cortivo, R. Neural potential of adipose stem cells. Discov. Med. 10(50):37-43; 2010. 56. Zhou, L. N.; Zhang, J. W.; Wang, J. C.; Lei, W. L.; Liu, X. L.; Zhou, L. H. Bone marrow stromal and Schwann cells from adult rats can interact synergistically to aid in peripheral nerve repair even without intercellular contact in vitro. J Tissue Eng. Regen. Med. 2011.en_US
dc.description.abstract細胞移植對於周邊神經損傷是一有效療法。臨床上使用許旺細胞移植有其使用限制,因此使用來自不同組織之幹細胞移植是一促進神經再生的迫切方法。 此研究中,不同型態之同物種細胞包含許旺細胞、脂肪幹細胞、牙髓幹細胞以及許旺細胞與脂肪幹細胞或牙髓幹細胞之共培養,移植進入神經導管來修復大鼠坐骨神經大間距(15 mm)之神經缺損。並經由組織切片染色、電生理、步跡與步態分析來評估導管植入8週期間與之後其神經再生能力與功能性恢復情形。同時體外細胞培養實驗來瞭解神經滋養因子(如神經生長因子、腦衍生神經滋養因子、膠細胞衍生神經滋養因子)之協同作用。 實驗結果發現動物接受植入許旺細胞與脂肪幹細胞共培養的神經導管,在步跡、步態、電生理與組織切片分析上有最好之功能性恢復。動物接受神經導管中含細胞之組別比接受神經導管中不含細胞之組別有較好之功能性恢復。關於神經傳導與血管新生數目,動物接受神經導管中含許旺細胞與牙髓幹細胞共培養之組別比接受神經導管中只含牙髓幹細胞之組別有較好之表現。體外細胞培養實驗結果發現,許旺細胞與脂肪幹細胞共培養會對神經生長因子之生成產生協同作用。 結論是許旺細胞與脂肪幹細胞或牙髓幹細胞之共培養會促進大間距神經缺損之再生。zh_TW
dc.description.abstractCell transplantation is a useful therapy for treating peripheral nerve injuries. The clinical use of Schwann cells (SCs), however, is limited because of their limited availability. An emerging solution to promote nerve regeneration is to apply injured nerves with stem cells derived from various tissues. In this study, different types of allogenic cells including SCs, adipose-derived adult stem cells (ASCs), dental pulp stem cells (DPSCs) and the combination of SCs with ASCs or DPSCs were seeded on nerve conduits to test their efficacy in repairing a 15 mm-long critical gap defect of rat sciatic nerve. The regeneration capacity and functional recovery were evaluated by the histological staining, electrophysiology, walking track and functional gait analysis after 8 weeks of implantation. An in vitro study was also performed to verify if the combination of cells led to synergistic neurotrophic effects (NGF, BDNF and GDNF). Experimental rats receiving conduits seeded with a combination of SCs and ASCs had the greatest functional recovery, as evaluated by the walking track, functional gait, nerve conduction velocity (NCV) and histological analysis. Conduits seeded with cells were always superior to the blank conduits without cells. Regarding NCV and the number of blood vessels, conduits seeded with SCs and DPSCs exhibited better values than those seeded with DPSCs only. Results from the in vitro study confirmed the synergistic NGF production from the co-culture of SCs and ASCs. It was concluded that co-culture of SCs with ASCs or DPSCs in a conduit promoted peripheral nerve regeneration over a critical gap defect.en_US
dc.description.tableofcontentsCONTENTS 口試委員會審定書 I 誌謝 III ABSTRACT V 中文摘要 VII CONTENTS VIII LIST OF TABLES XII LIST OF FIGURES XIII Literature review 1 Chapter 1 Introduction of nerve system 1 1.1 Organization of nervous system 1 1.2 Histology of nervous tissue 2 1.3 Anatomy of sciatic nerve 4 1.4 Electrophysiology of nervous system 5 1.5 Gait analyis for nervous system 6 Chapter 2 Treatment of peripheral nerve injury 9 2.1 Classification of peripheral nerve injury 9 2.2 Introduction of peripheral nerve regeneration after injury 10 2.3 Improving nerve regeneration 11 2.3.1 Electrical nerve stimulation (ES) 11 2.3.2 Phototherapy 12 2.3.3 Autologous nerve grafts 13 Chapter 3 Nerve conduit for bridging the gap 15 3.1 Autologous biological tissues 15 3.1.1 Autologous nerve grafts 15 3.1.2 Autologous non-nerve grafts 15 3.2 Non-autologous biological tissues 17 3.2.1 Natural biologically derived materials 17 3.2.2 Synthetic materials 19 3.2.3 Advances in implant design 20 Chapter 4 Schwann cells and Stem cells for nerve regeneration 23 4.1 Schwann cells for nerve regeneration 23 4.2 Stem cells for nerve regeneration 23 4.2.1 ASCs for nerve regeneration 23 4.2.2 DPSCs for nerve regeneration 25 Chapter 5 Neurotrophic factors on nerve regeneration 28 5.1 NGF for nerve regeneration 28 5.2 BDNF for nerve regeneration 29 5.3 GDNF for nerve regeneration 30 REFERENCE 31 Objective: Sciatic Nerve Regeneration by Co-Cultured Schwann Cells and Stem Cells on Microporous Nerve Conduits 37 Chapter 1 Introduction 37 Chapter 2 Materials and Methods 40 2.1 Isolation and culture of ASCs 40 2.2 Isolation and culture of DPSCs 40 2.3 Culture of SCs 41 2.4 Analysis of surface markers and cell morphology 42 2.5 Co-culture of SCs with ASCs or DPSCs 42 2.6 Fabrication of nerve conduits 45 2.7 Animal surgery 48 2.8 Walking track analysis 51 2.9 The functional gait analysis 53 2.10 The electrophysiological examination 55 2.11 Histological analysis 56 2.12 Statistical analysis 57 Chapter 3 Results 58 3.1 Morphology of cultured cells and phenotypic characterization of stem cells 58 3.2 The expression of NGF, BDNF and GDNF for the co-cultured cells in vitro 62 3.3 The success rate of nerve connection 65 3.4 Walking track analysis 67 3.5 Functional gait analysis 69 3.6 Nerve conduction 70 3.7 Histological analysis 72 Chapter 4 Discussion 75 Chapter 5 Conclusion 80 REFERENCE 81zh_TW
dc.subjectSchwann cellsen_US
dc.subjectadipose-derived adult stem cellsen_US
dc.subjectdental pulp stem cellsen_US
dc.subjectperipheral nerve injuryen_US
dc.subjectnerve regenerationen_US
dc.titleSciatic Nerve Regeneration by Co-Cultured Schwann Cells and Stem Cells on Microporous Nerve Conduitsen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.