Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/31354
標題: | 以siRNA誘導抗二種馬鈴薯Y群病毒之轉基因植物之建構與帶有區分性突變點之馬鈴薯Y群病毒基因沉寂抑制子在病原性及病徵發展之分析 Generation of transgenic plants conferring siRNA-mediated resistance against two potyviruses, and analysis of discriminating mutations of potyviral gene-silencing suppressor on pathogenicity and symptom development |
作者: | 吳惠雯 Wu, Hui-Wen |
關鍵字: | ZYMV;矮南瓜黃化嵌紋病毒;PRSV W;improved cotyledon-cutting method;transgenic oriental melon;PTGS;siRNA;miRNA;木瓜輪點病毒西瓜型;改良式子葉切割法;轉基因東方甜瓜;後轉錄基因沉寂現象;小分子干擾核醣核酸;微小核醣核酸 | 出版社: | 植物病理學系所 | 引用: | 第一章 Akasaka-Kennedy, Y., Tomita, K., and Ezura, H. 2004. Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in melon (Cucumis melo L.). Plant Sci. 166: 763-769. Allison, R. F., Johnston, R. E., and Dougherty, W. G. 1986. The nucleotide sequence of the coding region of Tobacco etch virus genomic RNA: evidence for the synthesis of a single polyprotein. Virology 154: 9-20. Anagostou, K., Jahn, M., and Perl-Treves, R. 2000. Inheritance and linkage analysis of resistance to Zucchini yellow mosaic virus, Watermelon mosaic virus, Papaya ringspot virus and powdery mildew in melon. Euphytica 116: 265-270. Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., and Vance, V. B. 1998. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. USA 95: 13079-13084. Anindya, R., and Savithri, H. S. 2004. Potyviral NIa proteinase, a proteinase with novel deoxyribonuclease activity. J. Biol. Chem. 279: 32159-3269. Atreya, P. L., Atreya, C. D., and Pirone, T. P. 1991. Amino acid substitutions in the coat protein result in loss of insert transmissibility of a plant virus. Proc. Natl. Acad. Sci. USA 88: 7887-7891. Baron, M. H., and Baltimore, D. 1982. Anti-VPg antibody inhibition of the poliovirus replicase reaction and production of covalent complexes of VPg-related proteins and RNA. Cell 30: 745-752. Bazan, J. F., and Fletterick, R. J. 1988. Virsl cysteine protease are homologous to the trypsin-like family of serine protease structural and functional implications. Proc. Natl. Acad. Sci. USA 85: 7872-7876. Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M., and Benning, C. 1998. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17: 170-80. Brodersen, P., and Voinnet, O. 2006. The diversity of RNA silencing pathways in plants. Trends Genet. 22: 268-280. Carrington, J. C., and Dougherty, W. G. 1987. Small nuclear inclusion protein encoded by a plant potyvirus genome is a protease. EMBO J. 8: 365-370. Chang, Y. M., Hsaio, C. H., Yang, W. Z., Hseu, S. H., Chao, Y. J., and Huang, C. H. 1987. The occurrence and distribution of five cucurbit viruses on melon and watermelon in Taiwan. J. Agri. Res. 36: 389-397. Chapman, E. J., Prokhnevsky, A. I., Gopinath, K., Dolja, V. V., and Carrington, J. C. 2004. Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev. 18: 1179-1186. Chen, C. C., Ho, H. M., Chang, T. F., Chao, C. H., and Yeh, S. D. 1995. Characterization of a tospovirus-like virus isolated from wax gourd. Plant Prot. Bull. 37: 117-131. Chen, K. C., Chiang, C. H., Raja, J. A., Liu, F. L., Tai, C. H., and Yeh, S. D. 2008a. A single amino acid of niapro of Papaya ringspot virus determines host specificity for infection of papaya. Mol. Plant Microbe Interact. 21: 1046-57. Chen, T.-C., Lu, Y.-Y., Cheng, Y.-H., Chang, C.-A., and S.-D. Yeh 2008b. Melon yellow spot virus in watermelon: a first record from Taiwan. Plant Pathol. 57: 765-765. Cheng, Y. H., Liao, J. Y., Deng, T. C., Tasi, C. H., and Hu, C. C. 2009. Prevalence of Squash leaf curl Philippines virus occurred on melon plants in south Taiwan. Plant Path. Bull. (Taichung, 2009, Feb 6). Chiang, C.-H., Lee, C.-Y., Wang, C.-H., Jan, F.-J., Lin, S.-S., Chen, T.-C., Raja, J. A. J., and Yeh, S.-D. 2007. Genetic analysis of an attenuated Papaya ringspot virus strain applied for cross-protection. Eur. J. Plant Pathol. 118: 333-348. Cho, J. J., Ullman, D. E., Wheatley, E., Holly, J., and Gonsalves, D. 1992. Commercialization of ZYMV cross protection for zucchini production in Hawaii. Phytopathology 82: 1073. Chu, M., Lopez-Moya, J. J., Llave-Correas, C., and Pirone, T. P. 1997. Two separate regions in the genome of the Tobacco etch virus contain determinants of the wilting response of Tabasco pepper. Mol. Plant-Microbe Interact. 10: 472-480. Covey, S. N., Al-Kaff, N. S., Langara, A., and Turner, D. S. 1997. Plants combat infection by gene silencing. Nature 385: 781-782. Danin-Poleg, Y., Tadmor, Y., Tzuri, G., Reis, N., Hirschberg, J., and Katzir, N. 2002. Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 125: 373-384. Daros, J. A., and Carrington, J. C. 1997. RNA binding activity of NIa proteinase of Tobacco etch potyvirus. Virology 237: 327-236. Davis, R. F. 1986. Partial characterization of Zucchini yellow mosaic virus isolated from squash in Turkey. Plant Dis. 70: 735-738. Desbiez, C., and Lecoq, H. 1997. Zucchini yellow mosaic virus. Plant Pathol. 46: 809-929. Dirks, R., and van Buggenum, M. 1989. In vitro plant regeneration from leaf and cotyledon explants of Cucumis melo L. Plant Cell Rep. 7: 626-627. Dolja, V. V., Haldeman, R., Roberston, N. L., Dougherty, W. G., and Carrington, J. C. 1994. Distinct function of capsid protein in assembly and movement of tobacco etch potyvirus in plants. EMBO J. 13: 1482-1491. Dolja, V. V., R., H.-C., Montgomery, A. E., Vandenbosch, K. A., and Carrington, J. C. 1995. Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206: 1007-1016. Dugas, D. V., and Bartel, B. 2004. MicroRNA regulation of gene expression in plants. Curr. Opin. Plant Biol. 7: 512-520. Dunoyer, P., Lecellier, C., Parizotto, E. A., Himber, C., and Voinnet, O. 2004a. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16: 1235-1250. Dunoyer, P., Thomas, C., Harrison, S., Revers, F., and Maule, A. 2004b. A cysteine-rich plant protein potentiates potyvirus movement through an interaction with the virus genome-linked protein VPg. J. Virol. 78: 2301-2309. Fahlgren, N., Montgomery, T. A., Howell, M. D., Allen, E., Dvorak, S. K., Alexander, A. L., and Carrington, J. C. 2006. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol. 16: 939-944. Fang, G., and Grumet, R. 1990. Agrobacterium tumefaciens mediated transformation and regeneration of muskmelon plants. Plant Cell Rep. 9: 160-164. Fellers, J., Wan, J., Hong, Y., Collins, G. B., and Hunt, A. G. 1998. In vitro interactions between a potyvirus-encoded, genome-linked protein and RNA-dependent RNA polymerase. J. Gen. Virol. 79: 2043-2049. Fernandez, A., Guo, H., Saenz, P., Simon-Buela, L., Gomez de Cedron, M., and Garcia, J. 1997. The motif V of Plum pox potyvirus CI RNA helicase is involved in NTP hydrolysis and is essential for virus RNA replication. Nucl. Acids Res. 25: 4474-4480. Fuchs, M., and Gonsalves, D. 1995. Resistance of transgenic hybrid squash ZW-20 expressing the coat protein genes of Zucchini yellow mosaic virus and Watermelon mosaic virus 2 to mixed infections by both potyviruses. Biotechnology 13: 1466-1473. Fuchs, M., McFerson, J., Tricoli, D., McMaster, J., Deng, R., Boeshore, M., Reynolds, J., Russell, P., Quemada, H., and Gonsalves, D. 1997. Cantaloupe line CZW-30 containing coat protein genes of cucumber mosaic virus, Zucchini yellow mosaic virus, and Watermelon mosaic virus-2 is resistant to these three viruses in the field. Mol. Breed. 3: 279-290. Fuchs, M., Tricoli, D. M., Carney, K. J., Schesser, M., McFerson, J. R., and Gonsalves, D. 1998. Comparative virus resistance and fruit yield of transgenic squash with single and multiple coat protein genes. Plant Dis. 82: 1350-1356. Gabrenaite-Verkhovskaya, R., Andreev, I. A., Kalinina, N. O., Torrance, L., Taliansky, M. E., and Makinen, K. 2008. Cylindrical inclusion protein of Potato virus A is associated with a subpopulation of particles isolated from infected plants. J. Gen. Virol. 89: 829-838. Gal-On, A. 2000. A point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology 90: 467-473. Galperin, M., Patlis, L., Ovadia, A., Wolf, D., Zelcer, A., and Kenigsbuch, D. 2003. A melon genotype with superior competence for regeneration and transformation. Plant Breed. 122: 66-69. Guis, M., Roustan, J.-P., Dogimont, C., Pitrat, M., and Pech, J.-C. 1998. Melon biotechnology. Biotechnol. Genet. Eng. Rev. 15: 289-311. Hong, Y., Levay, K., Murphy, J. F., Klein, P. G., Shaw, J. G., and Hunt, A. G. 1995. A potyvirus polymerase interacts with the viral coat protein and VPg in yeast cells. Virology 214: 159-166. Hseu, S. H., Huang, C. H., Chang, C. A., Wang, W. Z., Chang, Y. M., and Hsiao, C. H. 1987. The occurrence of five viruses in six cucurbits in Taiwan. Plant prot. Bull. 29: 233-244. Hseu, S. H., Wang, H. L., and Huang, C. H. 1985. Identification of a Zucchini yellow mosaic virus from Cucumis astivus. J. Agri. Res. 34: 87-95. Huang, C. H., Liang, S. C., Deng, T. C., and Hseu, S. H. 1993. Comparison of diagnostic hosts and serological tests for four cucurbit potyvirus. Plant Pathol. Bull. 2: 169-176. Hunter, C., Willmann, M. R., Wu, G., Yoshikawa, M., de la Luz Gutierrez-Nava, M., and Poethig, S. R. 2006. Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133: 2973-2981. Jan, F. J., Fagoaga, C., Pang, S. Z., and Gonsalves, D. 2000. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J. Gen. Virol. 81: 2103-2109. Kabelka, E., Ullah, Z., and Grumet, R. 1997. Multiple alleles for Zucchini yellow mosaic virus resistance at the zym locus in cucumber. Theor. Appl. Genet. 95: 997-1104. Kang, H., Lee, Y. J., Goo, J. H., and Park, W. J. 2001. Determination of the substrate specificity of Turnip mosaic virus NIa protease using a genetic method. J. Gen. Virol. 82: 3115-3117. Kasschau, K. D., Xie, Z., Allen, E., Llave, C., Chapman, E. J., Krizan, K. A., and Carrington, J. C. 2003. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev. Cell 4: 205-217. Kathal, R., Bhatnagar, S. P., and Bhojwani, S. S. 1988. Regeneration of plants from leaf explants of Cucumis melo cv. Pusa Sharbati. Plant Cell Rep. 7: 449-451. Keller, K. E., Johansen, I. E., Martin, R. R., and Hampton, R. O. 1998. Potyvirus genome-linked protein (VPg) determines Pea seed-borne mosaic virus pathotype-specific virulence in Pisum sativum. Mol. Plant Microbe Interact. 11: 124-130. Lain, S., Martin, M. T., Riechmann, J. L., and Garcia, J. A. 1991. Novel catalytic activity assciated with positive-strand RNA virus infection nucleic acid-stimulated ATPase activity of the Plum pox potyvirus helicase-like protein. J. Virol. 65: 1-6. Lain, S., Riechmann, J. L., and Garcia, J. A. 1990. RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucleic Acids Res. 18: 7003-7006. Lecoq, H., Lemaire, J. M., and Wipf-Scheibel, C. 1991. Control of Zucchini yellow mosaic virus in squash by cross protection. Plant Dis. 75: 208-211. Lecoq, H., Lisa, V., and Dellavalle, G. 1983. Serological identify of muskmelon yellow stunt and zucchini yellow mosaic viruses. Plant Dis. 67: 824-825. Li, F., and Ding, S.-W. 2006. Virus Counterdefense: Diverse Strategies for Evading the RNA-Silencing Immunity. Annu. Rev. Microbiol. 60: 503. Li, X. H., Valdez, P., Olvera, R. E., and Carrington, J. C. 1997. Functions of the Tobacco etch virus RNA polymerase (NIb): subcellular transport and protein-protein interaction with VPg/proteinase (NIa). J. Virol. 71: 1598-1607. Liao, J. Y., Deng, T. C., Hu, C. C., and Cheng, Y. H. 2009. Discussion of melon leaf curl disease occurred in south Taiwan. Plant Path. Bull.(Taichung, 2009, Feb 6). Lin, M.-K., Belanger, H., Lee, Y.-J., Varkonyi-Gasic, E., Taoka, K.-I., Miura, E., Xoconostle-Cazares, B., Gendler, K., Jorgensen, R. A., Phinney, B., Lough, T. J., and Lucas, W. J. 2007. FLOWERING lOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19: 1488-1506. Lisa, V., Boccardo, G., D'' Agostino, G., Dellavalle, G., and D'' Aquilio, M. 1981. Characterization of a potyvirus that causes zucchini yellow mosaic. Phytopathology 71: 667-672. Lovisolo, O. 1981. Virus and viroid disease of cucurbits. Acta Hortic. 88: 33-82. Mallory, A. C., Bartel, D. P., and Bartel, B. 2005. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early Auxin response genes. Plant Cell 17: 1360-1375. Mallory, A. C., Dugas, D. V., Bartel, D. P., and Bartel, B. 2004. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr. Biol. 14: 1035-1046. McConnell, J. R., Emery, J., Eshed, Y., Bao, N., Bowman, J., and Barton, M. K. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411: 709-713. McKimmey, H. H. 1929. Mosaic disease in Canary Island, West Africa, and Gribraltar. J. Agric. Res. 39: 557-578. Milne, K. S., Grogan, R. G., and Kimble, K. A. 1969. Identificationof viruses infecting cucurbits in California. Phytopathology 59: 819-828. Moissiard, G., Parizotto, E. A., Himber, C., and Voinnet, O. 2007 Transitivity in Arabidopsis can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and is compromised by viral-encoded suppressor proteins. RNA 13: 1268-1278. Moreno, V., Garcia-Sogo, M., Granell, I., Garcia-Sogo, B., and Roig, L. A. 1985. Plant regenertion from calli of melon (Cucumis melo L., cv. ''Amarillo Oro''). Plant Cell Tissue Organ Cult. 5: 139-146. Murphy, J. F., Rhoades, R. E., Hunter, A. G., and Shaw, J. G. 1990. The VPg of tobacco etch virus RNA is the 49-kDa proteinase or the amino-terminal 24-kDa part of the proteinase. Virology 178: 285-288. Nameth, S. T., Dodds, J. A., Paulus, A. O., and Laemmlen, F. F. 1986. Cucurbit viruses of California : An ever-changing problem. Plant Dis. 70: 8-11. Nicolas, O., Dunnington, S. W., Gotow, L. F., Pirone, T. P., and Hellmann, G. M. 1997. Variations in the VPg protein allow a potyvirus to overcome va gene resistance in tobacco. Virology 27: 452-459. Nunn, C. M., Jeeves, M., Cliff, M. J., Urquhart, G. T., George, R. R., Chao, L. H., Tscuchia, Y., and Djordjevic, S. 2005. Crystal structure of Tobacco etch virus protease shows the protein C terminus bound within the active site. J. Mol. Biol. 350: 145-155. Park, Y., Katzir, N., Brotman, Y., King, J., Bertrand, F., and Havey, M. 2004. Comparative mapping of ZYMV resistances in cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). Theor Appl Genet 109: 707-712. Park, Y. H., Sensoy, S., Wye, C., Antonise, R., Peleman, J., and Havey, M. J. 2000. A genetic map of cucumber composed of RAPDs, RFLPs, AFLPs, and loci conditioning resistance to papaya ringspot and zucchini yellow mosaic viruses. Genome 43: 1003-1010. Perring, T. M., Farrar, C. A., Blua, M. J., Wang, H. L., and Gonsalves, D. 1995. Cross protection of cantaloupe with a mild strain of Zucchini yellow mosaic virus: Effectiveness and application. Crop Prot. 14: 601-606. Pitrat, M., and Lecoq, H. 1983. Two alleles for watermelon mosaic virus 1 resistance in melon. Cucurb. Genet. Coop. Rep. 6: 52-53. Pitrat, M., and Lecoq, H. 1984. Inheritance of Zucchini yellow mosaic virus resistance in Cucumis melo L. Euphytica 33: 57-61. Plisson, C., Drucker, M., Blanc, S., German-Retana, S., Le Gall, O., Thomas, D., and Bron, P. 2003. Structural characterization of HC-Pro, a plant virus multifunctional protein. J. Biol. Chem. 278: 23753-23761. Provvidenti, R. 1986. Viral disease of cucurbits and sources of resistance. Food & Tertilizer Technology Center. Technical Bulletin. No. 93. Provvidenti, R. 1987. Inheritance of resistance to a strain of Zucchini yellow mosaic virus in cucumber. Hortscience 22: 102-103. Provvidenti, R., Gonsalves, D., and Humaydan, H. S. 1984. Occurrence of Zucchini Yellow Mosaic Virus in Cucurbits from Connecticut, New York, Florida, and California. Plant Dis. 68: 443-446. Pruss, G., Ge, X., Shi, X. M., Carrington, J. C., and Vance, V. B. 1997. Plant Viral Synergism: The Potyviral Genome Encodes a Broad-Range Pathogenicity Enhancer That Transactivates Replication of Heterologous Viruses. Plant Cell 9: 859-868. Purcifull, D. E., Edwardson, J. R., Hiebert, E., and Gonsalves, D. 1984. Papaya ringspot virus. CMI/AAB Description of Plant VirusesNo 292. Puustinen, P., and Makinen, K. 2004. Uridylylation of the potyvirus VPg by viral replicase NIb correlates with the nucleotide binding capacity of VPg. J. Biol. Chem. 279: 38103-38110. Rajagopalan, P. A., and Perl-Treves, R. 2005. Improved cucumber transformation by a modified explant dissection and selection protocol. Hortscience 40: 431-435. Rajamäki, M., and Valkonen, J. 1999. The 6K2 protein and the VPg of Potato virus A are determinants of systemic infection in Nicandra physaloides. Mol. Plant Microbe Interact. 12: 1074-1081. Rajamäki, M., and Valkonen, J. 2002. Viral genome-linked protein (VPg) controls accumulation and phloem-loading of a potyvirus in inoculated potato leaves. Mol. Plant Microbe Interact. 15: 138-149. Ratcliff, F., Harrison, B. D., and Baulcombe, D. C. 1997. A similarity between viral defense and gene silencing in plants. Science 276: 1558-1560. Ratcliff, F. G., MacFarlane, S. A., and Baulcombe, D. C. 1999. Gene silencing without DNA: RNA-mediated cross-protection between viruses. Plant Cell 11: 1207-1216. Restrepo-Hartwig, M. A., and Carrington, J. C. 1992. Regulation of nuclear transport of a plant potyvirus protein is membrane associated and involved in viral replicaiton. J. Virol. 66: 5662-5666. Restrepo-Hartwig, M. A., and Carrington, J. C. 1994. The Tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in viral replication. J. Virol. 68: 2388-2397. Rhimi, A., Fadhel, N. B., and Boussaid, M. 2006. Plant regeneration via somatic embryogenesis from in vitro tissue culture in two Tunisian Cucumis melo cultivars Maazoun and Beji. Plant Cell Tissue Organ Cult. 84: 239-243. Rhoades, M. W., Reinhart, B. J., Lim, L. P., Burge, C. B., Bartel, B., and Bartel, D. P. 2002. Prediction of plant microRNA targets. Cell 110: 513-520. Riechmann, J. L., Cervera, M. T., and Garcia, J. A. 1995. Processing of the Plum pox virus polyprotein at the P3-6K-1 junction is not required for virus viability. J. Gen. Virol. 76: 951-956. Rodriguez-Cerezo, E., Ammar, E. D., Pirone, T. P., and Shaw, J. G. 1993. association of the non-structural P3 viral protein with cylindrical inclusions in potyvirus-infected cells. J. Gen. Virol. 74: 1945-1949. Rodriguez-Cerezo, E., Findlay, K., Shaw, J. G., Lomonossoff, G. P., Qiu, S. G., Linstead, P., Shanks, M., and Risco, C. 1997. The coat and cylindrical inclusion proteins of a potyvirus are associated with connections between plant cells. Virology 236: 296-306. Roudet-Tavert, G., Michon, T., Walter, J., Delaunay, T., Redondo, E., and Le Gall, O. 2007. Central domain of a potyvirus VPg is involved in the interaction with the host translation initiation factor eIF4E and the viral protein HcPro. J. Gen. Virol. 88: 1029-1033. Sanford, J. C., and Johnson, S. A. 1985. The concept of parasite-derived resistance: Deriving resistance genes from the parasites own genome. J. Thero. Biol. 115: 395-405. Schaad, M., Lellis, A., and Carrington, J. 1997a. VPg of Tobacco etch potyvirus is a host genotype-specific determinant for long-distance movement. J. Virol. 71: 8624-8631. Schaad, M. C., Jensen, P. E., and Carrington, J. C. 1997b. Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J. 16: 4049-4059. Shukla, D. D., Ward, C. W., and Brunt, A. A. 1994. Genome structure, variation and function. In: Shukla, D. D., Ward, C. W., and Brunt, A. A. (Eds.), The Potyviridae, CAB International, Cambridge, PP. 74-112. Singer, S., Raccah, B., Lev, E., and Katz, G. 1994. Cross protection against the Zucchini yellow mosaic virus using a mild strain. Hassadeh 74: 403-406. Spetz, C., and Valkonen, J. 2004. Potyviral 6K2 protein long-distance movement and symptom-induction functions are independent and host-specific. Mol. Plant Microbe Interact. 17: 502-510. Tözsér, J., Tropea, J. E., Cherry, S., Bagossi, P., Copeland, T. D., Wlodawer, A., and Waugh, D. S. 2005. Comparison of the substrate specificity of two potyvirus proteases. FEBS J. 272: 514-523. Tang, G., Reinhart, B. J., Bartel, D. P., and Zamore, P. D. 2003. A biochemical framework for RNA silencing in plants. Genes Dev. 17: 49-63. Teixeira, A. P. M., and Camargo, L. E. A. 2006. A molecular marker linked to the Prv1 gene that confers resistance to Papaya ringspot virus type W in melon. Plant Breed. 125: 187-190. Tomlinson, J. A. 1987. Epidemiology and control of virus disease of vegetables. Ann. Appl. Biol. 110: 661-681. Tricoli, D. M., Carney, K. J., Russell, P. F., McFerson, J. R., Groff, D. W., Hadden, K. C., Himmel, P. T., Hubbard, J. P., Boeshore, M. L., and Quemada, H. D. 1995. Field evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to Cucumber mosaic virus, Watermelon mosaic virus 2, and Zucchini yellow mosaic virus. Bio/Technology 13: 1458-1465. Tsai, W. S., Shih, S. L., Green, S. K., and Jan, F.-J. 2007. Occurrence and Molecular Characterization of Squash leaf curl Phillipines virus in Taiwan. Plant Dis. 91: 907. Verchot, J., Koonin, E. V., and Carrington, J. C. 1991. The 35-kDa protein from the N-terminus of the potyviral polyprotein functions as a third virus-encoded proteinase. Virology 185: 527-535. Walkey, D. G. A., Lecoq, H., Collier, R., and Dobson, S. 1992. Studies on the control of Zucchini yellow mosaic virus ion courgettes by mild strain protection. Plant Pathol. 41: 762-777. Wang, H. L., Gonsalves, D., Provvidenti, R., and Lecoq, H. L. 1991. Effectiveness of cross protection by a mild strain of Zucchini yellow mosaic virus in cucumber melon and squash. Plant Dis. 75: 203-207. Wang, H. L., Wang, C. C., Chiu, R. J., and Sun, M. H. 1978. Preliminary study on Papaya ringspot virus in Taiwan. Plant. Prot. Bull. 20: 133-140. Webb, R. E. 1979. Inheritance od resistance to Watermelon mosaic virus in Cucumis melo L. Hortscience 14: 265-266. Yashida, K., Goto, T., Nemoto, M., and Tsuchizaki, T. 1980. Rive viruses isolated from melon (Cucumis melo L.) in Hokkaido. Ann. Phytopath. Soc. Japan 46: 339-343. Yeh, S. D. 1994. Comparison of the genetic organization of Papaya ringspot virus with other potyvirus. Plant Pathol. Bull. 3: 54-64. Yeh, S. D., Cheng, Y. H., Jih, C. L., Chen, C. C., and Chen, M. J. 1988a. Identification of tomato spotted infecting horn melon and watermelon. Plant Prot. Bull. 30: 319-420. Yeh, S. D., and Gonsalves, D. 1984. Evaluation of induced mutants of Papaya ringspot virus for control by cross protection. Phytopathology 74: 1081-1085. Yeh, S. D., Gonsalves, D., Wang, H. L., Nanba, R., and Chiu, R. J. 1988b. Control of Papaya ringspot virus by cross protection. Plant Dis. 72: 375-380. Yeh, S. D., Jan, F. J., Chiang, C. H., Doong, T. J., Chen, M. C., Chung, P. H., and Bau, H. J. 1992. Complete nucleotide sequence and genetic organization of Papaya ringspot virus RNA. J. Gen. Virol. 73: 2531-2541. Yilmaz, M. A., Abak, K., Lexoq, H., Baloglu, S., Sari, N., Kesici, S., Ozaslan, M., and Guldur, M. E. 1994. Control of Zucchini yellow mosaic virus (ZYMV) in cucurbits by ZYMV-WK strain. In 9th Congress of the Mediterranean Phytopathological Union. Turkish Phytopathological Society, Kusadasi-Aydin, Turkiye. 第二章 Akasaka-Kennedy Y., Tomita K., Ezura H. 2004. Efficient plant regeneration and Agrobacterium-mediated transformation via somatic embryogenesis in melon (Cucumis melo L.). Plant Sci. 166:763-769 Alderz W.C., Purcifull D.E., Simone G.W., Hiebert E. 1983. Zucchini yellow mosaic virus: A pathogen of squash and other cucurbits in Florida. Proc. Fla. State Hortic. Soc. 96:72-74 Beachy R.N. 1999. Coat-protein-mediated resistance to tobacco mosaic virus: discovery mechanisms and exploitation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 354:659-664 Baulcombe D. 2004. RNA silencing in plants. Nature 431:356-363 Chang YM, Hsaio CH, Yang WZ, Hseu SH, Chao YJ, Huang CH (1987) The occurrence and distribution of five cucurbit viruses on melon and watermelon in Taiwan. J. Agric. Res. 36:389-397 Cheng Y.H., Yang J.S., Yeh S.D. 1996. Efficient transformation of papaya by coat protein gene of papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with carborundum. Plant Cell Rep. 16:127-132 Colijn-Hooymans C.M., Hakkert J.C., Jansen J., Custer J.B.M. 1994. Competence for regeneration of cucumber cotyledons is restricted to specific developmental stages. Plant Cell Tissue Organ Cult. 39:211-217 Danin-Poleg Y., Paris HS, Cohen S., Rabinowitch H.D., Karchi Z. 1997. Oligogenic inheritance of resistance to zucchini yellow mosaic virus in melons. Euphytica 93:331-337 Davis R.F. 1986. Partial characterization of zucchini yellow mosaic virus isolated from squash in Turkey. Plant Dis. 70:735-738 Desbiez C., Lecoq H. 1997. Zucchini yellow mosaic virus. Plant Pathol. 46:809-829 Dirks R., van Buggenum M. 1989. In vitro plant regeneration from leaf and cotyledon explants of Cucumis melo L. Plant Cell Rep. 7:626-627 Ezura H., Amagai H., Yoshioka K., Oosawa K. 1992. Highly frequent appearance of tetraploidy in regenerated plants, a universal phenomenon, in tissue cultures of melon (Cucumis melo L.). Plant Sci. 85:209-213 Fang G., Grumet R. 1990. Agrobacterium tumefaciens mediated transformation and regeneration of muskmelon plants. Plant Cell Rep. 9:160-164 Fang G., Grumet R. 1993. Genetic engineering of potyvirus resistance using constructs derived from the zucchini yellow mosaic virus coat protein gene. Mol. Plant Microbe Interact. 6:358-367 Fuchs M., McFerson J.R., Tricoli D.M., McMaster J.R., Deng R.Z., Boeshore M.L., Reynolds J.F., Russell P.F., Quemada H.D., Gonsalves D. 1997. Cantaloupe line CZW-30 containing coat protein genes of cucumber mosaic virus, zucchini yellow mosaic virus, and watermelon mosaic virus-2 is resistant to these three viruses in the field. Mol. Breed. 4:279-290 Fulton T.M. 1995. Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol. Biol. Rep. 13:207-209 Gaba V., Zelcer A., Gal-On A. 2004. Cucurbit biotechnology - The importance of virus resistance. In Vitro Cell Dev. Biol. Plant 40:346-358 Galperin M., Patlis L., Ovadia A., Wolf D., Zelcer A., Kenigsbuch D. 2003. A melon genotype with superior competence for regeneration and transformation. Plant Breed. 122:66-69 Gonsalves C., Xue B., Yepes M., Fuchs M., Ling K., Namba S., Chee P., Slightom J.L., Gonsalves D. (1994) Transferring cucumber mosaic virus-white leaf strain coat protein gene in Cucumis melo L. and evaluating transgenic plants for protection against infections. J Ame Soc Hort Sciences 119: 345-355 Guis M., Amor M.B., Latché A., Pech J.C., Roustan J.P. 2000. A reliable system for the transformation of cantaloupe Charentais melon (Cucumis melo L. var. cantalupensis) leading to a majority of diploid regenerants. Sci. Hort. 84:91-99 Guis M., Roustan J.P., Dogimont C., Pitrat M., Pech J.C. 1998. Melon biotechnology. Biotechnol. Genet. Eng. Rev. 15:289-311 Hemenway C., Fang R.X., Kaniewski W., Chua N.H., Tumer N.E. 1988. Analysis of the mechanism of protection in transgenic plants expressing the potato virus X or its antisense RNA. EMBO J. 7:1273-1280 Hseu S.H., Huang C.H., Chang C.A., Wang W.Z., Chang Y.M., Hsiao, C.H. 1987. The occurrence of five viruses in six cucurbits in Taiwan. Plant prot. Bull. 29: 233-244 Jan F.J., Pang S.Z., Tricoli D.M., Gonsalves D. 2000. Evidence that resistance in squash mosaic comovirus coat protein-transgenic plants is affected by plant development stage and enhanced by conbination of transgenes from different lines. J. Gen. Virol. 81:2299-2306 Kathal R., Bhatnagar S.P., Bhojwani S.S. 1988. Regeneration of plants from leaf explants of Cucumis melo cv. Pusa Sharbati. Plant Cell Rep. 7:449-451 Krubphachaya P., Juříček M., Kertbundit S. (2007) Induction of RNA-mediated resistance to Papaya ringspot virus Type W. J. Biochem. Mol. Biol. 40:404-411 Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T-4. Nature 227: 680-685 Lecoq H., Lisa V., Dellavalle G. 1983. Serological identity of muskmelon yellow stunt and zucchini yellow mosaic viruses. Plant Dis. 67:824-825 Lee Y.K., Chung W.I., Ezura H. 2003. Efficient plant regeneration via organogenesis in winter squash (Cucurbita maxima Duch.). Plant Science 164:413-418 Lesemann D.E., Makkouk K.M., Koenig R., Samman E.N. 1983. Natural infection of cucumbers by zucchini yellow mosaic virus in Lebanon. Phytopathol. Z. 108:304-313 Lin S.S., Hou R.F., Huang C.H., Yeh S.D. 1998. Characterization of Zucchini yellow mosaic virus (ZYMV) isolates collected from Taiwan by host reactions, serology, and RT-PCR. Plant Prot. Bull. 40:163-176 Lin S.S., Hou R.F., Yeh, S.D. 2000. Heteroduplex mobility and sequence analyses for assessment of variability of Zucchini yellow mosaic virus. Phytopathology 90:228-235. Lisa V., Boccardo G., D’Agostino G., Dellavalle G., D’Aquilio M. 1981. Characterization of a potyvirus that causes zucchini yellow mosaic transmitted nonpersistently by Myzus persicae, insect vectors. Phytopathology 71:667-672 Loesch-Fries L.S., Merlo D., Zinnen T., Burhop L., Hill K., Krahn K., Jarvis N., Nelson S., Halk E. 1987. Expression of alfalfa mosaic virus RNA 4 in transgenic plants confers virus virus resistance. EMBO J. 6: 1845-1851 Marks G.E., Davies D.R. 1979 The cytology of cotyledon cells and the induction of giant polytene chromosomes in Pisum sativum. HProtoplasmaH H101:73-80 Mattanovich D., Ruker F., Machado A.C., Laimer M., Regner F., Steinkellner H., Himmler G., Katinger H. 1989. Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acids Res. 17:6747 Moreno V., Garcia-Sogo M., Granell I., Garcia-Sogo B., Roig L.A. 1985 Plant regenertion from calli of melon (Cucumis melo L., cv. Amarillo Oro). Plant Cell Tissue Organ Cult. 5:139-146 Munger H.M. 1993 Breeding for viral disease resistance in cucurbits. In: Kyle MM ed Resistance to viral diseases of vegetables: genetics and breeding. Portland, OR: Timber Press; pp 44-60 Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15:473-497 Nelson R.S, McCormick S.M., Delannay X., Dube P., Layton J., Anderson E.J., Kaniewski M., Proksch R.K., Horsch R.B., Rogers S.G., Fraley R.T., Beachy R.N. 1988. Virus tolerance, plant growth, and field performance of transgenic tomato plants expressing coat protein from tobacco mosaic virus. Biotechnology 6: 403-409 Niu Q.W., Lin S.S., Reyes J.L., Chen K.C., Wu H.W., Yeh S.D., Chua N.H. 2006. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24:1420-1428 Nugent P.E., Ray D.T. 1992. Spontaneous tetraploid melons. HortScience 27:47-50 Nuňez-Palenius H.G., Gomez-Lim M., Ochoa-Alejo N., Grumet R., Lester G., Cantliffe D.J. 2008. Melon Fruits: Genetic Diversity, Physiology, and Biotechnology Features. Critical Reviews in Biotechnology 28:13-55 Pang S.Z., Jan F.J., Tricoli D.M., Russell P.F., Carney K.J., Hu J.S., Fuchs M., Quemada H.D., Gonsalves D. 2000. Resistance to squash mosaic comovirus in transgenic squash plants expressing its coat protein genes. Mol. Breed. 6:87-93 Provvidenti R. 1993. Resistance to viral diseases of cucurbits. In: Kyle MM (ed) Resistance to viral diseases of vegetables. Timber Press, Portland, OR, pp 8-43 Provvidenti R., Gonsalves D., Humaydan H.S. 1984. Occurrence of Zucchini yellow mosaic virus in cucurbits from Connecticut. Plant Dis. 68:443-446 Rajagopalan P.A., Perl-Treves R. 2005. Improved cucumber transformation by a modified explant dissection and selection protocol. HortScience 40:431-435 Rhimi A., Fadhel N.B., Boussaid M. 2006. Plant regeneration via somatic embryogenesis from in vitro tissue culture in two Tunisian Cucumis melo cultivars Maazoun and Beji. Plant Cell Tissue Organ. Cult. 84:239-243 Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. Sanford J.C., Johnson, S.A. 1985. The concept of parasite-derived resistance: Deriving resistance genes from the parasites own genome. J. Thero. Biol. 115: 395-405 Sijen T., Wellink J.B. | 摘要: | 東方甜瓜的栽植遍佈全世界,在田間時常受到二種馬鈴薯Y群病毒的危害,分別為矮南瓜黃化嵌紋病毒 (Zucchini yellow mosaic virus, ZYMV) 及木瓜輪點病毒西瓜型 (Papaya ring spot virus type watermelon, PRSV W) 。 為了能有效的防治此二病毒,本研究在寄主方面,以遺傳工程技術建立簡單高效率的甜瓜轉殖方法以發展轉基因雙重抗病毒之甜瓜,結果顯示轉基因東方甜瓜的抗性來自於後轉錄基因沉寂現象 (Post-transcriptional gene silencing, PTGS)。此外,為了解馬鈴薯Y群病毒如何反擊植物防禦機制 (基因沉寂現象),進一步研究病毒ZYMV的基因沉寂抑制子 (gene silencing suppressor)-協同性蛋白 (Helper-component protease, HC-Pro) 如何影響小各種分子核醣核酸 (small RNAs) 所誘導的基因沉寂 (gene silencing),進而解釋病毒感染在植物上的病徵及病原性發展。本論文總共分為五個章節 (含附錄) , 分述如下。 本論文第一章前人研究,主要蒐集整理近幾年與本研究相關之參考文獻並概述本論文之目的與內容。 第二章至第四章為本論文主要架構,本研究欲利用育成轉基因抗病毒之植物來解決馬鈴薯Y群病毒在瓜類作物上所造成的損失。為了有效率的建構轉基因抗病毒之東方甜瓜,首先本研究發展一個操作簡單及高效率的改良式子葉切割法為甜瓜轉殖方法 (第二章),結果發現切除東方甜瓜子葉近軸端關鍵的 1 mm 部分可以減低偽陽性轉殖株的機率,進而提升成功轉殖的效率。本章以ZYMV CP為轉殖的基因,以期獲得抗ZYMV的轉基因東方甜瓜。結果顯示本研究獲得之ZYMV高抗或免疫的轉基因株系之抗性來自於基因沉寂機制,且其轉基因插入套數與抗性不完全相關。為了解決馬鈴薯Y群病毒在東方甜瓜上田間複合感染的問題,同樣的策略也應用在雙重抗ZYMV及PRSV W的轉基因東方甜瓜 (第三章),結果顯示高度抗病的轉基因東方甜瓜株系抗性來自於基因沉寂誘導抗性,其抗性程度與轉基因插入套數亦無完全相關。上述的單抗及雙抗的轉基因東方甜瓜將來可與其他田間危害嚴重之病毒鞘蛋白轉基因抗病株系進行雜交,在田間更有效率達到多重抗病毒之功效。此外,馬鈴薯Y屬病毒的協同性蛋白 (ptyviral HC-Pro) 是第一個發現的基因沉寂抑制子 (gene silencing suppressor),具有抑制基因沉寂的能力。本文第四章利用野生型及數個突變的HC-Pro轉入阿拉伯芥中,以阿拉伯芥呈現的表現型及分子證據去證實具不同突變點[R180I (A突變), F205L (B), and E396N (C)]組合的HC-Pro所造成的輕微及恢復性病徵,是由於其抑制了與病徵和病原性發展相關的miRNA,ta-siRNA及VIGS的能力受損所致,但這些突變的HC-Pro仍然保有抑制s-PTGS的能力。這些結果解釋也符合先前弱系病毒ZGAC (帶AC突變HC-Pro的ZYMV)產生輕微的病徵是由於其HC-Pro抑制miRNA及ta-siRNA pathway的能力降低所致,其恢復性病徵 (recovery)是因為其抑制能力與植物防禦反應維持一種平衡,故能發展成為提供良好交互保護的保護病毒 (protective virus)。上述研究基礎建立於後轉錄基因沉寂所誘導的抗性及基因沉寂抑制子如何藉由抑制不同小分子RNA影響病毒所引起之病徵及病原性,這些研究結果無論是對於利用轉基因或交互保護之策略來防治馬鈴薯Y群病毒,都能有更深入的了解,期望將來能夠解決在馬鈴薯Y群病毒田間危害嚴重的問題。 第五章為附錄 : “在人工微小核醣核酸誘導基因沉寂的環境下病毒非轉錄序列之分子演化” 。本研究於博士班在學期間 (2006-2008) 於美國洛克斐勒大學蔡南海院士實驗室完成,與林詩舜博士共列第一作者,非屬本論文主要架構,故收錄於附錄。此研究成果已於 2009 年二月正式刊登在 “PLoS Pathogens” 電子期刊 [PLoS Pathogens 5:e1000312] 。本章的研究目的為確立 21-nt 的人工病毒 miRNA 標靶區域 (miRNA target site) 對於 amiRNA (artificial microRNA) 轉基因植物所提供的抗性並進一步探討所有amiRNA 標靶區域上的單一核甘酸對amiRNA 結合的重要位置,結果發現病毒在轉基因表現amiRNA的壓力下會以剔除或突變核甘酸的方式逃避攻擊,本研究結果將是未來amiRNA轉基因抗病毒策略之重要設計參考。 Production of oriental melon (Cucumis melo L.) worldwide is often limited by infection by two potyviruses, the watermelon infecting Zucchini yellow mosaic virus (ZYMV) and Papaya ringspot virus W type (PRSV W) and. In order to engineer melon lines resistant to these potyviruses, a construct containing the coat protein (CP) sequences of these viruses was generated and used to transform an elite cultivar of oriental melon (Silver light) mediated by Agrobacterium using an improved cotyledon-cutting method. Altogether, our results indicated that RNA-mediated post-transcriptional gene silencing (PTGS) was the underlying mechanism of virus resistance of the transgenic melon lines. In order to further understand the relationship between plant defense and virus counteraction, we investigated the role of gene silencing suppressor, potyviral HC-Pro, which affects small RNA pathways involving in pathogenicity and symptom development. This dissertation is divided into five (including appendix) chapters as described below. Chapter 1, “Literature review” describes references relevant to this study. Chapter 2, 3 and 4 comprise the main text of this thesis, describing the engineering of transgenic melon lines resistant to ZYMV and PRSV W (Chapter 2 and 3) to solve the potyvirus problem in the field. We used binary vector harboring single (ZYMV) or double (ZYMV and PRSV W) CP constructs to transform an elite cultivar of oriental melon (Silver light) mediated by Agrobacterium using an improved cotyledon-cutting method. Removal of 1 mm portion from the proximal end of cotyledon greatly increased the frequency of transgenic regenerants by significantly decreasing the incidence of false positive and aberrant transformants. Southern hybridization analysis of transgenic lines revealed random insertion of the transgene in host genome, with insert numbers differing among transformants. Northern hybridization analysis evidenced an inverse correlation of the levels of accumulation of transgene transcript to the degrees of virus resistance, indicating post-transcriptional gene silencing (PTGS)-mediated transgenic resistance. Chapter 4 describes “Discriminating mutations of HC-Pro of Zucchini yellow mosaic virus with differential effects on small RNA pathways involving viral pathogenicity and symptom development”. It is well known that the potyviral HC-Pro is a gene silencing suppressor. We sought to obtain molecular evidence on the roles of the three highly conserved amino acids, R180I (mutation A), F205L (B), and E396N (C) of HC-Pro in microRNA (miRNA) and small interfering RNA (siRNA) pathways related to viral pathogenicity and symptom development using transgenic Arabidopsis plants system. We demonstrated that amino acid residues 180, 205 and 396 of HC-Pro are critical in suppression of miRNA, trans-acting siRNA (ta-siRNA) and virus induced gene silencing (VIGS) pathways, but not sense-post transcriptional gene silencing (s-PTGS). Because the R180I/ E396N HC-Pro mutant does not interfere with miRNA and tasiRNA pathways the ZGAC mutant elicits only attenuated symptoms. Furthermore, the recovery seen on ZGAC-infected plants likely results from the weak VIGS suppression by the double AC mutations of HC-Pro. The findings of this study are useful to protect high levels of transgene expression and to genereate an attenuated potyvirus for control of virus by cross protection.. Chapter 5 (Appendix) entitled “Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing” was carried out at Prof. Nam-Hai Chua's laboratory, Rockefeller University, during my Ph.D program (2006-2008). The published paper is included as an appendix, because all the experiments of this project were carried out at Prof. Chua's laboratory and this study was not directly connected to thesis. The main objective of this chaper was directed to determine, through artificial mutagnesis, the criticality of single nucleotide positions in the amiRNA-targeted sequence of 21 nucleotides, which were constructed in a potyvirual vector. Furthermore, the evolution of the virus through deletion and substitution in amiRNA-targrted sequence to escape amiRNA recognition was also investigated. |
URI: | http://hdl.handle.net/11455/31354 | 其他識別: | U0005-2605200912585200 |
Appears in Collections: | 植物病理學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.