Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31362
標題: 台灣茄科細菌性斑點病菌 avrBs2 的基因功能分析
Functional analysis of avrBs2 from Taiwan-isolated Xanthomonas vesicatoria Xvt147
作者: 陳宥溱
Chen, You-Jen
關鍵字: Xanthomonas vesicatoria;第三型分泌系統;avrBs2;Type III secretion system
出版社: 植物病理學系所
引用: Alfano, J.R., and Collmer, A. (1996) Bacterial Pathogens in Plants: Life up against the walI. The Plant Cell 8: 1683-1698. Bouzar, H., Jones, J.B., Minsavage, G.V., Stall, R.E., and Scott, J.W. (1994) Proteins unique to phenotypically distinct groups of Xanthomonas campestris pv. vesicatoria revealed by silver staining. Phytopathology 84: 39-44. Castañeda, A., Reddy, J.D., El-Yacoubi, B., and Gabriel, D.W. (2005) Mutagenesis of all eight avr genes in Xanthomonas campestris pv. campestris had no detected eEffect on pathogenicity, but one avr gene affected race specificity. Mol. Plant-Microbe Interact. 18: 1306-1317. Cornelis, G.R., and Gijsegem, F.V. (2000) Assemble and function of Type III secretory systems. Annu Rev Microbiol. 54: 735-774. Dow, J.M., Crossman, L., Findlay, K., He, Y.-Q., Feng, J.-X., and Tang, J.-L. (2003) Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. PNAS 100: 10995-11000. Dye, D.W., Bradbury, J.F., Goto, M., Hayward, A.C., Lelliott, R.A., and Schroth, M.N. (1980) International standards for naming pathovars of phytopathogenic bacterua and a list of pathovar names and pathotype strains. Rev. Plant Pathol. 59: 153-168. Gassmann, W., Dahlbeck, D., Chesnokova, O., Minsavage, G.V., Jones, J.B., and Staskawicz, B.J. (2000) Molecular evolution of virulence in natural field strains of Xanthomonas campestris pv. vesicatoria. J Bacteriol 182: 7053-7059. Gudesblat, G.E., Torres, P.S., and Vojnov, A.A. (2009) Xanthomonas campestris overcomes arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiol. 149(2): 1017-1027. Horsfall, J.G., and Barratt, R.W. (1945) An improved garding system for measuring plant disease. Phytopathology 35: 655. Hueck, C. (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev. 62(2): 379-433. Kearney, B., and Staskawicz, B.J. (1990) Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature 346: 385-386. Kim, J.-G., Taylor, K., Andrew Hotson, Keegan, M., Schmelz, E.A., and Mudgetta, M.B. (2008) XopD SUMO Protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas-Infected tomato leaves. The Plant Cell 20: 1915-1929. Kim, J.-G., Li, X., Roden, J.A., Taylor, K.W., Aakre, C.D., Su, B., Lalonde, S., Kirik, A., Chen, Y., Baranage, G., Heather Mc Lane, Martin, G.B., and Beth Mudgetta, M. (2009) Xanthomonas T3S Effector XopN Suppresses PAMP-Triggered Immunity and Interacts with a Tomato Atypical Receptor-Like Kinase and TFT1. The Plant Cell 21: 1305-1323. Leister, R.T., Dahlbeck, D., Day, B., Li, Y., Chesnokova, O., and Staskawicz, B.J. (2005) Molecular genetic evidence for the role of SGT1 in the intramolecular complementation of Bs2 protein activity in Nicotiana benthamiana. Plant Cell 17: 1268-1278. Liu, Z., Park, B.-J., Kanno, A., and Kameya, T. (2005) The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Molecular Breeding 16: 189-197 Lue, Y.-S. (2003) The polymerase chain reaction technique for identification and detection of Xanthomonas vesicatoria: Chung Hsing University. Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y. (2006) Plant somata function in innate immunity against bacterial invasion Cell 126: 969-980. Minsavage, G.V., Dahlbeck, D., Whalen, M.C., Kearney, B., Bonas, U., Staskawicz, B.J., and Stall, R.E. (1990) Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria- pepper interactions. Mol. Plant-Microbe Interact. 3: 41-47. Paulus, F., and Otten, L. (1993) Functional and mutated agrocinopine synthase genes on octopine T-DNAs Mol. Plant-Microbe Interact. 6: 393-402. Pohronezny, K., and Volin, R.B. (1983) The effect of bacterial spot on yield and quality of fresh market tomatoes. HortScience 18: 69-70. Sambrook, J., Manitis, T.I., and Fritsch, E.F. (1989) Molecular cloning: a laboratory manual, 2nd ed. : Cold Spring Harbor Laboratory Press., Ny Stall, R.E., Beaulieu, C., Egel, D., C., H.N., Leite, R.P., Minsavage, G.V., Bouzar, H., Jones, J.B., Alvarez, A.M., and Benedict, A.A. (1994) Two genetically diverse groups of atrains are included in Xanthomonas campestris pv. vesicatoria. Int J Syst Bacteriol. 44: 47-53 Suh, S.-J., Silo-Suh, L., Woods, D.E., Hassett, D.J., West, S.E.H., and Ohman, D.E. (1999) Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol 191: 3890-3897. Swords, K.M., Dahlbeck, D., Kearney, B., Roy, M., and Staskawicz, B.J. (1996) Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2. J Bacteriol 178: 4661-4669. Tai, T.H., Dahlbeck, D., Clark, E.T., Gajiwala, P., Pasion, R., Whalen, M.C., Stall, R.E., and Staskawicz, B.J. (1999) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA 96: 14153-14158. Thieme, F., Koebnik, R., Bekel, T., Berger, C., Boch, J., Bu¨ttner, D., Caldana, C., Gaigalat, L., Goesmann, A., Kay, S., Kirchner, O., Lanz, C., Linke, B., McHardy, A.C., Meyer, F., Mittenhuber, G., Nies, D.H., Niesbach-Klo¨sgen, U., Patschkowski, T., Ru¨ckert, C., Rupp, O., Schneiker, S., Schuster, S.C., Vorho¨lter, F.-J.r., Weber, E., Pu¨hler, A., Bonas, U., Bartels, D., and Kaiser, O. (2005) Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187: 7254-7266. Wichmann, G., and Bergelson, J. (2004) Effector genes of Xanthomonas axonopodis pv. vesicatoria promote transmission and enhance other fitness traits in the field. Genetics 166: 693-706. Wu, W.C., Ju, S.H., Lee, S.J., Ma, H.I., Huang, M.L., Yang, B.C., Kuo, H.F., and Hsueh, Y.K. (1986) Variation in Xanthomonas campestris pv. citri. Plant Prot. Bull. 28: 241-252. Wulff, N.A., Mariano, A.G., Gaurivaud, P., Souza, L.C.d.A., Virgı´lio, A.C.D., and Monteiro, P.c.B. (2008) Influence of culture medium pH on growth, aggregation, and biofilm formation of Xylella fastidiosa. Curr Microbiol. 57: 127-132.
摘要: 
在高溫高濕的環境中 Xanthomonas campestris pv. vesicatoria (Xcv) 會在茄
科作物番茄與甜椒上造成細菌性斑點病,其主要的病徵為會在葉片、莖部、花器
及果實處造成斑點型外圍帶有黃暈的壞疽病斑。Xanthomonas spp. 的致病能力由
第三型蛋白質分泌系統與一系列藉由第三型分泌系統分泌出去的 effectors 決
定,本研究探討在 Xanthomonas spp. 中普遍存在的 AvrBs2 在細菌感染植物的
過程中可能具有的功能。AvrBs2 可被抗性寄主植物內的 Bs2 蛋白辨識,另外,
在感染寄主植物中則可藉由未知的機制促進病原性。由 AvrBs2 胺基酸序列分析
後發現其 271-422 aa 與Agrobacterium tumefaciens 的 agrocinopine synthase (acs)
以及 E. coli 的 glycerophosphoryl diester phosphodiesterase (GDPD, encoded by
ugpQ) 酵素活性位置具有高度相似性,除此之外由不同的 Xanthomonas spp. 所
選殖而來的 avrBs2 alleles 在同樣的位置也具有高度保留性,故推測此片段對於
AvrBs2 在感染植物時可能具有重要的功能。另外利用 gain-of-function 與
lost-of-function 的方式分析台灣所分離來的 X. vesicatoria (Xvt147) 與 X.
campestris pv. raphani (cxsp3),以 marker exchange 的方式致變 Xvt147 之
avrBs2,得到突變株後以番茄進行接種測試,發現 Xvt147 avrBs2 接種番茄後
的病徵量與在番茄內的族群數與野生型菌株無明顯差異;但在限制植物水分供應
的情況下,過量表現 AvrBs2 則會使 Xvt147 感染的植物出現嚴重萎凋病徵。而
在原本即不帶有 avrBs2 之 cxsp3 內表現 Xvt147 來源的 avrBs2,並對甘藍及
番茄進行接種測試,發現帶有 AvrBs2 之 cxsp3 菌株會使得病徵出現時間提
早,另外,轉型菌株在植物內初期的生長速率高於野生型的 cxsp3,顯示 Xvt147
AvrBs2 可影響植物病徵的呈現。有趣的是在培養 cxsp3 的過程中,發現avrBs2
可避免 cxsp3 於培養晚期中產生細胞凝聚的情形,推測 AvrBs2 可能具有提供
細菌適應培養基與寄主內環境的功能。

Bacterial spot disease of pepper and tomato caused by Xanthomonas campestris
pv. vesicatoria (Xcv) is a major problem where high temperatures and high humidity
occur simultaneously. The pathogenicity of Xanthomonas spp. depends on a
functional Type III secretion system (T3SS) and an array of effectors translocating
through the T3SS. One effector of interest found in nearly all examined Xanthomonas
spp. is AvrBs2. AvrBs2 is readily recognized by the R protein of Bs2 in resistant
plants and is involved in promoting virulence in susceptible plants by unknown
mechanisms. Sequence analysis reveals the amino acid residues 271-422 of Xv
AvrBs2 are homologous to the catalytic domain residing in agrocinopine synthase
(encoded by acs) of Agrobacterium tumefaciens and glycerophosphoryl diester
phosphodiesterase (GDPD, encoded by ugpQ) of E. coli. In addition, diverse avrBs2
alleles identified in other Xanthomonas spp. are highly conserved in the catalytic
domain, suggesting it is important for AvrBs2 activities in planta. Genetic studies of
AvrBs2 function are done using gain-of-function and loss-of-function strategies in X.
vesicatoria Taiwan strain Xvt147 and Xanthomonas campestris pv. raphani (cxsp3)
Taiwan strain cxsp3, respectively. Xvt147 avrBs2 is mutated by marker exchange and
the resultant mutant phenotypes are assayed in tomato. The degrees of symptom
development and bacterial multiplication of Xvt147 avrBs2 mutant are comparable
to the wild type strain. Nevertheless, overexpression of AvrBs2 in Xvt147 elicits
severe symptoms on tomato when infected plants are subjected to short-term water
deficiency. Heterologous expression of AvrBs2 in cxsp3 lacking the avrBs2 gene
slightly increases bacterial growth at 1 dpi and delays the onset of symptom
development in cabbage, indicating Xvt147 AvrBs2 might affect plant biochemical
activities for symptom production. Interestingly, the expression of AvrBs2 in cxsp3
31
prevents the formation of bacterial aggregates that are usually seen in the stationary
phase-grown bacteria, suggesting the functions of AvrBs2 might be important for
bacterial adaptation in vitro and in planta.
URI: http://hdl.handle.net/11455/31362
其他識別: U0005-2707200915182400
Appears in Collections:植物病理學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.