Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/31375
標題: | 台灣地區番椒疫病菌 (Phytophthora capsici) 之生物
特性暨抗病品種之篩選 Characterization of Phytophthora capsici associated with Phytophthora blight of pepper and resistance screening in Taiwan |
作者: | 陳昭容 Chen, Jaw-Rong |
關鍵字: | Phytophthora capsici;Phytophthora capsici;biological characterization;pathotype;A1and A2mating type;metalaxyl sensitivity;resistant source;AVRDC advanced lines;生物特性;病原型;A1和A2配對型;滅達樂感受性;抗病種源篩選;亞蔬高級品系 | 出版社: | 植物病理學系所 | 引用: | Ann PJ, 2001. Control of plant diseases with non-pesticide compound – phosphorous acid. Plant Pathology Bulletin 10, 147-54. (in chinese) AVRDC, 1998. Pepper resistance to phytophthora blight. AVRDC report 1997, 53-4. Barksdale TH, Papavizas GS, Johnston SA, 1984. Resistance to foliar blight and crown rot of pepper caused by Phytophthora capsici. Plant Disease 68, 506-9. Chung WS, Black LL, 1997. Evidence for pepper pathotypes in Phytophthora capsici in Taiwan. Phytopathology 87, s19. Diby P, Saju KA, Jisha PJ, Sarma YR, Kumar A, Anandaraj M, 2005. Mycolytic enzymes produced by Pseudomonas fluorescens and Trichoderma spp. against Phytophthora capsici, the root rot pathogen of black pepper (Piper nigrum L.). Annuals of Microbiology 55, 129-33. English JT, Laday M, Bakony J, Schoelz JE, Ersek T, 1999. Phenotypic and molecular characterization of species hybrids derived from induced fusion of zoospores of Phytophthora capsici and Phytophthora nicotianae. Mycological Research 103, 1003-8. Ersek T, English JT, Schoelz JE, 1995. Creation of species hybrids of Phytophthora with modified host ranges by zoospore fusion. Phytopathology 85, 1343-7. Erwin DC, Ribeiro OK, 1996. Phytophthora capsici. In. Phytophthora diseases worldwide. American Phytopathological Society, St. Paul, MN., 262-8. French-Monar RD, Jones JB, Roberts PD, 2006. Characterization of Phytophthora capsici associated with roots of weeds on Florida vegetable farms. Plant Disease 90, 345-50. Glosier BR, Ogundiwin EA, Sidhu GS, Sischo DR, Prince JP, 2008. A differential series of pepper (Capsicum annuum) lines delineates fourteen physiological races of Phytophthora capsici. Euphytica 162, 23-30. Hwang BK, Kim YJ, Kim CH, 1996. Differential interactions of Phytophthora capsici isolates with pepper genotypes at various plant growth stages. European journal of Plant Pathology 102, 311-6. Kim SG, Khan Z, Jeon YH, Kim YH, 2008. Inhibitory effect of Paenibacillus polymyxa GBR-462 on Phytophthora capsici causing phytophthora blight in chili pepper. Journal of Phytopathology 157, 329-37. Ko WH, 1978. Heterothallic phytophthora: Evidence for hormonal regulation of sexual reproduction. Journal of General Microbiology 107, 15-8. Ko WH, 1980. Hormonal regulation of sexual reproduction in phytophthora. Journal of General Microbiology 116, 459-63. Lamour KH, Hausbeck MK, 2003. Effect of crop rotation on the survival of Phytophthora capsici in Michigan. Plant Disease 87, 841-5. Leonian LH, 1922. Stem and fruit blight of peppers caused by phytophthora capsici sp. nov. Phytopathology 12, 401-8. Linde C, Drenth A, Wingfield MJ, 1999. Gene and genotypic diversity of Phytophthora cinnamomi in South Africa and Australia revealed by DNA polymorphisms. European journal of Plant Pathology 105, 667-80. Lu LS, Kao CW, 1981. Pepper blight induced by Phytophthora capsici. Plant Protection Bulletin 23, 59-66. (in chinease) Mahuku G, Peters RD, Platt HW, Daayf F, 2000. Random amplified polymorphic DNA (RAPD) analysis of Phytophthora infestans isolates collected in Canada during 1994 to 1996. Plant Pathology 49, 252-60. Nobutaka S, 2008. Biological control of fungal plant diseases using antagonistic bacteria. Journal of General plant pathology 74, 459-60. Oelke LM, Bosland PW, Steiner R, 2003. Differentiation of race specific resistance to Phytophthora root rot and foliar blight in Capsicum annuum. Journal of the American Society for Horticultural Science 128, 213-8. Ortega RG, Español CP, Zueco JC, 1995. Interactions in the pepper-Phytophthora capsici system. Plant Breeding 114, 74-7. Ortega RG, Palazon-Espanol C, Cuartero-Zueco J, 1991. Genetics of resistance to Phytophthora capsici in the pepper line ''SCM-334'' Plant Breeding 107, 50-5. Ploetz RC, Heine G, Haynes J, Watson M, 2002. An investigation of biological attributes that may contribute to the importance of Phytophthora capsici as a vegetable pathogen in Florida. Annals of Applied Biology 140,61-7. Polach FJ, Webseter RK, 1972. Identification of strains and inheritance of pathogenicity in Phytophthora capsici. Phytopathology 62, 20-6. Reifschneider FJB, Boiteux LS, Della Vecchia PT, Poulos JM, Kuroda N, 1992. Inheritance of adult-plant resistance to Phytophthora capsici in pepper. Euphytica 62, 45-9. Reifschneider FJB, Cafe-filho AC, Rego AM, 1986. Factors affecting expression of resistance in pepper (Capsicum annuum) to blight caused by Phytophthora capsici in screening trials. Plant Pathology 35, 451-6. Ristaino JB, Johnston SA, 1999. Ecologically based approaches to management of phytophthora Blight on Bell Pepper. Plant Disease 83, 1080-9. Saini SS, Sharma PP, 1978. Inheritance of resistance to fruit rot (Phytophthora capsici Leon.) and induction of resistance in bell pepper (Capsicum annuum L.) Euphytica 27, 721-3. Sansome ER, 1965. Meiosis in diploid and polyploid sex organs of Phytopjtjora and Achtya. Cytologia 30, 103-17. Silvar C, Merino F, Díaz J, 2006. Diversity of Phytophthora capsici in northwest Spain: Analysis of virulence, metalaxyl response, and molecular characterization. Plant Disease 90, 1135-42. Smith PG, KImble KA, Grogan RG, Millett AH, 1967. Inheritance of resistance in peppers to phytophthora root rot. Phytopathology 57, 377-9. Sy O, Steiner R, Bosland PW, 2008. Recombinant inbred line differential identifies race-specific resistance to phytophthora root rot in Capsicum annuum. Phytopathology 98, 867-70. Tian D, Babadoost M, 2004. Host range of Phytophthora capsici from pumpkin and pathogenicity of isolates. Plant Disease 88, 485-9. Whissom SC, Drenth A, Maclean DJ, Irwin JAG, 1994. Evidence for outcrossing in Phytophthora sojae and linkage of a DNA marker to two avirulence genes. Current Genetics 27, 77-82. 王添成。1998。蔬菜抗病篩選技術。399頁。蔬菜育種技術研習會專刊。台灣省農業試驗所編印。台中縣。 行政院農業委員會動植物防疫檢疫局-農藥資訊服務網。2009。http://pesticide.baphiq.gov.tw/。 行政院農業委員會動植物防疫檢疫局-農藥資訊服務網。2009。黃德昌、郭克忠。殺菌劑之合理使用與管理。http://pesticide.baphiq.gov.tw/brief_detail.aspx?sn=43。 安寶貞、王姻婷、蔡志濃。2008。台灣出現A2 配對型的 Phytophthora capsici。植物病理學會刊17, 69。 高清文、呂理燊。1977。台灣未發表的三種疫病病菌。植物保護學會會刊19, 302-3。 台灣農業統計年報。2007。行政院農業委員會編印。台北市。 Ann PJ, Huang TC, Wong IT, 2002. Identification of Phytophthora species on Piper betle and P. longum in Taiwan. Plant Pathology Bulletin 11, 179-88. (in chinese) Alexopoulos CJ, Mims CW, Blackwell M, 1996. Phylum Oomycota. Pages 683-737. in : Introductory mycology. John Wiley & Sons, Inc. U.S.A. AVRDC, 1997. Host resistance to phytophthora blight. AVRDC report 1996, 58-9. AVRDC, 1999. Studies on phytophthora blight in pepper. AVRDC report 1998, 25-7. Bowers JH, Papavizas GC, Johnston SA, 1990. Effect of soil temperature and soil-water matric potential on the survival of Phytophthora capsici in natural soil. Plant Disease 74, 771-7. Chen CH, Sheu ZM, Wang TC, 2008. Host specificity and tomato-related race composition of Phytophthora infestans isolates in Taiwan during 2004 and 2005. Plant Disease 92, 751-5. Chen CH, Wang TC, Black L, Sheu ZM, Perez F, Deahl K, 2009. Phenotypic and Genotypic Changes in the Phytophthora infestans Population in Taiwan – 1991 to 2006. Journal of Phytopathology 157, 248-55. Chung WS, Black LL, 1997. Evidence for pepper pathotypes in Phytophthora capsici in Taiwan. Phytopathology 87, s19. Chung YW, Huang JF, Sheu ZM, Wang TC, Black LL, Chen LH, 2001. Expression of PR proteins in peper induced by differential race of Phytophthora capsici Leonian. Plant Pathology Bulletin 10, 204. (in chinese) Ersek T, English JT, Schoelz JE, 1995. Creation of species hybrids of Phytophthora with modified host ranges by zoospore fusion. Phytopathology 85, 1343-7. Erwin DC, Ribeiro OK, 1996. Phytophthora capsici. In. Phytophthora diseases worldwide. American Phytopathological Society, St. Paul, MN., 262-8. American Phytopathological Society, St. Paul, MN., 262-8. French-Monar RD, Jones JB, Roberts PD, 2006. Characterization of Phytophthora capsici associated with roots of weeds on Florida vegetable farms. Plant Disease 90, 345-50. Gevens AJ, Donahoo RS, Lamour KH, Hausbeck MK, 2008. Characterization of Phytophthora capsici causing foliar and pod blight of snap bean in Michigan. Plant Disease 92, 201-9. Gisi U, 1996. Resistance to phenylamide fungicides: A case study with Phytophthora infestans involving mating type and race structure. Annual Review of Phytopathology 34, 549-72. Glosier BR, Ogundiwin EA, Sidhu GS, Sischo DR, Prince JP, 2008. A differential series of pepper (Capsicum annuum) lines delineates fourteen physiological races of Phytophthora capsici. Euphytica 162, 23-30. Ham JH, Hwang BK, Kim Y J, Kim CH, 1991. Differential sensitivity to metalaxyl of isolates of Phytophthora capsici from different geographic areas. Korean journal of plant pathology 7, 212-20. Jyan MH, Ann PJ, Tsai JN, Hsih SD, Chang TT, Liou RF, 2004. Recent occurrence of Phytophthora infestans US-11 as the cause of severe late blight on potato and tomato in Taiwan. Canadian Journal of Plant Pathology. 26, 188-92. Hwang BK, Kim CH, 1995. Phytophthora blight of pepper and its control in Korea. Plant Disease 79, 221-7. Kamjaipai W, Ui T, 1978. Mating type of Phytophthora capsici Leonian, the causal fungus of pumpkin rot in Hokkaido. Annual Phytopathology Society Japan 40, 440-6. Khan A, Sutton JC, Grodzinski B, 2003. Effects of Pseudomonas chlororaphis on Pythium aphanidermatum and Root Rot in Peppers Grown in Small-scale Hydroponic Troughs. Biocontrol Science and Technology 13, 615-30. Lamour KH, Hausbeck MK, 2000. Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology 90, 396-400. Lamour KH, Hausbeck MK, 2003. Effect of crop rotation on the survival of Phytophthora capsici in Michigan. Plant Disease 87, 841-5. Lee TV, Witte ID, Drenth A, Alfonso C, Govers F, 1997. AFLP linkage map of the oomycete Phytophthora infestans. Fungal Genetics and Biology 21, 278-91. Leonian LH, 1922. Stem and fruit blight of peppers caused by phytophthora capsici sp. nov. Phytopathology 12, 401-8. Liou RF, 2001. Roles of elicitins in the biology of Phytophthora. Plant Pathology Bulletin 10, 97-104. (in chinese) Liu D, Coloe S, Baird R, Pedersen J, 2000. Rapid mini-preparation of fungal DNA for PCR. Journal of Clinical Microbiology 38, 471. Lu LS, Kao CW, 1981. Pepper blight induced by Phytophthora capsici. Plant Protection Bulletin 23, 59-66. (in chinease) Matheron ME, Porchas M, 2000. Comparison of five fungicides on development of root, crown, and fruit rot ofchile pepper and recovery of phytophthora capsici from soil. Plant Disease 84, 1038-43. Morton HV, Urech PA, 1988. History of the development of resistance to phenylamide fungicides. American Phytopathological Society Press, St. Paul, MN. Oelke LM, Bosland PW, Steiner R, 2003. Differentation of race specific resistance to Phytophthora root rot and foliar blight in Capsicum annuum. Journal of the American Society for Horticultural Science 128, 213-8. Oh JS, Kim CH, 1992. Varying sensitivity to metalaxyl of Korean isolates of Phytophthora capsici from red pepper fields. Korean journal of plant pathology 8, 29-33. Ortega RG, Español CP, Zueco JC, 1995. Interactions in the pepper-Phytophthora capsici system. Plant Breeding 114, 74-7. Parra G, Ristaino JB, 2001. Resistance to mefenoxam and metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Disease 85, 1069-75. Pin CY, 2003. The difference of pathogensis-related gene expression in compatible and incompatible interactions of pepper and Phytophthora capsici Leonian. Taichung,Taiwan: National Chung Hsing University, Master Dissertation. Polach FJ, Webseter RK, 1972. Identification of strains and inheritance of pathogenicity in Phytophthora capsici. Phytopathology 62, 20-6. Reifschneider FJB, Cafe-filho AC, Rego AM, 1986. Factors affecting expression of resistance in pepper (Capsicum annuum) to blight caused by Phytophthora capsici in screening trials. Plant Pathology 35, 451-6. Ristaino JB, Johnston SA, 1999. Ecologically based approaches to management of phytophthora Blight on Bell Pepper. Plant Disease 83, 1080-9. Russell PE, 1995. Fungicide resistance: occurrence and management. The Journal of Agricultural Science (Camb.) 124, 317-23. Satour MM, 1967. Rape seed extract agar: Anew medium for production and detection of oospores of heterothallic species of Phytophthora. Mycologia 59, 161-6. Sheu ZM, Chen JR, Wang TC, 2009. First Report of the A2 Mating Type of Phytophthora capsici infecting Peppers (Capsicum annuum) in Taiwan. Plant Disease 93, 548. Sheu ZM, Ho FI, Chen YS, Wang CW, Wang TC, Black LL, 2004. Characterization of Phytophthora capsici isolates associated with pepper phytophthora blight in Taiwan. Plant Pathology Bulletin13, 341. (in Chinese). Silvar C, Duncan JM, Cooke DEL, Williams NA, Diaz J, Merino F, 2005. Development of specific PCR primers for identification and detection of Phytophthora capsici Leon. European journal of Plant Pathology 112, 43-52. Silvar C, Merino F, Díaz J, 2006. Diversity of Phytophthora capsici in northwest Spain: Analysis of virulence, metalaxyl response, and molecular characterization. Plant Disease 90, 1135-42. Sneh B, Dupler M, Elad Y, bake R, 1984. Chlamydospore germination of Fusarium oxysporum f. sp. cucumerinum as affected by fluorescent and lytic bacteria from Fusarium-suppressive soil. Phytopathology 74, 1115-24. Sy O, Steiner R, Bosland PW, 2008. Recombinant inbred line differential identifies race-specific resistance to phytophthora root rot in Capsicum annuum. Phytopathology 98, 867-70. Vanderplank JE, 1968. Disease resistance in plants. Academic press, New York. Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M, 1995. AFLP: a new technique for DNA fingerprinting Nucleic Acids Research 23, 4407-14. Walker SJ, Bosland PW, 1999. Inheritance of Phytophthora root rot and foliar blight resistance in pepper. Journal of the American Society for Horticultural Science 124, 14-8. Wang TC, Chen CH, Perez F, Deahl KL, 2005. Monitoring Phytophthora infestans in Taiwan for population shifts that may affect late blight management strategies. 194-201. Symposium on Taiwan-America agricultural cooperative projects. Publisher: Agricultural Research Institute, Council of Agriculture, Taiwan ROC. Yang XB, Ruff RL, Meng XQ, Workneh F, 1996. Race of Phytophthora sojae in Iowa soybean fields. Plant Disease 80, 1418-20. 王添成。1998。蔬菜抗病篩選技術。399頁。蔬菜育種技術研習會專刊。台灣省農業試驗所編印。台中縣。 黃振文、孫守恭。1998。蔬菜病害彩色圖鑑 第二輯 蔬菜病害。138頁。世維出版社。台中市。 蕭吉雄、楊偉正、王三太。1998。蔬菜抗病育種。399 頁。蔬菜育種技術研習會專刊。台灣省農業試驗所編印。台中縣。 費雯綺、王喻其。2007。甜椒疫病。884頁。植物保護手冊。行政院農業委員會農業藥物毒物試驗所編印。台中縣。 AVRDC, 1997. Host resistance to phytophthora blight. AVRDC report 1996, 58-9. AVRDC, 1998. Pepper resistance to phytophthora blight. AVRDC report 1997, 53-4. AVRDC, 1999. Studies on phytophthora blight in pepper. AVRDC report 1998, 25-7. AVRDC, 2000. Generation and RAPD verification of Capsicum interspecific hybrids for developing anthracnose resistant peppers. AVRDC Report 1999, 18-9. AVRDC, 2001. RAPD analysis of F2 progenies of interspecific pepper hybrization. AVRDC Report 2000, 16-7. AVRDC, 2009. Year in Review 2008, 70. Barksdale TH, Papavizas GS, Johnston SA, 1984. Resistance to foliar blight and crown rot of pepper caused by Phytophthora capsici. Plant Disease 68, 506-9. Chung WS, Black LL, 1997. Evidence for pepper pathotypes in Phytophthora capsici in Taiwan. Phytopathology 87, s19. Crosby KM, 2008. Pepper. In. Vegetable II. Springer Science+Business Media, LLC, New York, USA. French-Monar RD, Jones JB, Roberts PD, 2006. Characterization of Phytophthora capsici associated with roots of weeds on Florida vegetable farms. Plant Disease 90, 345-50. Glosier BR, Ogundiwin EA, Sidhu GS, Sischo DR ,Prince JP, 2008. A differential series of pepper (Capsicum annuum) lines delineates fourteen physiological races of Phytophthora capsici. Euphytica 162, 23-30. Gonzalez J, 2003. The inheritance and genetic relationships of the resistance to Phytophthora capsici in two chili pepper (Capsicum annuum) genotypes. M.Sc. Thesis, Texas A & M University, College station. Hwang BK ,Kim CH, 1995. Phytophthora blight of pepper and its control in Korea. Plant Disease, 221-7. Hwang BK, Kim YJ, Kim CH, 1996. Differential interactions of Phytophthora capsici isolates with pepper genotypes at various plant growth stages. European journal of Plant Pathology 102, 311-6. Kimble KA , Grogan RG, 1960. Resistance to Phytophthora root rot in peppers. Plant Disease 44, 872-3. Lamour KH, Hausbeck MK, 2003. Effect of crop rotation on the survival of Phytophthora capsici in Michigan. Plant Disease 87, 841-5. Lefebvre V, Palloix A, 1996. Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease: a case study, the interaction pepper-Phytophthora capsici Leonian. Theoretical and Applied Genetics 93, 503-11. Lu LS, Kao CW, 1981. Pepper blight induced by Phytophthora capsici. Plant Protection Bulleint 23, 59-66. (in chinease) Oelke LM, Bosland PW, Steiner R, 2003. Differentation of race specific resistance to Phytophthora root rot and foliar blight in Capsicum annuum. Journal of the American Society for Horticultural Science 128, 213-8. Ortega RG, Palazon-Espanol C, Cuartero-Zueco J, 1991. Genetics of resistance to Phytophthora capsici in the pepper line ''SCM-334''. Plant Breeding 107, 50-5. Reifschneider FJB, Boiteux LS, Della Vecchia PT, Poulos JM, Kuroda N, 1992. Inheritance of adult-plant resistance to Phytophthora capsici in pepper. Euphytica 62, 45-9. Ristaino JB, Johnston SA, 1999. Ecologically based approaches to management of phytophthora blight on bell pepper. Plant Disease 83, 1080-9. Saini SS , Sharma PP, 1978. Inheritance of resistance to fruit rot (Phytophthora capsici Leon.) and induction of resistance in bell pepper (Capsicum annuum L.) Euphytica 27, 721-3. Smith PG, Kimble KA, Grogan RG, Millett AH, 1967. Inheritance of resistance in peppers to phytophthora root rot. Phytopathology 57, 377-9. Silvar C, Merino F, Díaz J, 2006. Diversity of Phytophthora capsici in northwest Spain: Analysis of virulence, metalaxyl response, and molecular characterization. Plant Disease 90, 1135-42. Sy O, Steiner R, Bosland PW, 2008. Recombinant inbred line differential identifies race-specific resistance to phytophthora root rot in Capsicum annuum. Phytopathology 98, 867-70. | 摘要: | 番椒疫病 (Phytophthora blight) 由Phytophthora capsici L. 所引起,是全球番椒 生產的主要限制因子之一。已有學者利用不同基因型 (genotype) 的番椒品種/品系 做為鑑別寄主 (differential host),鑑定病原菌的病原型,目前對番椒疫病菌病原型 的鑑定已普遍應用於抗病育種上。台灣自 2007 年陸續於茄子、番茄和番椒中分離 到番椒疫病菌 A2 配對型菌株。滅達樂是防治此病害的主要化學藥劑,在台灣以滅 達樂相關藥劑防治卵菌綱病原菌所造成的病害已超過 20 年的歷史。進行這個研究 的目的是1.) 要瞭解台灣番椒疫病菌株的生物特性,包括病原型、配對型的特性和 對滅達樂的感受性,2.) 篩選抗病品種,包括篩選抗病種原和評估亞蔬高級品系的 抗性。此研究利用四種不同基因型的番椒品種/品系 Early Calwonder、PBC 137、PBC 602 sel 和 PI 201234 做為鑑別寄主,以根部及培養土澆灌方式接種後,將自台灣 蒐集的番椒疫病菌共區分為 3 個不同的病原型,即病原型 1、2 和 3,目前在台 灣以病原型 3 的菌株為毒力最強且優勢的族群。病原型 3 的菌株在 PDA 和 V8 培養基平板上培養的生長速度都比病原型 1 和 2 緩慢。病原型 1 菌株的孢囊比 病原型 2 和 3 菌株的孢囊小而且圓。病原型 1 的孢囊平均為 43±3 × 33±2 μm, 長寬比值為 1.3±0.06;病原型 2 的孢囊平均為 50±6 × 35±5 μm,長寬比值為 1.4±0.09;病原型 3 的孢囊平均為 49±4 × 33±3 μm,長寬比值為 1.5±0.15。利用分 子檢測技術鑑定病原型,以 P. capsici 誘導蛋白設計引子對 (PcE/PcER) 進行聚合酶連鎖反應和增幅片段長度多形性分析 P. capsici 不同病原型之核酸多形性的結果,可將供試菌株明顯地區分為 2 個分子群,分子群 1 為病原型 1,分子群 2 為病原型 2 和 3。進行台灣番椒疫病菌株 A1 和 A2 配對型之特性比較,結果顯示A2 配對型菌株在 PDA 及 V8 平板上培養的生長速度皆比 A1 配對型菌株緩慢;A2 配對型菌株於 36℃ 高溫下仍能生長、孢囊較 A1 配對型的孢囊大 (A2 配對型的孢囊平均為 50±3 x 31±2 μm; A1 配對型的孢囊平均為 47±5 x 35±3 μm) 且狹長 (A2 配對型的長/寬比值為 1.6±0.07;A1 配對型的長/寬比值為 1.4±0.08)。 A2 配對型菌株只有病原型 2 及 3,常造成較嚴重的罹病度,而目前田間番椒疫病菌株以 A1 配對型為較優勢之族群。評估台灣番椒疫病菌對滅達樂的感受性之檢測結果,得知台灣大部分番椒疫病菌對滅達樂感受性屬敏感性 (68.7%)。另將所有菌株區分為 2008 年以前收集的菌株與 2008 當年收集的菌株進行比較,菌株對滅達 樂的抗性有大幅提升的趨勢,百分率由 3 % 提升至 43.4 %。測試三種病原型對滅達樂感受性,則以病原型 1 菌株 (66.7%) 較抗滅達樂。若另以 2008 年收集的菌株區分為 A1 和 A2 配對型菌株進行評估,55.3 % A1 配對型菌株具抗藥性,A2配對型菌株則只有 13.3 % 具抗藥性,這顯示 A2 配對型菌株對滅達樂較敏感。本 次篩選抗病種原之研究是由亞蔬-世界蔬菜中心種原組 (Genetic resources and seed unit; GRSU) 提供 5 個不同種 (Capsicum baccatum、C. chacoense、C. chinense、C. frutescens 和 C. pubescens) 的野生番椒及一個栽培種 C. annuum 總共 785 個種原 (accession)。全部種原均以根部及培養土澆灌方法接種疫病菌進行篩選,獲得野生番椒 C. frutescens 的 1 個種原 TC05415 之抗病植株子代抗病百分率達94 % 以上。其次評估亞蔬高級番椒品系之抗病性,由亞蔬-世界蔬菜中心番椒育種組(pepper unit) 提供 75 個高級品系也同樣進行根部及培養土澆灌接種疫病菌,結果篩選獲得 6 個高級品系之子代(F8),抗病百分率達 87.5 % 以上,其中 7 個子代抗病百分率仍維持在 100 %。在本試驗篩選得到的抗病種原,可以提供番椒育種單位作為抗病育種的親本,而篩選的高抗病性之高級品系則可經由區域試驗檢測其抗病穩定性及園藝性狀,以作為未來推廣達到防治疫病之目的。目前田間番椒疫病菌株以病原型3 為較優勢族群,2008 年番椒疫病菌A2 配對型菌株的出現對番椒所造成的影響到目前尚未完全了解,然而A2 配對型菌株較能耐高溫、產生較多的游走孢子、且造成較嚴重的罹病度,對台灣的番椒可能造成嚴重危害。A1 和A2 配對型菌株行有性繁殖,基因重組使其遺傳特性更趨複雜,將使未來防治這個病害更加得困難,顯示對病原菌族群變化的監視、加強抗病種原的篩選與培育抗病品種是刻不容緩的工作。 Phytophthora blight of pepper (Capsicum spp.) caused by Phytophthora capsici L. is one of the major limiting factor of pepper production worldwide. Several reports had identified the existence of pathogenic specificity of P. capsici on peppers. Pathotypes are determined by the pathogen reaction to a set of differential hosts. The identification of the pathotype of P. capsici has been commonly used the breeding program for disease resistance. Our previous studies indicated that only the A1 mating type isolates of P. capsici was found in Taiwan befoe 2007. The A2 mating type isolates were found on tomato, eggplant and pepper since 2007. Metalaxyl related chemicals have been used in the control of many different oomycete pathogens more than 20 years in Taiwan. The objectives of this study are: i.) To understand the characteristics of P. capsici on pepper in Taiwan including the characterizations of pathotype, mating type and in vitro assessment of metalaxyl sensitivity and ii.) To screen the resistance variety from wild peppers and to evaluate the resistance of AVRDC advanced lines for disease control. Four pepper varieties/lines, Early Calwonder, PBC 137, PBC 602 sel and PI 201234, were used as indicator plants to classify all of P. capsici isolates into three pathotypes, type1, 2 and 3. Pathotype 3 showed the highest virulence and was the predominant population in Taiwan. The growth rate of pathotpe 3 was slowler than pathotype 1 and 2 on both PDA and V8 plates. Pathotype 1 isolates produced small and round sporangia (43±3 × 33±2 μm, L/B: 1.3±0.06). The sporangia of pathotype 2 were 50±6 × 35±5 μm, L/B: 1.4±0.09, while those of pathotype 3 were 49±4 × 33±3 μm, L/B: 1.5±0.15. Pathotype 1 was significantly different from pathotype 2 and 3 based on PCR polymorphisms using primers from P. capsici elicitin and AFLP analysis. The comparison of the difference of morphology, zoospore productivity, growth rate, pathogenicity between A1 and A2 mating type isolates of P. capsici showed that the growth rate of the A2 mating type isolates was slower than A1 mating type in both PDA and V8 plates. The A2 mating type isolates produced larger and oval sporangia (50±3 x 31±2 um; L/B: 1.6), and grew even at 36℃. These isolates caused more severe disease because they belonged to either pathotype 2 or 3. A1 mating type was the predominant type in Taiwan. In vitro assessment of metalaxyl sensitivity of P. capsici isolates indicated that 68.7 % of the isolates were classified as sensitive. The only 3 % isolates collected before 2008 were resistant to metalaxyl, while 43.4 % of those collected in 2008 were resistant to metalaxyl. Most pathotype 1 isolates (66.7 % resistant) were resistant to metalaxyl than pathotype 2 and 3 isolates (7.0 % and 15.1 % respectively). More A2 mating type isolates (13.3% resistant) were sensitive to metalaxyl than A1 isolates (55.3% resistant). Resistance screening of wild germplasms collected from GRSU (Genetic resources and seed unit) of AVRDC and evaluation of resistance in AVRDC advanced lines by root-drench noculation were conducted. One wild accessions of TC05415 in Capsicum frutescens showing resistant percentage higher than 94 % were selected. Six progeny lines (F8) of AVRDC advanced lines exhibited resistant percentage higher than 87.5% and 7 progeny lines of AVRDC advanced lines exhibiting 100 % resistance were selected. The resistant accessions can be used as the resistant parent in the breeding program for disease resistance. Those resistant advanced lines will be evaluated for durable resistance and horticultural traits for the future extension. The impact of the occurrence of the A2 mating type on peppers is not yet clear in Taiwan because it first appeared only in 2008. However, the A2 mating type isolates with tolerance to high temperature and ability to produce more zoospores as well as the genetic variation followed by sexual recombination between A1 and A2 mating types may lead to the difficulties of disease control in the future. Therefore, it's important to monitor the population shift of P. capsici and develop the resistant varieties of pepper for the effective control of phytophthora blight. |
URI: | http://hdl.handle.net/11455/31375 | 其他識別: | U0005-3107200915020200 |
Appears in Collections: | 植物病理學系 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.