Please use this identifier to cite or link to this item:
標題: 十字花科黑腐病病菌第三型分泌系統之 effectors 的功能分析
Functional characterization of Xanthomonas campestris pv. campestris type III secretion system effectors
作者: 吳哲嘉
Wu, Je-Jia
關鍵字: Xanthomonas campestris pv. campestris;Xanthomonas campestris pv. campestris;X. campestris pv. raphani;heterologous expression;type III secretion system;effectors;type IV pili;X. campestris pv. raphani;異源表現;第三型分泌系統;effectors;第四型纖毛
出版社: 植物病理學系所
引用: Wu, Y. F., Chen, S. C., Huang, S. H., and Cheng, A. S. 2007. 台灣首次報導引起十字花科蔬菜細菌性斑點病之Xanthomonas campestris pv. raphani. Plant Pathol. Bull. 16: 87-90. Arlat, M., Gijsegem, F. V., Huet, J. C., Pernollet, J. C., and Boucher, C. A. 1994. PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J. 13: 543-553. Bahar, O., Goffer, T., and Burdman, S. 2009. Type IV pili are required for virulence, twitching motility, and biofilm formation of Acidovorax avenae subsp. citrulli. Mol. Plant-Microbe Interact. 22: 909-920. Bartetzko, V., Sonnewald, S., Vogel, F., Hartner, K., Stadler, R., Hammes, U. Z., and Bornke, F. 2009. The Xanthomonas campestris pv. vesicatoria type III effector protein XopJ inhibits protein secretion: Evidence for interference with cell wall-associated defense responses. Mol. Plant-Microbe Interact. 22: 655-664. Block, A., Li, G. Y., Fu, Z. Q., and Alfano, J. R. 2008. Phytopathogen type III effector weaponry and their plant targets. Curr. Opin. Plant Biol. 11: 396-403. Castaneda, A., Reddy, J. D., El-Yacoubi, B., and Gabriel, D. W. 2005. Mutagenesis of all eight avr genes in Xanthomonas camplestris pv. campestris had no detected effect on pathogenicity, but one avr gene affected race specificity. Curr. Opin. Plant Biol. 18: 1306-1317. Chen, Y. J. 2009. Functional analysis of avrBs2 from Taiwan-isolated Xanthomonas vesicatoria Xvt147. Department of Plant Pathology. Taichung, Taiwan, National Chung Hsing University Master: 52. Chen, L. Q., Hou, B. H., Lalonde, S., Takanaga, H., Hartung, M. L., Qu, X. Q., Guo, W. J., Kim, J. G., Underwood, W., Chaudhuri, B., Chermak, D., Antony, G., White, F. F., Somerville, S. C., Mudgett, M. B., and Frommer, W. B. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468: 527-535. Chosed, R., Tomchick, D. R., Brautigam, C. A., Mukherjee, S., Negi, V. S., Machius, M., and Orth, K. 2007. Structural analysis of Xanthomonas XopD provides insights into substrate specificity of ubiquitin-like protein proteases. J. Biol. Chem. 282: 6773-6782. Christen, M., Christen, B., Folcher, M., Schauerte, A., and Jenal, U. 2005. Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J. Biol. Chem. 280: 30829-30837. Darsonval, A., Darrasse, A., Durand, K., Bureau, C., Cesbron, S., and Jacques, M. A. 2009. Adhesion and fitness in the bean phyllosphere and transmission to seed of Xanthomonas fuscans subsp. fuscans. Mol. Plant-Microbe Interact. 22: 747-757. Dow, J. M., Crossman, L., Findlay, K., He, Y. Q., Feng, J. X., and Tang, J. L. 2003. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl. Acad. Sci. USA 100: 10995-11000. Fargier, E., and Manceau, C. 2007. Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol. 56: 805-818. Feil, H., Feil, W. S., and Lindow, S. E. 2007. Contribution of fimbrial and afimbrial adhesins of Xylella fastidiosa to attachment to surfaces and virulence to grape. Phytopathology 97: 318-324. Fu, Z. Q., Guo, M., Jeong, B. R., Tian, F., Elthon, T. E., Cerny, R. L., Staiger, D., and Alfano, J. R. 2007. A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447: 284-289. Gurlebeck, D., Thieme, F., and Bonas, U. 2006. Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. J. Plant Physiol. 163: 233-255. He, S. H., Huang, H. C., and Collmer, A. 1993. Pseudomonas syringae pv. syringae harpin: A protein that is secreted via the hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255-1266. Hotson, A., Chosed, R., Shu, H. J., Orth, K., and Mudgett, M. B. 2003. Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol. Microbiol. 50: 377-389. Hotson, A., and Mudgett, M. B. 2004. Cysteine proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity. Curr. Opin. Plant Biol. 7: 384-390. Jiang, W., Jiang, B. L., Xu, R. Q., Huang, J. D., Wei, H. Y., Jiang, G. F., Cen, W. J., Liu, J., Ge, Y. Y., Li, G. H., Su, L. L., Hang, X. H., Tang, D. J., Lu, G. T., Feng, J. X., He, Y. Q., and Tang, J. L. 2009. Identification of six type III effector genes with the PIP box in Xanthomonas campestris pv. campestris and five of them contribute individually to full pathogenicity. Mol. Plant-Microbe Interact. 22: 1401-1411. Jones, D. G., and Dang, J. L. 2006. The plant immune system. Nature 444: 323-329. Kang,Y., Liu, H., Genin, S., Schell, M. A., and Denny, T. P. 2002. Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol. Microbiol. 2: 427-437. Kay, S., Hahn, S., Marois, E., Hause, G., and Bonas, U. 2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318: 648-651. Kay, S., Hahn, S., Marois, E., Wieduwild, R., and Bonas, U. 2009. Detailed analysis of the DNA recognition motifs of the Xanthomonas type III effectors AvrBs3 and AvrBs3 Kim, J. G., Taylor, K. W., Hotson, A., Keegan, M., Schmelz, E. A., and Mudgett, M. B. 2008. XopD SUMO protease affects host transcription, promotes pathogen growth, and delays symptom development in Xanthomonas-infected tomato leaves. Plant Cell 20: 1915-1929. Leyns, F., De Cleene, M., Swings, J., and De Ley, J. 1984. The host range of the genus Xanthomonas. Bot. Rev. 50: 305-355. Li, Y., Hao, G., Galvani, C. D., Meng, Y., Fuente, L. D. L., Hoch, H. C., and Burr, T. J. 2007. Type I and type IV pili of Xylella fastidiosa affect twitching motility, biofilm formation and cell-cell aggregation. Microbiology 153: 719-726. Liu, H., Kang, Y., Genin, S. P., Schell, M. A., and Denny, T. P. 2001. Twitching motility of Ralstonia solanacearum requires a type IV pilus system. Microbiology 147: 3215-3229. Meng, Y., Li, Y., Galvani, C. D., Hao, G., Turner, J. N., Burr, T. J., and Hoch, H. C. 2005. Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J. Bacteriol. 187: 5560-5567. Paul, R., Weiser, S., Amiot, N. C., Chan, C., Schirmer, T., Giese, B., and Jenal, U. 2004. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev. 18: 715-727. Proft, T., and Baker, E. N. 2009. Pili in Gram-negative and Gram-positive bacteria-structure, assembly and their role in disease. Cell. Mol. Life Sci. 66: 613-635. Romer, P., Hahn, S., Jordan, T., Strauss, T., Bonas, U., and Lahaye, T. 2007. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318: 645-648. Ryan, R. P., Fouhy, Y., Lucey, J. F., Jiang, B. L., He, Y. Q., Feng, J. X., Tang, J. L., and Dow, J. M. 2007. Cyclic di-GMP signalling in the virulence and environmental adaptation of Xanthomonas campestris. Mol. Microbiol. 63: 429-442. Ryjenkov, D. A., Tarutina, M., Moskvin, O. M., and Gomelsky, M. 2005. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: Insights into biochemistry of the GGDEF protein domain. J. Bacteriol. 187: 1792-1798. Schmidt, A. J., Ryjenkov, D. A., and Gomelsky, M. 2005. The ubiquitous protein domain EAL encodes cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J. Bacteriol. 187: 4774-4781. Soto, G. E., and Hultgren, S. J. 1999. Bacterial adhesins: Common themes and variations in architecture and assembly. J. Bacteriol. 181: 1059-1071. Tamayo, R., Tischler, A. D., and Camilli, A. 2005. The EAL domain protein VieA is a cyclic diguanylate phosphodiesterase. J. Biol. Chem. 280: 33324-33330. Tang, X. Y., Xiao, Y. M., and Zhou, J. M. 2006. Regulation of the type III secretion system in phytopathogenic bacteria. Mol. Plant-Microbe Interact. 19: 1159-1166. Thieme, F., Szczesny, R., Urban, A., Kirchner, O., Hause, G., and Bonas, U. 2007. New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol. Plant-Microbe Interact. 20: 1250-12561. Van Doorn, J., Boonekamp, P., and Oudega, B. 1994. Partial characterization of fimbriae of Xanthomonas campestris pathovar hyacinthi. Mol. Plant-Microbe Interact. 7: 334-344. Wei, Z. M., Laby, R. J., Zumoff, C. H., Bauer, D. W., He, S. Y., Collmer, A., and Beer, S. V. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88. Zipfel, C. 2009. Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol. 12: 414-420.
Xanthomonas campestris pv. campestris (Xcc) 與 X. campestris pv. raphani (Xcr) 為造成台灣十字花科蔬菜細菌性病害之 X. campestris 的兩個病原小種,分別可在寄主植物的葉片上造成系統性之黑腐病與非系統性的斑點病,此外,Xcr 可感染茄科植物之蕃茄、甜椒,但不能感染十字花科之辣根,故比較不同植物之感染能力已成為Xcc 與 Xcr 的鑑別依據之一,而根據寄主範圍與病徵型態分析,已將前人分離之辣根細菌性葉斑病菌 X. campestris pv. armoraciae 756C 重新歸類為 Xcr 756C (Fargier and Manceau, 2007, Plant Pathol. 56: 805 - 818)。Xanthomonas 屬病原細菌感染植物過程中常以黏附素 (adhesin) 附著於植物表面、伺機從自然開口入侵至細胞間隙,再藉由第三型分泌系統 (type III secretion system,T3SS) 將 effector 蛋白 (T3Es) 送入植物細胞中干擾植物的防禦反應以利其侵染寄主。比對 X. campestris pv. armoraciae 756C 與 X. campestris pv. campestris ATCC33913 全基因體序列後得知兩者具有不同的 t3es 組合,推測 Xcr 與 Xcc 之寄主範圍與病徵型態差異可能與其帶有的 t3es 有關。由於前人以 loss-of-function 的策略分析 T3Es 功能時,常無法分辨 t3e 缺損之突變菌株與野生型菌株在致病能力上的差異,因此本研究採用 gain-of-function 的策略,於台灣分離之 Xcr 菌株 cxsp3 中分別表現 Xcc 之 avrBs2Xcc17、avrXccE1Xcc100、avrXccBXcc17 及 xopQXcc17 等t3es 並分析其 in vitro 與 in planta 表現型。研究中發現液態培養於 NYG broth 中之 Xcr cxsp3 (pCHUB247) (avrXccE1+)、Xcr cxsp3 (pCHUB248) (avrXccB+) 及 Xcr cxsp3 (pCHUB249) (xopQ+) 均可產生明顯的細胞凝聚現象。以穿透式電子顯微鏡觀察上述三株轉型菌株後發現菌體兩極著生許多長絲狀 pili,菌體間之 pili 會相互纏繞、集結成束而形成細菌群集,且其生物膜生合成能力與 twitching motility 亦較對照組 Xcr cxsp3 (pBBR1MCS-5) 或異源表現 avrBs2Xcc17 之 Xcr cxsp3 轉型菌株低。根據定量 RT-PCR 之結果,推測 Xcr cxsp3 大量表現 avrXccE1、avrXccB 及 xopQ 後可能降低 pilT 轉錄而使菌體呈現 hyperpiliation,但 Xcr cxsp3 (pCHUB246) (avrBs2+) 則因 pilA 的表現量提高而出現細菌群集能力低、生物膜生合成能力與 twitching motility 高於其它菌株的表現型;定量 RT-PCR 之結果顯示 Xcr cxsp3 表現 avrBs2、avrXccE1、avrXccB 及 xopQ 後可能會影響細菌第四型纖毛基因的表現並進而改變 in vitro 培養時轉型菌株的細胞型態,但此 4 個 effectors 與細菌調控第四型纖毛基因表現之關聯性仍有待證實。分析轉型菌株之致病能力時,發現將上述 4 轉型菌株接種至甘藍葉片二天後即可誘發病徵產生,且 Xcr cxsp3 表現 avrBs2、avrXccE1 及 xopQ 之轉型菌株在甘藍葉片中的生長量與野生型菌株無明顯差異,僅有表現 avrXccBXcc17 之Xcr cxsp3 (pCHUB248) 在甘藍葉片中的生長量高於對照組及其它轉型菌株,顯示 Xcc AvrXccB 可促進 Xcr cxsp3在甘藍葉片中之生長;此外,將上述 4 個 Xcc t3es 以 Agrobacterium-mediated transient expression 表現在番茄 (Solanum lycopersicum cv. Farmers 301) 葉肉細胞中,2 天後測量接種葉的導電度,發現番茄接種葉短暫表現 xopQ 後之導電度明顯高於對照組與短暫表現 avrXccB 之接種葉,顯示 Xcc XopQ 可誘發番茄葉肉細胞的凋亡路徑 (programmed cell death)。本研究以異源表現策略分析 4 個 Xcc T3Es 後得知 Xcc AvrXccB 可促進 Xcr cxsp3 在甘藍葉片中之生長,而 Xcc XopQ 可誘發番茄葉肉細胞凋亡,故此方法應可用於分析其他功能未知的 T3Es 在病原細菌致病過程中對植物的影響。

Xanthomonas campestris pv. campestris (Xcc) and X. campestris pv. raphani (Xcr) are the causal agents of black rot and bacterial spot diseases on cruciferous plants. Xcc infects plants belonging to the Brassicaceae family, whereas Xcr infects plants in Brassicaceae and tomato and pepper of the Solanaceae family. Xcr is not a pathogen of cruciferous horseradish (Armoracia rusticana), which serves as a diagnostic index for differentiating Xcr from X. campestris pv. armoraciae (Xca) and reclassifies Xca 756C to Xcr 756C (Fargier and Manceau, 2007, Plant Pathol. 56: 805 - 818). Plant-pathogenic xanthomonads attach to the aerial surfaces of plants with extracellular adhesins for subsequent invasion. Once residing in the apoplast, the bacteria synthesize the type III secretion system (T3SS) to deliver the type III system effectors (T3Es) into plant cells to interfere with plant defense signaling pathways and to obtain nutrients from host cells. Whole-genome comparisons of Xcc ATCC33913 and Xcr 756C reveal that the 2 bacteria harbor different repertoires of T3Es, which might be collectively involved in plant-microbe interactions to elicit various plant responses in different plants. To address the functions of T3Es in bacterial pathogenesis, the approaches of loss-of-function by mutation and gain-of-function by overexpression are frequently applied. Previous researchers characterized Xcc T3Es by genetic disruption and showed that the mutant strains exhibited wild type-like phenotypes in symptom production and bacterial multiplication in planta. In this study, the gain-of-function approach is employed to examine the functions of Xcc T3Es. Four of the Xcc T3Es, i.e. avrBs2Xcc17, avrXccE1Xcc100, avrXccBXcc17, and xopQXcc17, that are not found in the genome of Xcr 756C are selected and heterologously expressed in Xcr cxsp3. In comparison with Xcr harboring vector pBBR1MCS-5, Xcr transformants expressing avrXccE1, avrXccB, and xopQ show reduced biofilm formation and twitching motility, whereas avrBs2-expressing Xcr exhibits the opposite phenotypes, including increased biofilm formation and enhanced twitching motility. In contrast to the few clustered cells of the avrBs2-expressing transformant, the 3 Xcr transformants expressing avrXccE1, avrXccB, and xopQ grow and form large clusters in NYG broth. The cellular aggregation is likely due to the synthesis of long, tangled pili that are readily seen on the bacterial surfaces under transmission electron microscope. Results of quantitative RT-PCR reveal that the transcription of pilT is reduced in the hyperpiliated transformants expressing avrXccE1, avrXccB, and xopQ, and the transcription of pilA in avrBs2-expressing Xcr is greatly increased, indicating the expression of the type IV pili biogenesis genes in Xcr is affected by the ectopic expression of the 4 Xcc T3S effectors. The question of how the 4 Xcc T3Es modulate the type IV pili biogenesis in Xcr remains to be elucidated. To test if avrBs2, avrXccE1, avrXccB, and xopQ have virulent functions, the 4 T3Es-expressing Xcr transformants are infiltrated to cabbage leaves for scoring symptom development and bacterial multiplication. Our results show that wild-type Xcr harboring vector pBBR1-MCS5 and the 4 transformants elicit necrotic symptom at 2 days post inoculation. Meanwhile, the population of avrXccB-expressing Xcr increases 3.5 logs, and the rest of the strains have an increment of 2 logs in 2 days, suggesting that Xcc AvrXccB may promote bacterial growth in cabbage through an unknown mechanism. In addition, Agrobacterium- mediated transient expression of the 4 Xcc T3Es in tomato (Solanum lycopersicum cv. Farmers 301) leaves reveals that the expression of xopQ in tomato mesophyll cells causes ion leakage. The high conductivity of leaf disks harvested from the xopQ-infiltrated leaves reveals that Xcc XopQ could induce programmed cell death in tomato cells. Taken together, the results of ectopic-expressing Xcc T3Es show that AvrXccB promotes Xcr growth in cabbage, and XopQ acts as an avirulent protein in tomato. The application of heterologous expression in planta and in closely related recipient strains has a great potential to identify the roles of functionally unknown T3Es in the pathogenesis of bacterial diseases.
其他識別: U0005-1002201117072800
Appears in Collections:植物病理學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.