Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorLin, Chi-Puen_US
dc.identifier.citation六、 參考文獻 1. Y. H. Wang, K. Nishida, M. Hutter, T. Kimura, and T. Suga, “Low-Temperature Process of Fine-Pitch Au–Sn Bump Bonding in Ambient Air”, Japanese Journal of Applied Physics, Vol. 46, pp. 1961-1967 (2007). 2. J. L. Fang, “New Technology of Surface Treatment in 21 Century”, Surface Technology, Vol. 34, pp. 1-5 (2005). 3. J. L. Fang and D. K. Chan, “The Advantages of Mildly Alkaline Immersion Silver as a Final Finish for Solderability”, Circuit World, Vol. 33, pp. 43–51 (2007). 4. NASA Goddard Space Flight Center Tin Whisker (and Other Metal Whisker) Homepage, website (2006). 5. 白蓉生,電路板與無鉛焊接,台灣電路板產業學院 (2006)。 6. M. Goosey, “Factors Influencing the Formation of “Black Pad” in Electroless Nickel-Immersion Gold Solderable Finishes—a Processing Perspective”, Circuit World, Vol. 28, pp. 36–39 (2002). 7. P. Snugovsky, P. Arrowsmtth, and M. Romansky, “Electroless Ni/Immersion Au Interconnects: Investigation of Black Pad in Wire Bonds and Solder Joints”, Journal of Electronic Materials, Vol. 30, pp. 1262–1270 (2001). 8. P. Thompson, D. R. Frear, J. W. Jang, P. G. Kim, and K. N. Tu, “Solder Reaction-Assisted Crystallization of Electroless Ni–P Under Bump Metallization in Low Cost Flip Chip Technology”, Journal of Applied Physics, Vol. 85, pp. 8456–8463 (1999). 9. J. W. Yoon, H. S. Chun, and S. B. Jung, “Investigation of Interfacial Reaction and Joint Reliability Between Eutectic Sn–3.5Ag Solder and ENIG-Plated Cu Substrate During High Temperature Storage Test”, Journal of Materials Science-Materials in Electronics, Vol. 18, pp. 559–567 (2007). 10. C. E. Ho, R. Zheng, G. L. Luo, A. H. Lin, and C. R. Kao, “Formation and Resettlement of (AuxNi1–x)Sn4 in Solder Joints of Ball-Grid-Array Packages with the Au/Ni Surface Finish”, Journal of Electronic Materials, Vol. 29, pp. 1175–1181 (2000). 11. J. W. Yoon and S. B. Jung, “Effect of Immersion Ag Surface Finish on Interfacial Reaction and Mechanical Reliability of Sn–3.5Ag–0.7Cu Solder Joint”, Journal of Alloys and Compounds, Vol. 458, pp. 200–207 (2008). 12. G. Ghosh, “Diffusion and Phase Transformations During Interfacial Reaction Between Lead-Tin Solders and Palladium”, Journal of Electronic Materials, Vol. 27, pp. 1154–1160 (1998). 13. K. Masui and M. Kajihara, “Influence of Pd on Kinetics of Solid-State Reactive Diffusion Between Sn and Ni”, Journal of Alloys and Compounds, Vol. 485, pp. 144–149 (2009). 14. S. P. Peng, W. H. Wu, C. E. Ho, and Y. M. Huang, “Comparative Study Between Sn37Pb and Sn3Ag0.5Cu Soldering with Au/Pd/Ni(P) Tri-Layer Structure”, Journal of Alloys and Compounds, Vol. 493, pp. 431–437 (2010). 15. W. H. Wu, C. S. Lin, S. H. Huang, and C. E. Ho “Influence of Palladium Thickness on the Soldering Reactions Between Sn-3Ag-0.5Cu and Au/Pd(P)/Ni(P) Surface Finish”, Journal of Electronic Materials, Vol. 39, pp. 2387–2396 (2010). 16. Y. W. Yen, P. H. Tsai, Y. K. Fang, S. C. Lo, Y. P. Hsieh, C. Lee, “Interfacial Reactions on Pb-Free Solders with Au/Pd/Ni/Cu Multilayer Substrates”, Journal of Alloys and Compounds, Vol. 503, pp. 25–30 (2010). 17. 陳信文、陳立軒、林永森、陳志銘,電子構裝技術與材料,高立圖書 (2004)。 18. B. M. Chung, K. K. Hong, and J. Y. Huh, “Decomposition of Cu6Sn5 Particles in Solder for the Growth of a Ternary (Cu1-xNix)6Sn5 Layer on a Ni Substrate”, Metals and Materials International, Vol. 15, pp. 487–492 (2009). 19. Binary alloy phase diagrams, ed. T. B. Massalski, (Materials Park, OH: ASM Intl., (1990). 20. F. Guo, J. Lee, S. Choi, J. P. Lucas, T. R. Bieler, and K. N. Subramanian, “Processing and Aging Characteristics of Eutectic Sn-3.5Ag Solder Reinforced with Mechanically Incorporated Ni Particles”, Journal of Electronic Materials, Vol. 30, pp. 1073-1082 (2001). 21. C. T. Lu, T. S. Huang, C. H. Cheng, H. W. Tseng, and C. Y. Liu, “Cross-Interaction Study of Cu/Sn/Pd and Ni/Sn/Pd Sandwich Solder Joint Structures”, Journal of Electronic Materials, Vol. 41, pp. 130–137 (2012). 22. C. W. Chang, Q. P. Lee, C. E. Ho, and C. R. Kao, “Cross-Interaction Between Au and Cu in Au/Sn/Cu Ternary Diffusion Couples”, Journal of Electronic Materials, Vol. 35, pp. 366–371 (2006). 23. C. F. Yang and S. W. Chen, “Interfacial reactions in Au/Sn/Cu sandwich specimens”, Intermetallics, Vol. 18, pp. 672–678 (2010). 24. J. W. Jang, C. Y. Liu, P. G. Kim, K. N. Tu, A. K. Mal, and D. R. Frear, “Interfacial Morphology and Shear Deformation of Flip Solder Joints”, Journal of Materials Research, Vol. 15, pp. 1679-1687 (2000). 25. L. Qi, J. Huang, X. Zhao, and H. Zhang, “Effect of Thermal-Shearing Cycling on Ag3Sn Microstructural Coarsening in SnAgCu Solder”, Journal of Alloys and Compounds, Vol. 469, pp. 102–107 (2009). 26. J. Y. Song, Jin. Yu, and T. Y. Lee, “Effect of Reactive Diffusion on Stress Evolution in Cu-Sn Films”, Scripta Materialia, Vol. 51, pp. 167-170 (2004). 27. S. L. Ngoh, W. Zhou, and J. H. L. Pang, “Effect of Stress State on Growth of Interfacial Intermetallic Compounds between Sn-Ag-Cu Solder and Cu Substrates Coated with Electroless Ni Immersion Au”, Journal of Electronic Materials, Vol. 37, pp. 1843-1850 (2008). 28. J. H. L. Pang and B. S. Xiong, “Mechanical Properties for 95.5Sn–3.8Ag–0.7Cu Lead-Free Solder Alloy”, IEEE Transactions on Components and Packaging Technologies, Vol. 28, pp. 830-840 (2005). 29. Official Journal of the European Union, L37, p.19 (2003). 30. S. Wen, L. M. Keer, S. Vaynman, and L. R. Lawson, “A Constitutive Model for a High Lead Solder”, IEEE Transactions on Componemts and Packaging Technologies, Vol. 25, pp.23-31 (2002). 31. F. Wang, L. M. Keer, S. Vaynman, and S. Wen, “Constitutive Model and Numerical Analysis for High Lead Solders”, IEEE Transactions on Componemts and Packaging Technologies, Vol. 27, pp.718-723 (2004). 32. J. W. Nah, J. H. Kim, H. M. Lee, and K. W. Paik, “Electromigration in Flip Chip Solder Bump of 97Pb–3Sn/37Pb–63Sn Combination Structure”, Acta Materialia, Vol. 52, pp.129-136 (2004). 33. C. L. Lai, C. H. Lin, and C. Chen, “Electromigration at the High-Pb–Eutectic SnPb Solder Interface”, Journal of Materials Research, Vol. 19, pp. 550-556 (2004). 34. C. Y. Liu, L. Ke, Y. C. Chuang, and S. J. Wang “Study of Electromigration-Induced Cu Consumption in the Flip-Chip Sn/Cu”, Journal of Applied Physics, Vol. 100, pp. 083707-1-8 (2006). 35. K. N. Tu and K. Zeng, “Tin–Lead (SnPb) Solder Reaction in Flip Chip Technology”, Materials Science and Engineering: R: Report, Vol. 34, pp. 1-58 (2001). 36. K. N. Tu, A. M. Gusak, and M. Li, “Physics and Materials Challenges for Lead-Free Solders”, Journal of Applied Physics, Vol. 93, pp. 1335-1353 (2003). 37. B. S. Berry and I. Ames, “Studies of the SLT Chip Terminal Metallurgy”, IBM Journal of Research and Development, Vol. 13, pp. 286-296 (1969). 38. A. A. Liu, H. K. Kim, and K. N. Tu, “Spalling of Cu6Sn5 Spheroids in the Soldering Reaction of Eutectic SnPb on Cr/Cu/Au Thin Films”, Journal of Applied Physics, Vol. 80, pp. 2774-2780 (1996). 39. C. Y. Liu, H. K. Kim, K. N. Tu, and P. A. Totta, “Dewetting of Molten Sn on Au/Cu/Cr Thin-Film Metallization”, Applied Physics Letters, Vol. 69, pp. 4014-4016 (1996). 40. H. K. Kim, K. N. Tu, and P. A. Totta, “Ripening‐Assisted Asymmetric Spalling of Cu‐Sn Compound Spheroids in Solder Joints on Si Wafers”, Applied Physics Letters, Vol. 68, pp. 2204-2206 (1996). 41. G. Z. Pan, A. A. Liu, H. K. Kim, K. N. Tu, and P. A. Totta, “Microstructures of Phased-in Cr–Cu/Cu/Au Bump-Limiting Metallization and its Soldering Behavior with High Pb Content and Eutectic PbSn Solders”, Applied Physics Letters, Vol. 71, pp. 2946-2948 (1997). 42. M. Li, F. Zhang, W. T. Chen, K. Zeng, K. N. Tu, H. Balkan, and P. Elenius, “Interfacial Microstructure Evolution Between Eutectic SnAgCu Solder and Al/Ni(V)/Cu Thin Films”, Journal of Materials Research, Vol. 17, pp. 1612-1621 (2002). 43. S. C. Hsu, C. Y. Liu and S. J. Wang, “Effect of Cu content on interfacial reactions between Sn(Cu) alloys and Ni/Ti thin-film metallization”, Journal of Electronic Materials, Vol. 32, pp.1214- 1221 (2003). 44. P. G. Kim, J. W. Jang, T. Y. Lee, and K. N. Tu, “Interfacial Reaction and Wetting Behavior in Eutectic SnPb Solder on Ni/Ti Thin Films and Ni Foils”, Journal of Applied Physics, Vol. 86, pp. 6746-6751 (1999). 45. K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, and K. N. Tu, “Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability”, Journal of Applied Physics, Vol. 97, pp. 024508-024508-8 (2005). 46. Y. H. Liu, C. M. Chuang, and K. L. Lin, “Failure Behavior upon Shear Test of 5Sn–95Pb Solder Bump after High Temperature Reliability Test”, Journal of Materials Research, Vol. 19, pp. 2471-2477 (2004). 47. H. K. Kim and K. N. Tu, “Kinetic Analysis of the Soldering Reaction between Eutectic SnPb Alloy and Cu Accompanied by Ripening”, Physical Review B, Vol. 53, pp. 10627-10634 (1996). 48. K. N. Tu, T. Y. Lee, J. W. Jang, L. Li, D. R. Frear, K. Zeng, and J. K. Kivilahti, “Wetting Reaction versus Solid State Aging of Eutectic SnPb on Cu”, Journal of Applied Physics, Vol. 89, pp.4843-4849 (2001). 49. L. N. Ramanathan, J. W. Jang, J. K. Lin, and D. R. Frear, “ Solid-State Annealing Behavior of Two High-Pb Solders, 95Pb5Sn and 90Pb10Sn on Cu Under Bump Metallurgy”, Journal of Electronic Materials, Vol. 34, pp. 43-46 (2005). 50. J. W. Jang, L. N. Ramanathan, J. K. Lin, and D. R. Frear, “Spalling of Cu3Sn Intermetallics in High-Lead 95Pb5Sn Solder Bumps on Cu Under Bump Metallization during Solid-State Annealing”, Journal of Applied Physics, Vol. 95, pp. 8286-8289 (2004). 51. K. Z. Wang and C. M. Chen, “Intermetallic Compound Formation and Morphology Evolution in the 95Pb5Sn Flip-Chip Solder Joint with Ti/Cu/Ni Under Bump Metallization during Reflow Soldering”, Journal of Electronic Materials, Vol. 34, pp. 1543-1549 (2005). 52. H. P. R. Frederikse, R. J. Fields, and A. Feldman, “Thermal and Electrical Properties of Copper‐Tin and Nickel‐Tin Intermetallics”, Journal of Applied Physics, Vol. 72, pp. 2879-2882 (1992). 53. L. Wang, Q. Wang, A. Xian, and K. Lu, “Precise Measurement of the Densities of Liquid Bi, Sn, Pb and Sb”, Journal of Physics: Condensed. Matter, Vol. 15, p. 777 (2003). 54. C. M. Chen, K. J. Wang, and K. C. Chen, “Isothermal Solid-State aging of Pb–5Sn Solder Bump on Ni/Cu/Ti Under Bump Metallization”, Journal of Alloys and Compounds, Vol. 432, pp. 122–128 (2007). 55. 王凱正,「覆晶高鉛銲點之界面反應研究」,碩士論文,國立中興大學化學工程研究所,臺中 (2006)。 56. C. E. Ho, S. C. Yang, and C. R. Kao, “Interfacial Reaction Issues for Lead-Free Electronic Solders”, Journal of Materials Science: Materials in Electronics, Vol. 18, pp. 155–174 (2007). 57. D. R. Flanders, E. G. Jacobs, and R. F. Pinizzotto, “Activation Energies of Intermetallic Growth of Sn-Ag Eutectic Solder on Copper Substrates”, Journal of Electronic Materials, Vol. 26, pp. 883-887 (1997). 58. K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of Intermetallic Compounds on Properties of Sn–Ag–Cu Lead-Free Soldered Joints”, Journal of Alloys and Compounds, Vol. 352, pp. 226–236 (2003). 59. S. W. Chen, C. M. Chen, and W. C. Liu, “Electric Current Effects upon the Sn/Cu and Sn/Ni Interfacial Reactions”, Journal of Electronic Materials, Vol. 27, pp. 1193-1199 (1998). 60. C. M. Chen, C. H. Chen, C. P. Lin, and W. C. Su, “Morphological Evolution of the Reaction Product at the Sn-9wt.%Zn/Thin-Film Cu Interface”, Journal of Electronic Materials, Vol. 37, pp. 1605-1610 (2008). 61. T. Takenaka, S. Kano, M. Kajihara, N. Kurokawa, and K. Sakamoto, “Growth Behavior of Compound Layers in Sn/Cu/Sn Diffusion Couples during Annealing at 433–473K”, Materials Science and Engineering A, Vol. 396, pp. 115–123 (2005). 62. C. M. Liu, C. E. Ho, W. T. Chen, and C. R. Kao, “Reflow Soldering and Isothermal Solid-State Aging of Sn-Ag Eutectic Solder on Au/Ni Surface Finish”, Journal of Electronic Materials, Vol. 30, pp. 1152-1156 (2001). 63. T. H. Chuang, S. F. Yen, and H. M. Wu, “Intermetallic Formation in Sn3Ag0.5Cu and Sn3Ag0.5Cu0.06Ni0.01Ge Solder BGA Packages with Immersion Ag Surface Finish”, Journal of Electronic Materials, Vol. 35, pp. 310-318 (2006). 64. M. Arra, D. Shangguan, D. Xie, J. Sundelin, T. Lepisto, and E. Ristolainen, “Study of Immersion Silver and Tin Printed-Circuit-Board Surface Finishes in Lead-Free Solder Applications”, Journal of Electronic Materials, Vol. 33, pp. 977-990 (2004). 65. H. M. Lee, S. W. Yoon, and B. J. Lee, “Thermodynamic Prediction of Interface Phases at Cu/Solder Joints”, Journal of Electronic Materials, Vol. 27, pp. 1161-1166 (1998). 66. K. Zeng, R. Stierman, T. C. Chiu, D. Edwards, K. Ano, and K. N. Tu, “Kirkendall Void Formation in Eutectic SnPb Solder Joints on Bare Cu and Its Effect on Joint Reliability”, Journal of Applied Physics, Vol. 97, pp. 024508-024508-8 (2005). 67. S. Ahat, M. Sheng, and L. Luo, “Microstructure and Shear Strength Evolution of SnAg/Cu Surface Mount Solder Joint during Aging”, Journal of Electronic Materials, Vol. 30, pp. 1317-1322 (2001). 68. P. T. Vianco, J. A. Rejent, and P. F. Hlava, “Solid-State Intermetallic Compound Layer Growth between Copper and 95.5Sn-3.9Ag-0.6Cu Solder”, Journal of Electronic Materials, Vol. 33, pp. 991-1004 (2004). 69. 陳俊維,「多層薄膜應力分析及探討」,碩士論文,國立中興大學應用數學系研究所,台中(2007)。 70. K. N. Tu and R. D. Thompson, “Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films”, Acta Metallurgica, Vol. 30, pp. 947-952 (1982). 71. J. W. Yoon and S. B. Jung, “Effect of Surface Finish on Interfacial Reactions of Cu/Sn–Ag–Cu/Cu(ENIG) Sandwich Solder Joints”, Journal of Alloys and Compounds, Vol. 448, pp. 177–184 (2008). 72. S. J. Wang and C. Y. Liu, “Study of Interaction between Cu-Sn and Ni-Sn Interfacial Reactions by Ni-Sn3.5Ag-Cu Sandwich Structure”, Journal of Electronic Materials, Vol. 32, pp. 1303-1309 (2003). 73. S. J. Wang and C. Y. Liu, “Asymmetrical Solder Microstructure in Ni/Sn/Cu Solder Joint”, Scripta Materialia, Vol. 55, pp. 347-350 (2006). 74. 王信介,「覆晶凸塊封裝之兩界面反應交互作用研究」,博士論文,國立中央大學化學工程與材料工程研究所,桃園 (2006)。 75. W. Tang, A. He, Q. Liu, and D. G. Ivey, “Room Temperature Interfacial Reactions in Electrodeposited Au/Sn Couples”, Acta Metallurgica, Vol. 27, pp. 5818-5827 (2008). 76. G. Sharma, C. M. Eichfeld, and S. E. Mohney, “Intermetallic Growth between Lead-Free Solders and Palladium”, Journal of Electronic Materials, Vol. 13, pp. 1209-1213 (2003). 77. P. G. Kim, K. N. Tu, and D. C. Abbott, “Time- and Temperature-Dependent Wetting Behavior of Eutectic SnPb on Cu Leadframes Plated with Pd/Ni and Au/Pd/Ni Thin Films”, Journal of Applied Physics, Vol. 84, pp. 770-775 (1998). 78. G. Ghosh, “Kinetics of Interfacial Reaction Between Eutectic Sn-Pb Solder and Cu/Ni/Pd Metallizations”, Journal of Electronic Materials, Vol. 28, pp. 1238-1250 (1999). 79. G. Ghosh, “Coarsening Kinetics of Ni3Sn4 Scallops during Interfacial Reaction between Liquid Eutectic Solders and Cu/Ni/Pd Metallization”, Journal of Applied Physics, Vol. 88, 6887-6896 (2000). 80. M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics”, Materials Science and Engineering: Report, Vol. 27, pp. 95–141 (2000). 81. M. Rettenmayr, P. Lambracht, B. Kempf, and M. Graff, “High Melting Pb-Free Solder Alloys for Die-Attach Applications”, Advanced Engineering Materials, Vol. 7, pp. 965–969 (2005). 82. J. N. Lalena, N. F. Dean, and M. W. Weister, “Experimental Investigation of Ge-Doped Bi-11Ag as a New Pb-Free Solder Alloy for Power Die Attachment”, Journal of Electronic Materials, Vol. 31, pp. 1244-1249 (2002). 83. J. M. Song, H. Y. Chuang, and Z. M. Wu, “Interfacial Reactions between Bi-Ag High-Temperature Solders and Metallic Substrates”, Journal of Electronic Materials, Vol. 35, pp. 1041-1049 (2006). 84. K. Suganuma, S. J. Kim, and K. S. Kim, “High-Temperature Lead-Free Solders: Properties and Possibilities”, JOM Journal of the Minerals, Metals and Materials Society, Vol. 61, pp. 64–71 (2009). 85. M. H. Tsai, W. M. Chen, M. Y. Tsai, and C. R. Kao, “Sn Concentration Effect on the Formation of Intermetallic Compounds in High-Pb/Ni Reactions”, Journal of Alloys and Compounds, Vol. 504, pp. 341–344 (2010). 86. I. Karakaya and W. T. Thompson, Binary Alloy Phase Diagrams, 2nd edition (Materials Park, OH: ASM International, 94–97 (1990). 87. Pandat, CompuTherm LLC, 437 S. Yellowstone Dr., Suite 217, Madison, WI 53719. 88. W. Gierlotka, Y. C. Huang, and S. W. Chen, “Phase Equilibria of Sn-Sb-Ag Ternary System (II): Calculation”, Metallurgical and Materials Transactions A, Vol. 39, pp. 3199–3209 (2008). 89. H. J. Fecht, M. X. Zhang, Y. A. Chang, J.H. Perepezko, , “Metastable Phase Equilibria in the Lead-Tin Alloy System: Part I. Experimental”, Metallurgical and Materials Transactions A, Vol. 20, pp. 795–803 (1989).en_US
dc.description.abstract近年來環保意識抬頭,綠色材料議題備受重視,由於鉛會危害環境以及人體健康,所以歐盟在2006年立法禁止含鉛的電子封裝製程,傳統在印刷電路板上表面處理的技術熱風整平(Hot Air Solder Leveling, HASL)因利用錫鉛共晶的組成而被禁止,許多替代的處理層像化鎳浸金(Electroless Nickel/Immersion Gold, ENIG)、化鎳化鈀浸金(Electroless Nickel/Electroless Palladium/Immersion Gold, ENEPIG)、浸鍍銀(Immersion Silver)、浸鍍錫(Immersion Tin)與有機保銲劑(Organic Solderability Preservatives, OSPs)因而興起。 在封裝製程中常利用迴銲銲接的過程將銲料熔融並與基板反應接合,在此過程下基板上的表面處理層亦會熔融到液態的銲料內,造成界面反應主要為銲料的錫與基板的銅層進行液固的反應。然而在可撓曲式的印刷電路板以及光學封裝中,常用固態接合的技術利用以錫為主的銲料將晶片與基板接合,而非運用迴銲的製程。因此表面處理層仍會殘留在銲點界面處形成錫/表面處理層/銅的三層結構。本研究則探討當表面處理層仍存在於錫/銅的界面處時,在固態熱處理下對其反應的介金屬化合物生成動力學之機制與型態的影響。 由於現今的電子產品都朝向輕薄短小的趨勢,可藉由撓曲式的印刷電路板來減少封裝的體積。在撓曲的過程中,銲點界面處的反應亦會遭受到形變的影響,因此在本論文中亦研究在施加壓縮與拉伸應變並改變應變曲率的大小,並與不受應變界面反應的結果相比較探討應變對錫/表面處理層/銅三層結構界面反應的影響。 在積體電路的封裝中,界面反應並不僅只在銲料與基板間,其反應亦受到晶片端之金屬層交互擴散的影響。在覆晶技術的凸塊下金屬層(Under Bump Metallization, UBM)常運用銅層以及鎳層,由於銅層具良好的導電性常被用於印刷電路板上的金屬線,因此運用於基板端,鎳則具有良好的銲接性以及擴散阻隔的能力,亦經常運用在晶片端之阻隔層,錫則為無鉛銲料中主要的成分,因此在覆晶銲點中常形成鎳/錫/銅的三明治結構。本論文藉由導入表面處理層在鎳/錫/銅的三明治結構內,在固態熱處理下,研究表面處理層對界面反應交互擴散的影響。 本論文得到的結果認為銀表面處理層能夠增加銲料接點的可靠度外亦能減緩形變對界面反應的影響,鈀表面處理層跟錫與鎳反應會生成過厚的(Pd,Ni)Sn4層,使銲點機械性值大幅下降,然而在銲料中添加適量的銅,則能減緩(Pd,Ni)Sn4層過度的成長,改善其可靠度。zh_TW
dc.description.abstractThe technology of surface finishes for printed circuit boards (PCBs) is seeing a dramatic shift from hot air solder leveling (HASL) towards alternative finishes such as electroless nickel/immersion gold (ENIG), electroless nickel/electroless palladium/immersion gold (ENEPIG), immersion silver, immersion tin and organic solderability preservatives (OSPs). This trend is driven by the worldwide environmental pressure to ban the use of lead for electronic assemblies, as well as the demands of modern assembly technology, which require a higher co-planarity of the surface finish for surface mount assembly. For flexible PCB and optoelectronic packaging, solid-state bonding rather than reflow is commonly used to join the chips to the PCB with Sn-based solders, after which the surface finishes layer remains at the joint interface and participates in the interfacial reactions at the solder joints. Solder joint samples composed of a Sn/surface finishes/Cu trilayer were prepared to study the interfacial reactions. Besides, flexible PCBs are usually bended in order to reduce the packaging volume, making the solder joints subject to strain. Therefore, it is of interest to investigate the Sn/surface finishes/Cu tri-layer interfacial reactions under the influence of strain. In this study, the Sn/surface finishes/Cu trilayer on polymer board was subjected to compressive and tensile strain aged at 150℃ and 200℃ to investigate the formation and morphology of intermetallic compounds. However, the interfacial reactions not only exist at solder/Cu interface, it also effect by the opposite diffusion couple. In modern integrated circuit (IC) packaging, the under bump metallization (UBM) used in flip-chip technologies is often composed of two different types of metal pads. Cu is commonly used as a metallization layer on the printed circuit boards (PCB). Ni has good solderability and is also a good diffusion barrier. Therefore, it is commonly used as a barrier layer on the chip-side metallization. Sn is the primary element of the Pb-containing and Pb-free solders, hence the Ni/Sn/Cu sandwich-type structure is often formed in the flip-chip solder joints. Therefore, morphological evolution, phase formation, and kinetic behavior of the intermetallic compounds formed at the interfaces were investigated to understand the cross-interactions in the Ni/Sn/Cu samples with a surface finish layer. In this dissertation’s conclusions, the Ag surface finish not only could enhance the reliability of solder joint, but also retard the influences of interfacial reactions under strain. On the contrary, the Pd surface finish would react with Sn and Ni to form thick (Pd,Ni)Sn4, it would make the mechanical properties decrease drastically. However, adding some Cu in the solder could retard the (Pd,Ni)Sn4 growth excessively and improve the mechanical strength.en_US
dc.description.tableofcontents目次 摘要 i Abstract ii 目次 iii 圖目次 v 表目次 xi 一、前言 1 二、文獻回顧 2 2.1 軟性印刷電路板封裝 2 2.2 表面處理層 3 2.2-1浸鍍錫表面處理層 3 2.2-2 化學鍍鎳無電鍍金表面處理層 4 2.2-3 浸鍍銀表面處理層 8 2.2-4 鎳/鈀/金表面處理層 10 2.3 交互擴散 19 2.3-1界面反應 19 2.3-2 覆晶封裝 20 2.4 應力應變對封裝的影響 26 2.5 介金屬化合物之剝離 30 2.5-1 銲料凸塊種類的沿革 30 2.5-2 銲點可靠度與其界面反應 31 2.5-3 凸塊下金屬層 (Under Bump Metallation, UBM) 32 2.5-4 剝離現象 33 2.5-5 高鉛銲料與Cu凸塊下金屬層界面反應 38 2.5-6 高鉛銲料與Ni凸塊下金屬層界面反應 40 2.5-7 相平衡的轉變造成界面相的剝離 43 三、實驗方法 45 3.1浸鍍銀表面處理層與銲錫間固態的界面反應 45 3.2 錫/浸鍍銀/銅三層結構在外加形變下對界面反應的影響 46 3.3銀表面處理層對覆晶Cu/Sn/Ni結構交互擴散之影響 48 3.4 鎳/鈀/金與鎳/金表面處理層與銲錫間固態的界面反應 49 3.5 鈀表面處理層對覆晶Ni/Sn/Cu結構交互擴散之影響 51 3.6 高鉛銲料與銀凸塊下金屬層之界面反應 52 四、結果與討論 54 4.1浸鍍銀表面處理層與銲錫間固態的界面反應 54 4.1-1 在錫/銀/銅界面處介金屬化合物的生成 54 4.1-2 介金屬化合物微結構的發展 57 4.1-3 浸鍍銀層厚度對界面反應的影響 62 4.2 錫/浸鍍銀/銅三層結構在外加形變下對界面反應的影響 67 4.2-1 施以內凹與外凸形變對固態界面反應型態的變化 67 4.2-2 錫/銀/銅界面反應主要擴散元素 72 4.2-3 外加應變對固固反應的討論 72 4.2-4 增加應變的程度對界面反應的影響 74 4.3 銀表面處理層對覆晶Cu/Sn/Ni結構交互擴散之影響 85 4.3-1 Cu/Ag/Sn/Ni結構之交互擴散反應 85 4.3-2 交互擴散反應元素分佈分析 89 4.4 鎳/鈀/金與鎳/金表面處理層與銲錫間固態的界面反應 90 4.4-1 Au/Pd/Ni與Au/Ni表面處理層固態反應其介金屬化合物之發展 90 4.4-2 介金屬化合物相的分析 98 4.5 鈀表面處理層對覆晶Ni/Sn/Cu結構交互擴散之影響 99 4.5-1鎳/鈀/錫/銅擴散偶間介金屬化合物的生成 99 4.5-2 鎳/鈀/錫擴散偶間介金屬化合物的生成 103 4.5-3 銅/鈀/錫/鎳擴散偶間介金屬化合物的生成 104 4.5-4 銅/鈀/錫擴散偶間介金屬化合物的生成 108 4.6高鉛銲料與銀凸塊下金屬層之界面反應 110 4.6-1 簡介 110 4.6-2 90Pb10Sn高鉛銲料與Ag-based UBM之界面反應 111 4.6-3 95Pb5Sn高鉛銲料與Ag-based UBM之界面反應 112 4.6-4 97Pb3Sn高鉛銲料與Ag-based UBM之界面反應 113 4.6-5 銲料組成改變與相的轉換 116 五、結論 119 六、參考文獻 121zh_TW
dc.subjectSurface Finishen_US
dc.subjectIntermetallic Compoundsen_US
dc.subjectSolid-state Bondingen_US
dc.titleThe Choice of Surface Finishes for Solder Joint and the Interfacial Reactions by Solid-State Bondingen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.