Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/31481
標題: 台灣瓜類薊馬傳播病毒發生情形及利用L基因之高保留性區域誘發轉基因植物產生對番茄斑萎病毒屬之廣泛抗性
Occurrence of thrips-borne viruses infecting cucurbits in Taiwan and generation of broad-spectrum resistance in transgenic plants conferred by the conserved region of L genes of tospoviruses
作者: 彭瑞菊
Peng, Jui-Chu
關鍵字: Tospoviruses;番茄斑萎病毒屬;Watermelon silver mottle virus;Melon yellow spot virus;conserved region;西瓜銀斑病毒;甜瓜黃斑病毒;高保留性區域
出版社: 植物病理學系所
引用: chapter1 Anderson, W. F., Holbrook, C. C., and Culbreath, A. K. 1996. Screening the peanut core collection for resistance to tomato spotted wilt virus. Peanut Sci. 23:57-61. Bau, H.J., Cheng, Y. H., Yu, T. A., Yang, J.S., and Yeh, S.D. 2003. Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. Phytopathology 93:112-120. Baulcombe, D. C. 1996. Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8:1833-1944. Baulcombe, D. C. 2007. Molecular biology. Amplified silencing. Science 15:199-200. Bezerra, I. C., Resende, R. de O., Pozzer, L., Nagata, T., Kormelink, R., and de Avila, A. C. 1999. Increase of tospoviral diversity in Brazil with the identification of two new tospovirus species, one from chrysanthemum and one from zucchini. Phytopathology 89:823-830. Black, L. L., Hobbs, H. A., and Gatti, J. M., Jr. 1991. Tomato spotted wilt virus resistance in C. chinense PI152225 and 159236. Plant Dis. 75:863. Boiteux, L. S. and Giordano, L. D. B. 1993a. Genetic basis of resistance against two Tospovirus species in tomato (Lycopersicon esculentum). Euphytica 71:151-154. Boiteux, L. S., Nagata, T., Dutra, W. P., and Fonseca, M. E. N. 1993b. Sources of resistance to tomato spotted wilt virus tswv in cultivated and wild species of capsicum. Euphytica 67:89-94. Breitler, J. C., Meynard, D., Van Boxtel, J., Royer, M., Bonnot, F., Cambillau, L., and Guiderdoni, E. 2004. A novel two T-DNA binary vector allows efficient generation of marker-free transgenic plants in three elite cultivars of rice (Oryza sativa L.). Transgenic Res. 13: 271-287. Bridgen, A., Weber, F., Fazakerley, J. K., and Elliott, R. M. 2001. Bunyamwera bunyavirus nonstructural protein Nss is a nonessential gene product that contributes to viral pathogenesis. Proc. Natl. Acad. Sci. USA 98:664-669. Brittlebank, C. C. 1919. Tomato disease. J. Agric. Victoria. 17:213-235. Brodersen , P., and Voinnet, O. 2006. The diversity of RNA silencing pathways in plants. Trends Genet. 22: 268-280. Brommonschenkel, S. H., and Tanksley, S. D. 1997. Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato. Mol. Gen. Genet. 256:121-126. Brommonschenkel, S. H., Frary, A., Frary, A., and Tanksley, S. D. 2000. The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol. Plant- Microbe Interact. 3:1130-1138. Bucher, E., Sijen, T., de Haan, P., Goldbach, R., and Prins, M. 2003. Negative-strand tospoviruses and tenuiviruses carry a gene for a suppressor of gene silencing at analogous genomic positions. J. Virol. 77:1329-1336. Bucher, E., Lohuis, D., Pieter, M., Van Poppel, J.A., Geerts-Dimitriadou, C., Goldbach,R., and Prins, M. 2006. Multiple virus resistance at a high frequency using a single transgene construct. J. Gen. Virol. 87:3697-3701 Carr, J. P., Marsh, L. E., Lomonossoff, G. P., Sekiya, M. E., and Zaitlin, M. 1992. Resistance to tobacco mosaic virus induced by the 54-kDa gene sequence requires expression of the 54-kDa protein. Mol. Plant-Microbe Interact. 5:397-404. Chen, C. C., Shy, J. F., and Yeh, S. D. 1990. Thrips transmission of tomato spotted wilt virus from Watermelon. Plant Prot. Bull. 32:331-332. Chen, C. C., Ho, H. M., Chang, T. F., Chao, C. H., and Yeh, S. D. 1995. Characterization of a tospovirus-like virus isolated from wax gourd. Plant Prot. Bull. 37:117-131. Chen, C. C. and Chiu, R. J. 1996. A tospovirus infection peanut in Taiwan. Acta. Hortic. 431:57-67. Chen, C. C., Chen, T. C., Lin, Y. H., Yeh, S. D., and Hsu, H. T. 2005. A chlorotic spot disease on calla lilies (Zantedeschia spp.) is caused by a tospovirus serologically but distantly related to Watermelon silver mottle virus. Plant Dis. 89:440-445. Chen, C. C., Huang, C. H., Chen, T. C., Yeh, S. D., Cheng, Y. H., Hsu, H. T., andChang, C. A. 2007. First report of Capsicum chlorosis virus caused yellowing stripes on calla lilies. Plant Dis. 91:1201. Chen, S., X. Li, X. Liu, H. Xu, K. Meng, G. Xiao, X. Wei, F. Wang, and Z. Zhu. 2005. Green fluorescent protein as a vital elimination marker to easily screen marker-free transgenic progeny derived from plants co-transformed with a double T-DNA binary vector system. Plant Cell Rep. 23: 625-31. Chen, T. C., Huang, C. W., Liu, F. L., Hsu, H. T., Jain, R. K., Lin, C. H., and Yeh, S. D. 2005. Purification and serological analyses of tospoviral nucleocapsid proteins expressed by Zucchini yellow mosaic virus vector. J. Virol. Methods 129:113-124. Chen, T. C., Lu, Y. Y., Cheng, Y. H., Chang, C. A., and Yeh, S. D. 2008. Melon yellow spot virus in watermelon: a first record from Taiwan. Plant Pathol. 57:765. Chen, T. C., Lu, Y. Y., Cheng, Y. H., Li, J. T., Yeh, Y. C., Kang, Y. C., Chang, C. P., Li, H. H., Pang. J. C., and Yeh, S. D. 2010. Serological relationship between Melon yellow spot virus and Watermelon silver mottle virus and differential detection of the two viruses in cucurbits. Arch. Virol. 155: 1085-1095. Cheng, X. F., Dong, J. H., Fang, Q., Li, T. T., Ding, M., Zhang Z. K. 2008. Detection the tospovirus from Phalaenopsis in Yunnan. Arch. Plant Pathol. 38:31-34. (in Chinese). Chiemsombat, P., and Adkins, S. 2006. Tospoviruses. In: Rao, G.P., Kumar, P.L., Holguin-Pena, R.J. (Eds.), Characterization, Diagnosis and Management of Plant Viruses, Vol. 3: Vegetable and Pulse Crops. InStudium Press, Texas, USA. p. 1-37. Chiemsombat, P., Sharman, M., Srivilai, K., Campbell, P., Persley , D., and Attathom, S. 2010. A new tospovirus species infecting Lycopersicon esculentum and Capsicum annuum in Thailand. Aust. Plant Dis. Notes 2010: 75-78. Cho, J. J., Mau, R. F. L., German, T. L., Hartmann, R. W., Yudin, L. S., Gonsalves, D., and Provvidenti, R. 1989. A multidisciplinary approach to management of tomato spotted wilt virus in hawaii USA. Plant Dis. 73:375-383. Cho, J., Mau, R. F. L., Pang, S. Z., Wang, M., Gonsalves, C., Watterson, J., Custer, D. M., and Gonsalves, D. 1998. Approaches for controlling tomato spotted wilt virus. Pages 547-564 in: Plant Virus Disease Control. A. Hadidi, R. K. Khetarpal, and H.Koganezawa (eds.) St. Paul, Minnesota, USA Chu, F. H., and Yeh, S. D. 1998. Comparison of replication forms and ambisense M RNA of watermelon silver mottle virus with other tospoviruses. Phytopathology 88:351-358. Chu, F. H., Chao, C. H., Chung, M. H., Chen, C. C., and Yeh, S. D. 2001a. Completion of the genome sequence of Watermelon silver mottle virus and utilization of degenerate primers for detecting tospoviruses in five serogroups. Phytopathology 91:361-368. Chu, F. H., Chao, C. H., Peng, Y. C., Lin, S. S., Chen, C. C., and Yeh, S. D. 2001b. Serological and molecular characterization of Peanut chlorotic fanspot virus, a new species of the genus Tospovirus. Phytopathology 91:856-863. Ciuffo, M., Kurowski, C., Vivoda, E., Copes, B., Masenga, V., Falk, B. W., and Turina, M. 2009. A new Tospovirus sp. in cucurbit crops in Mexico. Plant Dis. 93:467-474. Ciuffo, M., Tavella, L., Pacifico, D., Masenga, V., and Turina, M. 2008. A member of a new Tospovirus species isolated in Italy from wild buckwheat (Polygonum convolvulus). Arch. Virol. 153:2059-2068. Cooper, B., Lapidot, M., Heick, J. A., Dodds, J. A., and Beachy, R. N. 1995. A defective movement protein of TMV in transgenic plants confer resistance to multiple viruses whereas the functional analog increases susceptibility. Virology 206:307-313. Culbreath, A. K., Todd, J. W., Gorbet, D. W., Shokes, F. M., and Pappu, H. R. 1997. Field response of new peanut cultivar UF 91108 to tomato spotted wilt virus. Plant Dis. 81:1410-1415. Dale, P. J., Clarke, B., and Fontes, E. M. G. 2002. Potential for the environmental impact of transgenic crops. Nat. Biothchnol. 20: 567-574. Daley, M., Knauf, V. C., Summerfelt, K. R., and Turne, J. C. 1998. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep. 17:489-496. Daughtrey, M. L., Jones, R. K., Moyer, J.W., Daub, M. E., and Baker, J. R. 1997. Tospoviruses strike the greenhouse industry: Impatiens necrotic spot virus has become a major pathogen on flower crops. Plant Dis. 81:1220-1230. de Avila, A. C., de Haan, P., Kitajima, E. W., Kormelink, R., Resende, R. de O., Goldbach, R. W., and Peters, D. 1992. Characterization of a distinct isolate of tomato spotted wilt virus (TSWV. From Impatiens sp. In the Netherlands). J. Phytopathol. 134:33-151. de Avila, A. C., De Haan, P., Kormelink, R., Resende, R. de O., Goldbach, R. W., and Peters, D. 1993. Classification of tospovirus based on phylogeny of nucleoprotein gene sequence. J. Gen. Virol. 74:153-159. De Block, M., and Debrouwer, D. 1991. Two T-DNA's co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor. Appl. Genet. 82: 257-263. de Framond, A. J., Back., E.W., Chilton, W. S., Kayes, L., and Chilton, M. D. 1986. Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation. Mol. Gen. Genet. 202: 125-131. de Haan, P., Wagemarker, L., Peters, D., and Goldbach, R. 1989. Molecular cloning and terminal sequence determination of the S and M RNAs of tomato spotted wilt virus. J. Gen. Virol. 70:3469-3473. de Haan, P., Wagemarker, L., Peters, D., and Goldbach, R. 1990. The S RNA segment of tomato spotted wilt virus has an ambisense character. J. Gen. Virol. 71:1001-1007. de Haan, P., Kormelink, R., de Oliveira Resende, R., van Poelwijk, F., Peters, D., and Goldbach, R. 1991. Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J. Gen. Virol. 71:2207-2216. de Haan, P., Avila, A. C., Kormelink, R., Westerbroek, A., Gielen, J. J. L., Peters, D., and Goldbach, R. 1992. The nucleotide sequence of the S RNA of impatiens necrotic spot virus, a novel tospovirus. FEBS Lett. 306-27-32. De Neve, M., De Buck, S., Jacobs, A., van Montagu, M., and Depicker, A. 1997. T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J. 11: 15-29. Depicker, A., L. Herman, A. Jacobs, J. Schell, and M. van Montagu. 1985. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Mol. Gen. Genet. 201: 477-484. Dong, J. H., Cheng, X. F., Yin, Y. Y., Fang, Q., Ding, M., Li, T. T., Zhang, L. Z., Su, X. X., Huang McBeath, J., and Zhang, Z. K. 2008. Characterization of Tomato zonate spot virus, a new tospovirus in China. Arch. Virol. 153:855-864. Dougherty, W. G., Lindbo, J. A., Smith, H. A., Parks, T. D., Swaney, S., and Proebsting, W. M. 1994. RNA-mediated virus resistance in transgenic plants: Exploitation of a cellular pathway possibly involved in RNA degradation. Mol. Plant-Microbe Interact. 7:544-552. Ebinuma, H., K. Sugita, E. Matsunaga, S. Endo, K. Yamada, and A. Komamine. 2001. Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep. 20: 383-392. Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. 2001. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO 20:6877-6888. English, J. J., Mueller, E., and Baulcome, D. C. 1996. Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8:179-188. Fauquet, C. M., Mayo, M. A., Maniloff, J., Desselberger, U., and Ball, L. A. 2005. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press, New York. Fermin, G. and Gonsalves, D. 2001. Towards the development of short synthetic genes for multiple virus resistance. Phytopathology. 91:6 (Supp) Finlay, K. W. 1953. Inheritance of spotted wilt resistance in the tomato. II. Five genes controlling spotted wilt resistance in four tomato types. Aust. J. Sci. Res. 6:153-163. Finnegan, E. J., and Matzke, M. A. 2003. The small RNA world. J. Cell. Sci. 116: 4689-4693. Francki, R. I. B., Fauquet, C. M., Knudson, D. L., and Brown, F. 1991. Classification and nomenclature of viruses. Fifth Report of the International Committee on Taxonomy of Viruses. Arch. Virol. Suppl. 2. 450 p. Gielen, J. J. L., de Haan, P., Kool, A. J., Peters, D., van Grinsven, M. Q. J. M., and Goldbach, R. 1991. Engineered resistance to tomato spotted wilt virus, a negative-strand RNA virus. Bio/Technology 9:1363-1367. Goldbach, R. and Peter, D. 1994. Possible causes of the emergence of tospovirus disease. Semin. in Virol. 5:113-120. Goldbach, R. W., and Kuo, G. 1996. Introduction: Proceedings of the international symposium on tospovirus and thrips of floral and vegetable crops. Acta. Hortic. 431:21-26. Goldstein, D. A., Tinland, B., Gilbertson, L. A., Staub, J. M., Bannon, G. A., Goodman, R. E., McCoy, R. L., and Silvanovich, A. 2005. Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. J. Appl. Microbiol. 99: 7-23. Gonsalves, D., and Trujillo, E. E. 1986. Tomato spotted wilt virus in papaya and detection of the virus by ELISA. Plant Dis. 73:501-506. Grant, S. R. 1999. Dissecting the mechanisms of posttranscriptional gene silencing: divide and conquer. Cell 96:303-306. Grumet, R. 1994. Development of virus resistant plants via genetic engineering. Plant Breed. Rev. 12:47-79. Gubba, A., Gonsalves, C., Stevens, M. R., Tricoli, D. M., and Gonsalves, D. 2003. Combining transgenic and natural resistance to obtain broad resistance to tospovirus infection in tomato (Lycopersicon esculentum mill). Mol. Breed. 9:13-23. Hare, P. D., and Chua, N. H. 2002. Excision of selectable marker genes from transgenic plants. Nat. Biotechnol. 20: 575-580. Hassani-Mehraban, A., Botermans, M., Verhoeven, J. T., Meekes, E., Saaijer, J., Peters, D., Goldbach, R., and Kormelink, R. 2010. A distinct tospovirus causing necrotic streak on Alstroemeria sp. in Colombia. Arch. Virol. 155:423-428. Hassani-Mehraban, A., Saaijer, J., Peters, D., Goldbach, R., and Kormelink, R. 2005. Molecular and biological comparison of two Tomato yellow ring virus (TYRV) isolates: challenging the Tospovirus species concept. Arch. Virol. 152:85-96. Higgins, J. D., Newbury, H. J., Barbara, D. J., Muthumeenakshi, S., and Puddephat, I. J. 2006. The production of marker-free genetically engineered broccoli with sense and antisense ACC synthase 1 and ACC oxidases 1 and 2 to extend shelf-life. Mol. Breed. 17: 7-20. Ho, C. Y., Li, J. T., Kang, Y. C., Chen, Y. T., Fan, Y. S., Huang, L. H., Tseng, H. H., Yeh, S. D., and Chen, T. C. 2009. Abstract. Emergence of Tomato spotted wilt virus infects Capsicum spp. and Zantedeschia sp. crops in Taiwan. Annual meeting of Taiwan Plant Protection Society, PP-14. p. 40. Holmes, F. O. 1948. Resistance to spotted wilt in tomato. Phytopathology 38:467-473 Hsu, H. T., Chen, C. C. and Yeh, S. D. 2002. Identification of a Tospovirus infecting calla lily Zantedeschia spp. XⅡth International Congress of Virology. P505. Huang, C.H. and Zheng Y.X. 2010. First Report of Capsicum chlorosis virus Infecting Tomato in Taiwan. Plant Dis. 94:1263 Isleib, T. G., Holbrook, C. C., and Gorbet, D. W. 2001. Use of plant introductions in peanut cultivar development. Peanut Sci. 28:96-113. Jacob, S. S., and Veluthambi, K. 2002. Generation of selection marker-free transgenic plants by cotransformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain. Plant Sci. 163: 801-806. Jaiwal, P. K., Sahoo, L., Singh, N. D., and Singh, R. P. 2002. Strategies to deal with the concern about marker genes in transgenic plants: Some environment-friendly approaches. Curr. Sci. 83: 128-136. Jan, F. J., Fagoaga, C., Pang, S. Z., and Gonsalves, D. 2000a. A minimum length of N gene sequence in transgenic plants is required for RNA-mediated tospovirus resistance. J. Gen. Virol. 81:235-242. Jan, F. J., Fagoaga, C., Pang, S. Z., and Gonsalves, D. 2000b. A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J. Gen. Virol. 81:2103-2109. Jan, F. J., Shih, J. R., Yeh, S. D., and Gonsalves, D. 2002. Development of transgenic plants resistant to multiple viruses via gene silencing. Page 14 in XII International Congress of Virology, July 27-August 1, 2002, Paris, France. Jan, F. J., Chen, T. C., and Yeh, S. D. 2003. Occurrence, importance, taxonomy, and control of thrips-borne tospoviruses, P391-411 in H. Huang and S. N. Acharya (eds): Advances in Plant Disease Management. Research Signpost, Kerala, India. Jones, R. A. C., and Sharman, M. 2005. Capsicum chlorosis virus infecting Capsicum annuum in the East Kimberley region of Western Australia. Aust. Plant Pathol. 34:397-399. Kato, K., Hanada, K., and Kmeya-Iwaki, M. 2000. Melon yellow spot virus: A distinct species of the genus Tospovirus isolated from melon. Phytopathology 90:422-426. Kazinczi, G., Horváth, J., Takács, A. 2007. Tospoviruses on ornamentals. Plant Viruses : 142-162. Kikkert, M., Van Lent J, Storms, M., Bodegom, P., Kormelink, R., and Goldbach, R. 1999. Tomato spotted wilt virus particle morphogenesis in plant cells. J. Virol. 73:2288-2297. Kikkert, M., Verschoor, A. D., Kormelink, R., Peters, D., and Goldbach, R. 2001. Tomato spotted wilt virus glycoproteins exhibit trafficking and localization signals that are functional in mammalian cells. J. Virol. 75:1004-1012. Komari, T., Y. Hiei, Y. Saito, N. Murai, and T. Kumashiro. 1996. Vectors carrying two separate T-DNAs for co-transformation of higher plant mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 10: 165-174. Kormelink, R., Kitajima, E. W., de Haan, P., Zuidema, D., Peters, D., and Goldbach, R. 1991. The nonstructural protein (NSs) encoded by the ambisense S RNA segment of tomato spotted wilt virus is associated with fibrous structures in infected plant cells. Virology 181:459-468. Kormelink, R., de Haan, P., Meurs, C., Peters, D., and Goldbach, R. 1992. The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J. Gen. Virol. 73:2795-2804. Kormelink, R., Storms, M., Van Lent, J., Peters, D., and Goldbach, R. 1994. Expression and subcellular location of the NSm protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200:56-65. Law, M. D., and Moyer, J. W. 1990. A tomato spotted wilt like virus with a serologically distinct N protein. J. Gen. Virol. 71:933-938. Law, M. D., Speck, J., and Moyer, J. W. 1992. The M RNA of impatiens necrotic Tospovirus (Bunyaviridae) has an ambisense genomic organization. Virology 188:732-741. Lebas, B. S. M., and Ochoa-Corona, F. M. 2007. Impatiens necrotic spot virus. In: Rao, G. P., Bragard, C., Lebas, B. S. M. (Eds.), Characterization, Diagnosis and Management of Plant Viruses. Vol. 4:221-243. Lee, A. M., Persley, D. M., and Thomas, J. E. 2002. A new tospovirus serogroup IV species infecting capsicum and tomato in Queensland, Australia. Aust. Plant Pathol. 31:231-239. Lin, Y. H., Chen, T. C., Hsu, H. T., Liu, F. L., Chu, F. H., Chen, C. C., Lin, Y. Z., and Yeh, S. D. 2005. Serological comparison and molecular characterization for verification of Calla lily chlorotic spot virus as a new tospovirus species belonging to Watermelon silver mottle virus serogroup. Phytopathology 95:1482-1488. Lin, C. Y. and Jan, F. J. 2005. Current development of the strategies for generating marker-free transgenic plants. Plant Pathol Bull. 14:159-176. Lu, H. J., C.R. Zhou, Z. X. Gong, and N.M. Upadhyaya. 2001. Generation of selectable marker-free transgenic rice using double right border (DRB) binary vectors. Aust. J. Plant Physiol. 28: 241-248. MacKenzie, D. J., and Ellis, P. J. 1992. Resistance to tomato spotted wilt virus infection in transgenic tobacco expressing the viral nucleocapsid gene. Mol. Plant-Microbe Interact. 5:34-40. Mandal, B., Pappu, H. R., Culbreath, A. K., Holbrook, C. C., Gorbet, D. W., and Todd, J. W. 2002. Differential response of selected peanut (Arachis hypogaea) genotypes to mechanical inoculation by Tomato spotted wilt virus. Plant Dis. 86:939-944. Marchoux, G., Gebre-Selassie, K., and Villevieille, M. 1991. Detection of tomato spotted wilt virus and transmission by Frankliniella occidentalis in France. Plant Pathol. 40:347-351. Matthew, P.R., Wang, M. B., Waterhouse, P.M., Thornton, S., Fieg, S. J., Gubler, F., and Jacobsen, J. V. 2001. Marker gene elimination from transgenic barley, using co-transformation with adjacent “twin T-DNAs” on a standard Agrobacterium transformatiom vector. Mol. Breed. 7: 195-202. McKnight, T.D., Lillis, M.T., and Simpson, R. B. 1987. Segregation of genes transferred to one plant cell from two separate Agrobacterium tumefaciens strains. Plant Mol. Biol. 8: 439-445. Miki, B., and McHugh, S. 2004. Selection marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol. 170: 193-232. Miller, M., Tagliani, L., Wang, N., Berka, B., and Bidney, D. 2002. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res. 11: 381-396. Mohamed, N. A. 1981. Isolation and characterization of subviral structures from tomato spotted wilt virus. J. Gen. Virol. 53:197-208. Moritz, G., Kumma, S., and Mound, L. 2004. Tospovirus transmission depends on thrips ontogeny. Virus Res. 100:143-149. Mueller, E., Gilbert, J., Davenport, G., Bringneti, G., and Baulcome, D. C. 1995. Homology-dependent resistance: transgenic virus resistance in plants related to homology-dependent gene silencing. Plant J. 7:1001-1013. Mumford, R. A., Barker, I., and Wood, K. R. 1996. The biology of the tospoviruses. Ann. Appl. Biol. 128:159-183. Pang, S. Z., Nagpala, P., Wang, M., Slightom, J. L., and Gonsalves, D. 1992. Resistance to heterologous isolates of tomato spotted wilt virus in transgenic tobacco expressing its nucleocapsid protein gene. Phytopathology 82:1223-1229. Pang, S. Z., Jan, F. J., Carney, K., Stout, J., Tricoli, D. M., Quemada, H. D., and Gonsalves, D. 1996. Post-transcriptional transgene silencing and consequent tospovirus resistance in transgenic lettuce are affected by transgene dosage and plant development. Plant J. 9:899-909. Pang, S. Z., Jan, F. J., and Gonsalves, D. 1997. Nontarget DNA sequences reduce the transgene length necessary for RNA-mediated tospovirus resistance in transgenic plants. Proc. Natl. Acad. Sci. USA 94:8261-8266. Pappu, H. R., Jones, R. A. C., and Jain, R. K. 2009. Global status of tospovirus epidemics in diverse cropping systems: Successes achieved and challenges ahead. Virus Res. 141:219-236. Parrella, G., Gognalons, P., Gebre-Selassiè, K., Vovlas, C., and Marchoux, G. 2003. An update of the host range of Tomato spotted wilt virus. J. Plant Pathol. 85:227-264. Permingeat, H. R., Alvarez, M. L., Cervigni, G. D., Ravizzini, R. A., and Vallejos, R. H. 2003. Stable wheat transformation obtained without selectable markers. Plant Mol. Biol. 52: 415-419. Persley, D. M., Thomas, J. E., and Sharman, M. 2006. Tospoviruses-an Australian perspective. Aust. Plant Pathol. 35:161-180. Peters, D., Wijkamp, L., van de Wetering, F., and Goldbach, R. 1996. Vectorrelations in the transmission and epidemology of tospoviruses. Acta Hortic. 431:29-42. Powell-Abel, P., Nelson, R. S., De B., Hoffmann, N., Rogers, S. G., Fraley, R. T., and Beachy, R. N. 1986. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738-743. Prins, M., Renato de Oliveira, r., Anker, C., van Schepen, A., de Haan, P., and Goldbach, R. 1996. Engineered RNA-mediated resistance to tomato spotted wilt virus is sequence specific. Mol. Plant-Microbe Interact. 9:416-418. Prins, M., Kikkert, M. Ismayadi, C., de Graauw, W., de Haan, P., and Goldbach, R. 1997. Characterization of RNA-mediated resistance to tomato spotted wilt virus in transgenic tobacco plants expressing NSm gene sequence. Plant Mol. Biol. 33-235-243. Prins, M., and Goldbach, R. 1998. The emerging problem of tospovirus infection and nonconventional methods of control. Trends. Microbiol. 6:31-35. Prins, M., Laimer, M., Noris, E., Schubert, J., Wassenegger, M. and Tepfer, M. 2008. Strategies for antiviral resistance in transgenic plants. Mol. Plant Pathol. 9:73-83. Puchta, H., Swoboda, P., Gal, S., Blot, M., and Hohn, B. 1995. Somatic intrachromosomal homologous recombination events in populations of plant siblings. Plant Mol. Biol. 28: 281-292. Puchta, H. 2003. Marker-free transgenic plants. Plant Cell Tiss. Org. 74: 123-134 Ratcliff, F. G., MacFariance, S. A., and Baulcome D. C. 1999. Gene silencing without DNA: RNA-mediated cross-protection between virus. Plant Cell 11: 1207-1215. Reddy, D. V. R., and Wightman, J. A. 1988. Tomato spotted wilt virus: Thrips transmission and control. Adv. Dis. Vector Res. 5:203-220. Reddy, D. V. R., Ratna, A. S., Sudarshana, M. R., Poul, F., and Kumar, I. K. 1992. Serological relationships and purification of bud necrosis virus, a tospovirus occurring in peanut (Arachis hypogaea L.) in India. Ann. Appl. Biol. 120:279-286. Reddy, D. V. R. 1998. Control measures for the economically important peanut viruses. Pages 541-546 in : Plant Virus Disease Control. A. Hadidi, R. K. Khetarpal, and H.Koganezawa (eds.) St. Paul, Minnesota, USA Rosello, S., Diez Maria, J., and Nuez, F. 1998. Genetics of tomato spotted wilt virus resistance coming from Lycopersicon peruvianum. Eur. J. Plant Pathol. 104:499-509. Rudolph C, Schreier, P. H., Uhrig, J. F. 2003. Peptide-mediated broad-spectrum plant resistance to tospoviruses. Proc Natl Acad Sci 100(8):4429-4434. Ruoslahti, E., and Pierschbacher, M. D. 1986. Arg-Gly-Asp: A versatile cell recognition signal. Cell 44:517-518. Samuel, G., Bald, J. G., and Pittman, H. A. 1930. Investigation on ‘‘spotted wilt'' of tomatoes. Aust. Counc. Sci. Ind. Res. Bull. 44:1-64. Sanford, J. C., and Johnston, S. A. 1985. The concept of parasite-derived resistance-deriving resistance genes from the parasite's own genome. J. Theor. Biol. 113:395-405. Sakimura, K. 1962. The present status of thrips-borne disease, in Maramorocsh. K. (ed): Biological transmission of disease agents. Academic Press, New York and London. Satyanarayana, T., Mitchell, S. E., Reddy, D. V. R., Kresovich, S., Jarret, R., Naidu, R. A., Gowda, S., and Demski, J. W. 1996. The complete nucleotide sequence and genome organization of the M RNA segment of peanut bud necrosis tospovirus and comparison with other tospoviruses. J. Gen. Virol. 77:2347-2352. Satyanarayana, T., Gowda, S., Lakshminarayana Reddy, K., Mitchell, S., E., Dawson, W. O., and Reddy, D. V. R. 1998. Peanut yellow spot virus is a member of a new serogroup of Tospovirus genus based on small (S) RNA sequence and organization. Arch. Virol. 141:85-98. Sin, S. H., McNulty, B. C., Kennedy, G. G., and Moyer, J. W. 2005. Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proc. Natl. Acad. Sci. USA. 102:5168-5173. Singh, S. J. and Krishnareddy, M. 1996. Watermelon bud necrosis: A new tospovirus disease. Acta Hortic. 431:68-77. Stevens, M. R., Scott, S. J., and Gergerich, R. C. 1992. Inheritance of a gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon esculentum Mill. Euphytica 59:9-17. Stevens, M. R., Lamb, E. M., and Rhoads, D. D. 1995. Mapping the Sw-5 locus for tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theor. Appl. Genet. 90:451-456. Storms, M. M. H., Kormelink, R., Peter, D., van Lent, J. W. M., and Goldbach, R. W. 1995. The nonstructural NSm protein of tomato spotted wilt virus induces tubular structures in plant and insect cells. Virology 214:485-493. Tsompana, M., and Moyer, J.W. 2008. Tospoviruses. In: Mahy, B.W.J., van Regenmortel, M.H.V. (Eds.), Encyclopedia of Virology, vol. 5, 3rd ed. Elsevier Ltd., Oxford, UK, p. 157-162. Ullman, D. E., Meideros, R., Campbell, L. R., Whitfield, A. E., Sherwood, J. L., and German, T. L. 2002. Thrips as vectors of tospoviruses. Adv. Bot. Res. 36:113-140. Ullman, D. E., Sherwood, J. L., and German. T. L. 1997. Thrips as vectors of plant pathogens. In: Lewis, T. (Ed.), Thrips as Crop Pests. CAB International, p. 539-564. van den Boogaart, T., Lomonssoff, G. P., and Davies, J. W. 1998. Can we explain RNA-mediated virus resistance by homology-dependent gene silencing. Mol. Plant-Microbe Interact. 11:717-723. van Kammen, A., Henstra, S., and Le, T. S. 1966. Morphology of tomato spotted wilt virus. Virology 30:574-577. Vaira, A. M., Roggero, P., Luisoni, E., Masenga, V., Milne, R. G., and Lisa, V. 1993. Characterization of two tospoviruses in Italy: tomato spotted wilt virus and impatiens necrotic spot virus. Plant Pathol. 42:530-542. Vaira, A. M., Semeria, L., Crespi, S., Lisa, V., Allavena, A., and Accotto, G. P. 1995. Resistance to tospoviruses in Nicotiana benthamiana transformed with the N gene of tomato spotted wilt virus: correlation between transgene expression and protection in primary transformants. Mol. Plant-Microbe Interact. 8:66-73. Vaucheret, H., Christophe, B., Elmayan, T., Feuerbach, F., Godon, C., Morel, J. B., Mourrain, P., Palauqui, J. C., and Vernhettes, S. 1998. Transgene-induced gene silencing in plants. Plant J. 16:651-659. Verkleij, F. N., and Peters, D. 1983. Characterization of a defective form of tomato spotted wilt virus. J. Gen. Virol. 64:677-686. Wassenegger, M., and Pelissier, T. 1998. A model for RNA-mediated gene silencing in higher plants. Plant Mol. Biol. 37:349-362. Wen, Y. Y. 1998. Bachelor thesis. Nucleotide sequence analyses of the N gene of a tospovirus isolated from Zantedeschia aethiopica. Department of Plant Pathology. National Chung-Hsing University. Taichung. Taiwan. (in Chinese). Whitfield, A. E., Ullman, D. E., and German, T. L. 2005. Tospovirus-thrips interactions. Annu. Rev. Phytopathol. 43:459-489. Wintermantel, W. M., and Zaitlin, M. 2000. Transgene translatability increase effectiveness of replicase-mediated resistance to Cucumber mosaic virus. J. Gen. Virol. 81:587-595. Wolfenbarger, L. L., and Phifer, P. R. 2000. The ecological risks and benefits of genetically engineered plants. Science 290: 2088-2093. Xing, A., Zhang, Z., Sato, S., Staswick, P., and Clement, T. 2000. The use of two T-DNA binary system to derive marker-free transgenic soybeans. In Vitro Cell Dev. Biol.Plant 36: 456-463. Xue, G. P., Patel, M., Johnson, J. S., Smyth, D. J., and Vickers, C. E. 2003. Selectable marker-free transgenic barley producing a high level of cellulose (1,4-beta-glucanase) in developing grains. Plant Cell Rep. 21: 1088-1094. Yeh, S. D., and Chang, T. F. 1995. Nucleotide sequence of the N gene of watermelon silver mottle virus, a proposed new member of the genus Tospovirus. Phytopathology 85:58-64. Yeh, S. D., Cheng, Y. H., Jih, C. L., Chen, C. C., and Chen, M. J. 1988. Identification of tomato spotted infecting horn melon and watermelon. Plant Prot. Bull. 30:319-320. Yeh, S. D., Lin, Y. C., Cheng, Y. H., Jih, C. L., Chen, M. J., and Chen, C. C. 1992. Identification of tomato spotted wilt-like virus infecting watermelon in Taiwan. Plant Dis. 76:835-840. Yeh, S. D., Chao, C. H., Cheng, Y. H. and Chen, C. C. 1996a. Serological comparison of four distinct Tospoviruses by polyclonal antibodies to purified nucleocapsid protein. Acta. Hortic. 431:122-134. Yeh, S. D., Sun, I. J., Ho, H. M., and Chang, T. F. 1996b. Molecular cloning and nucleotide sequence analysis of the S RNA of watermelon silver mottle tospovirus. Acta Hortic. 31:244-260. Yoder, J. I., and Goldsbrough, A. P. 1994. Transformation systems for generating marker-free transgenic plants. Bio/Technology 12: 263-267. Zamore, P. D. , Tuschl, T., Sharp, P. A., and Bartel, D. P. 2000. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101: 25-33. Zheng, Y. X., Chen, C. C., Yang, C. J., Yeh, S. D., and Jan, F. J. 2008. Identification and characterization of a tospovirus causing chlorotic ringspots on Phalaenopsis orchids. Eur. J. Plant Pathol. 120:199-209. Zheng, Y. X., Huang, C. H., Cheng, Y. H., Kuo, F. Y. and Jan, F. J. 2010a. First report of Tomato spotted wilt virus in sweet pepper in Taiwan. Plant Dis. 94:920. Zheng, Y. X., Li, Y. Z., Liu, Y. T., Xu, X. G., Maol, Y, E., and Zhu Q. Y. 2010b. Identification of Impatiens necrosis spot virus from Phalaenopsis amabilis in Yunnan. A
摘要: 
以薊馬傳播之番茄斑萎病毒屬病毒(tospoviruses)為Bunyaviridae科中唯一可感染植物之一屬,在世界各地造成許多經濟作物嚴重的危害,為一全球重要性之植物病毒。西瓜銀斑病毒(Watermelon silver mottle virus,WSMoV)及甜瓜黃斑病毒(Melon yellow spot virus,MYSV)為番茄斑萎病毒屬 (Tospovirus) 之一員,是台灣瓜類作物栽培的主要限制因子之一。甜瓜及西瓜是台灣重要的經濟作物,本研究針對薊馬傳播的病毒在台灣瓜類作物上發生情形進行調查,並且進一步利用gtju,之高保留性區域誘發轉基因植物產生對番茄斑萎病毒屬之廣泛抗性。本論文總共分為四個章節,分述如下。
本論文第一章「前人研究及研究目的」,主要蒐集整理近幾年與本研究相關之參考文獻並概述本論文之目的與內容。
本論文第二章「薊馬傳播病毒在台灣甜瓜及西瓜發生之情形」,為了研究瓜類病毒的發生情形,從2007年7月至2009年12月收集台灣主要種植區中部和南部地區的疑似罹病毒樣品。先以抗N蛋白單株抗體進行酵素聯結免疫反應(ELISA) 測試,結果不確定者再以N基因專一性引子進行逆轉錄聚合酶鏈反應(RT-PCR)技術進一步鑑別WSMoV和MYSV。其中10,480甜瓜樣本有631(6%)和1906(18.2%)分別檢測出感染WSMoV和MYSV,只有17個為複合感染WSMoV和MYSV,檢測結果顯示台灣瓜田中主要之番茄斑萎病毒為MYSV。而西瓜1811個樣品中,有22.4%和9.2%分別檢測出感染WSMoV和MYSV,只有4個為複合感染WSMoV和MYSV。研究結果顯示台灣瓜類上WSMoV和MYSV複合感染情形極少,WSMoV在西瓜上感染嚴重,而MYSV 在甜瓜上感染普遍,但是MYSV的發生有越來越嚴重的趨勢,因此需積極尋求有效的防治方法。
本論文第三章「利用L基因之高保留性區域誘發轉基因植物產生對番茄斑萎病毒屬之廣泛抗性」,為利用WSMoV的L基因之高保留性區域誘發轉基因植物產生對番茄斑萎病毒屬之廣泛抗性,利用WSMoV L RNA對應產生的大蛋白 (L protein)複製酶的高保留性區域,建構了五種不同的構築包含以可轉譯性(WLm)與非轉譯性(WLmt、Wlmts、WlAs)、以及雙股RNA(WLmds)之構築形式建構於Ti載體中,利用農桿菌感染的方式將所構築之轉基因片段轉殖於菸草(Nicotiana benthamiana)或番茄 (Solanum esculentum) 細胞中育成轉基因作物,於溫室條件下接種WSMoV及其他tospoviruses,如番茄斑萎病毒(Tomato spotted wilt virus,TSWV)、花生黃化扇班病毒(Peanut chlorotic fan-spot virus,PCFV)、花生輪斑病毒(Groundnut ringspot virus,GRSV)及鳳仙花壞疽斑點病毒(Impatiens necrotic spot virus,INSV)等,轉殖菸草接種WSMoV抗性表現為46.7-70%,抗WSMoV的菸草再接種上述其他四種病毒的抗性表現為35.7-100%。由於轉殖植物體內偵測不到轉基因之mRNA,因此推測該廣泛抗性機制為後轉錄作用的基因沉寂現象(post-transcriptional gene silencing,PTGS),轉殖番茄有亦可以抗WSMoV及其他番茄斑萎病毒。由此結果可知利用WSMoV L RNA上的高保留性區域所構築的轉殖菸草及番茄可廣泛的抗番茄斑萎病毒屬的不同病毒。
本論文第四章「攜帶西瓜銀斑病毒L基因高保留性區域之無標幟轉基因於番茄及甜瓜誘發對番茄斑萎病毒屬之廣泛抗性」,將西瓜銀斑病毒L RNA上具有高保留性的區域以共轉殖策略利用農桿菌轉殖法產生無標幟基因 (marker-free) 轉基因植物。所構築的兩段共轉殖T-DNA片段分別位於單一農桿菌菌株中的同一轉殖載體上。經此轉殖系統所產生之L RNA上具有高保留性的區域構築反義股(antisence)及雙股(double-strand)的無標幟基因轉殖植物包括番茄及甜瓜,初步接種分析顯示亦可誘發對番茄斑萎病毒屬之廣泛抗性,可經由自交分離產生無篩選標幟基因(nptII) 的子代。

Thrips-borne tospoviruses, belonging to the only plant-infecting genus Tospovirus in the family Bunyaviridae that cause severe damages in economic crops worldwide, are globally important. Watermelon silver mottle virus (WSMoV) and Melon yellow spot virus (MYSV), the members of the genus Tospovirus, are of the major threats for the cultivation of cucurbits in Taiwan. Melon (Cucumis melo L.) and watermelon (Citrullus lanatus Thunb.) are economically important crops in Taiwan. In this study, the occurrence of thrips-borne viruses infecting melon in Taiwan was investigated, and the broad-spectrum resistance in transgenic plants conferred by the conserved region of L genes of tospoviruses was generated. This dissertation is divided into four chapters as described below.
Chapter 1, “ Literature review and research objectives” describes references relevant to this study and the objectives for the investigations.
Chapter 2, “Occurrence of thrips-borne viruses infecting melon and watermelon in Taiwan” describing the incidence of virus infection in melon fields, a field survey was conducted from July 2007 to December 2009. The symptomatic tissues were collected from the principal cultivated areas in central and southern Taiwan. The anti-N protein-monoclonal antibodies (MAbs) and the N gene-specific primer pairs can be used to identify WSMoV and MYSV. The uncertain ELISA results for tospoviruses were further verified by reverse transcription-polymerase chain reaction (RT-PCR) using N gene-specific primer pairs for WSMoV and MYSV. Among 10,480 melon samples tested, 631 (6%) and 1,906 (18.2%) were found infected with WSMoV and MYSV, respectively, and only 17 mixed infections by both WSMoV and MYSV. Our results indicated that MYSV is the major tospovirus to invade melon in Taiwan. On the other hand, among 1,811 watermelon samples assayed, 22.4% and 9.2% samples were singly infected with WSMoV and MYSV, respectively, and 4 samples were infected with both viruses. Our results indicated that mixed infection with the two thrips-borne viruses is rare. Moreover, host preference for both viruses is different; WSMoV prevails on watermelon whereas MYSV is more widespread on melon. We conclude that MYSV has become a serious threat for watermelon and melon production in Taiwan and the possible control measures are discussed.
Chapter 3, “Generation of broad-spectrum resistance in transgenic plants conferred by the conserved region of L genes of tospoviruses ”. In this investigation, the conserved region containing the RNA-dependent RNA polymerase (RdRp) motifs within the L gene of WSMoV, an important cucurbit-infecting tospovirus in Taiwan, was used as a transgene for transformation of Nicotiana benthamiana and Solanum esculentum mediated by Agrobacterium tumefaciens to generate broad-spectrum resistance to tospoviruses. Five different modified transgene constructs of the L gene conserved region, including WLm in a sense translatable orientation, WLmt and WLmts in non-translatable, WLmAs in antisense and WLmds in double-stranded inverted repeat, were used to evaluate broad-spectrum resistance in transgenic plants. A total of 46.7-70.0% transgenic N. benthamiana lines derived from these five transgenes showed resistance to WSMoV, and 35.7-100% of the WSMoV-resistant lines exhibited broad-spectrum resistance against four other serologically unrelated tospoviruses, including Tomato spotted wilt virus (TSWV), Groundnut ringspot virus (GRSV), Impatiens necrotic spot virus (INSV) and Peanut chlorotic fan-spot virus (PCFV). Northern analyses indicated that the broad-spectrum resistance is mediated by post transcriptional gene silencing (PTGS). To validate the L conserved region resistance in vegetable crops, we have transferred all the transgenes constructs in transgenic tomato plants and the results indicated that this L conserved region generate high levels of resistance against WSMoV and other distinct tospoviruses. This is the first report that using a single nucleotide fragment corresponding to the L gene conserved region as a novel transgenic approach to trigger broad-spectrum resistance for controlling different tospoviruses at the genus level.
Chapter 4, “Broad-spectrum resistance to tospoviruses conferred by the marker-free transgene constructs containing the L gene conserved region of Watermelon silver mottle virus in tomato and melon”. Using the co-transformation method, the conserved region containing the RdRp motifs within L gene of WSMoV was constructed in a two T-DNAs binary vector and used to generate marker-free transgenic plants. Two constructs- MF-WLmAs and MF-3WLmds were evaluated for the broad-spectrum resistance. Our results preliminary indicated that the L gene conserved region is successfully used to generate marker-free transgenic tomato and melon lines conferring broad-spectrum resistance against different tospoviruses. The segregation and elimination of the selection marker nptII will be selected from the progenies after selfing.
URI: http://hdl.handle.net/11455/31481
其他識別: U0005-2601201122205500
Appears in Collections:植物病理學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.