Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3152
標題: UV硬化含氟丙烯酸酯高分子與黏土之複材製備與物性分析
Preparation and Physical Properties of UV Curable Fluorine-Containing Acrylate Polymer/Clay Nanocomposites
作者: 杜偉銘
Du, Wei-Ming
關鍵字: 蒙脫土 含氟高分子 紫外光聚合;montmorillonite fluorine-containing polymer UV curable
出版社: 化學工程學系所
引用: 1. 周森, “複合材料-奈米.生物科技”, 第198頁至第201頁, 全威圖 書有限公司, 台北縣, 初版 (2002) 2. 漆宗能, 尚文宇, “聚合物/層狀矽酸鹽奈米複合材料”, 第2頁至第3 頁, 五南圖書出版股份有限公司, 台北市, 初版 (2004) 3. M. C. Coatache, M. J. Heidecker, E. Manias, C. A. Wilkie, Polymers for Advanced Technologies, 17, 764-771 (2006) 4. 張永明, 李虹, 張恒, “含氟功能材料”, 第1頁, 化學工業出版社, 北京市, 初版 (2008) 5. 江德海, “紫外光固化材料-理論與應用”, 第1頁至第3頁, 科學出 版社, 北京市, 初版 (2001) 6. 陳劉旺, “工業塗料與高分子化學”, 第252頁至第271頁, 科學出版 社, 北京市, 初版 (2001) 7. M. Polverejan, T. R. Pauly, T. J. Pinnavaia, Chemistry of Materials, 12, 2698-2704 (2000) 8. S. Letaief , E. Ruiz-Hitzky, Chemical Communication, 24, 2996-2997 (2003) 9. L. Wei, T. Tang , B. Huang, Microporous and Mesoporous Materials, 67, 175-179 (2004) 10. M. Nakatsuji, R. Ishii, Z. M. Wang, K. Ooi, Journal of Colloid and Interface Science, 272, 158-166 (2004) 11. T. Nakao, M. Nogami, Materials Letters, 59, 3221-3225 (2005) 12. T. Nakao, M. Nogami, Materials Chemistry and Physics, 94, 360-364 (2005) 13. S. Letaief, M. A. Martin-Luengo, P. Aranda, E. Ruiz-Hitzky, Advanced Functional Materials, 16, 401-409 (2006) 14. W. Bi, R. Song, X. Meng, Z. Jiang, S. Li, T. Tang, Nanotechnology, 18, 115620-115627 (2007) 15. Z. Qian, G. Hu, S. Zhang, M. Yang, Physica B, 403, 3231-3238 (2008) 16. H. Mao, B. Li, X. Li, Z. Liu, W. Ma, Applied Surface Science, 255, 4787- 4791 (2009) 17. J. S. Dailey, T. J. Pinnavaia, Chemistry of Materials, 4, 855-863 (1992) 18. B. Li, Z. Liu, J. Liu, Z. Zhou, X. Gao, X. Pang, H. Sheng, Journal of Colloid and Interface Science, 362, 450-456 (2011) 19. L. Hu, S. Ji, Z. Jiang, H. Song, P. Wu, Q. Liu, Journal Physical Chemistry C, 111, 15173-15784 (2007) 20. H. Mao, X. Gao, J. Yang a, B. Li, Applied Surface Science, 257, 4655-4662 (2011) 21. C. Decker, K. Zahouily, L. Keller, S. Benfarhi, T. Bendaikha, J. Baron, Journal of Materials Science, 37, 4831-4838 (2002) 22. C. Decker, L. Keller, K. Zahouily, S. Benfarhi, Polymer, 46, 6640-6648 (2005) 23. C. Decker, K. Zahouily, L. Keller, S. Benfarhi, T. Bendaikha, J. Baron, Journal of Materials Science, 37, 4831-4838 (2002) 24. V. Landry, P. Blanchet, B. Riedl, Progress in Organic Coatings, 67, 381-388 (2010) 25. J. Wu, J. H. Harwell, E. A. O''Rear, Langmuir, 3, 531-537 (1987) 26. J. Wu, J. H. Harwell, E. A. O’Rear, The Journal of Physical Chemistry, 91, 623-634 (1987) 27. J. H. O''Haver, J. H. Hamell, E. A. O''Rear, L. J. Snodgrass, W. H. Waddell, Langmuir, 10, 2588-2593 (1994) 28. T. Pongprayoon, N. Yanumet, E. A. O’Rear, Journal of Colloid and Interface Science, 249, 227-234 (2002) 29. X. Wei, A. D. W. Caeswell, W. Alvarez, B. P. Grady, Journal of Colloid and Science, 264, 296-300 (2003) 30. D. V. Le, M. M. Kendrick, E. A. O''Rear, Langmuir, 20, 7802-7810 (2004) 31. O. M. Matarredona, K. Mach, M. M. Rieger, E. A. O''Rear, Corrosion Science, 45, 2541-2562 (2003) 32. A. Siriviriyanun, E. A. O’Rear, N. Yanumet, Journal of Applied Polymer Science, 103, 4059-4064 (2007) 33. X. Ren, L. Kou, H. B. Kocer, C. Zhu, S. D. Worley, R. M. Broughton, T. S. Huang, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 711-716 (2008) 34. J. Maity, P. Kothary, E. A. O''Rear, C. Jacob, Industrial & Engineering Chemistry Reaserch, 49, 6075-6079 (2010) 35. N. Yooprasert, T. Pongprayoon, P. Suwanmala, K. Hembichian, G. Tumcharern, Chemical Engineering Journal, 156, 193-199 (2010) 36. X. Fu, S. Qutubuddin, Materials Letters, 42, 12-15 (2000) 37. X. Fu, S. Qutubuddin, Polymer, 42, 807-813 (2001) 38. C. R. Tseng, J. Y. Wu, H. Y. Lee, F. C. Chang, Journal of Applied Polymer Science, 85, 1370-1377 (2002) 39. M. Xu, Y. S. Choi, Y. K. Kim, K. H. Wang, I. J. Chung, Polymer, 44, 6387-6395 (2003) 40. P. Uthirakumar, K. S. Nahm, Y. B. Hahn, Y. S. Lee, European Polymer Journal, 40, 2437-2444 (2004) 41. P. Uthirakumar, C. J. Kim, K. S. Nahm, Y. B. Hahn, Y. S. Lee, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 247, 69-75 (2004) 42. P. Uthirakumar, M. K. Song, C. Nah, Y. S. Lee, European Polymer Journal, 41, 211-217 (2005) 43. T. Wang, M. Wang, Z. Zhang, X. Ge, Y. Fang, Materials Letters, 61, 3723-3727 (2007) 44. P. Liu, Applied Clay Science, 35, 11-16 (2007) 45. A. Oral, M. A. Tasdelen, A. L. Demirel, Y. Yagci, Polymer, 50, 3905-3910 (2009) 46. L. Solhi, M. Atai, A. Nodehi, M. Imani, A. Ghaemi, K. Khosravi, Dental Materials, 28, 369-377 (2012) 47. H. Tan, D. Yang, J. Han, M. Xiao, J. Nie, Applied Clay Science, 42, 25-31 (2008) 48. 劉威毅, “UV硬化丙烯酸酯與蒙脫土奈米複合材料之製備與物性分 析”, 中興大學化學工程研究所碩士論文 (2011) 49. Y. Chen, S. Cheng, Y. Wang, C. Zhang, Journal of Applied Polymer Science, 99, 107-114 (2006) 50. J. T. Yeh, C. L. Chen, K. S. Huang, Jounal of Applied Polymer Science, 103, 1140-1145 (2007) 51. J. Li, Q. Wang, C. Su, Q. Chen, European Polymer Journal, 43, 2928-2934 (2007) 52. C. T. Hsieh, W. Y. Chen, Carbon, 48, 612-619 (2010) 53. C. T. Hsieh, W. Y. Chen, F. L. Wu, Carbon, 46, 1218-1224 (2008) 54. E. G. Merino, S. Atlas, M. Raihane, A. Belfkira, M. Lahcini, A. Hult, M. Dionisio, N. T. Correia, European Polymer Journal, 47, 1429-1446 (2011) 55. U. Cengiz, N. A. Gengec, N. U. Kaya, H. Y. Erbil, A. S. Sarac, Journal of Fluorine Chemistry, 132, 348-355 (2011) 56. D. I Choi, E. H. Yeom, M. Park, J. K. Kim, B. C. Kim, Journal of Applied Polymer Science, 93, 2082-2089 (2004) 57. U. Cengiz, M. Z. Avci, H. Y. Erbil, A. S. Sarac, Applied Surface Science, 258, 5815-5821 (2012) 58. F. M. Uhl, S. P. Davuluri, S. C. Wong, D. C. Webster, Chemistry of Materials, 16, 1135-1142 (2004) 59. B. S. Shemper, J.-F. Morizur, M. Alirol, A. Domenech, V. Hulin, L. J. Mathias, Journal of Applied Polymer Science, 93, 1252-1263 (2004) 60. F. M. Uhl, D. C. Webster, S. P. Davuluri, S. C. Wong, European Polymer Journal, 42, 2596-2605 (2006) 61. J. Wang, P. A. Wheeler, W. L. Jarrett, L. J. Mathias, Journal of Applied Polymer Science, 106, 1496-1506 (2007) 62. G. Malucelli, R. Bongiovanni, M. Sangermano, S. Ronchetti, A. Priola, Polymer, 48, 7000-7007 (2007) 63. S. Lv, W. Zhou, S. Li, W. Shi, European Polymer Journal, 44, 1613-1619 (2008) 64. A. Asif, C. Huang, W. Shi, Colloid & Polymer Science, 283, 200-208 (2004) 65. X. Qin, Y. Wu, K. Wang, H. Tan, J. Nie, Applied Clay Science, 45, 133-138 (2009) 66. M. Chiang, T. M. Wu, Composites Science and Technology, 70, 110–115 (2010) 67. Y. Yuan, Y. Zhang, W. Shi, Applied Clay Science, 53, 608-614 (2011) 68. 簡正豐, “聚苯乙烯/蒙脫土奈米複合材料界面改質之研究”, 中興大 學化學工程研究所碩士論文 (2000) 69. J. M. Corpart, S. Girault, D. Juhue, Langmuir, 17, 7237-7244 (2001) 70. F. Li,S. Zhou, L. Wu, Journal of Applied Polymer Science, 98, 2274-2281 (2005) 71. G. Xu, W. Shi, Progress in Oranic Coating, 52, 110-117 (2005) 72. 陳柏璿, “聚對苯二甲酸二乙酯/改質蒙脫土奈米複合材料之製備與 物性分析”, 中興大學化學工程研究所碩士論文 (2009) 73. 曾子凡, “製備主客型黏土/二氧化矽奈米混成材料及其聚苯乙烯奈 米複合材料與物性分析”, 中興大學化學工程研究所博士論文 (2010) 74. D. Stojanovic, A. Orlovic, S. B. Glisic, S. Markovic, V. Radmilovic, P. S. Uskokovic, R. Aleksic, The Journal of Supercritical Fluids, 52, 276-284 (2010) 75. G. He, G. Zhang, J. Hu, J. Sun. S. Hu, Y. Li, F. Liu. D. Xiao, H. Zou, G. Liu, Journal of Fluorine Chemistry, 132, 562-572 (2011)
摘要: 
本研究主要方向為1,6-己二醇二丙烯酸酯(1,6-hexandiol diacrylate, HDDA),以不同方式添加含氟高分子三氟乙基丙烯酸酯(2,2,2-trifluo-
roethyl acrylate, TFEA)與全氟烷基乙基甲基丙烯酸酯(2-(perfluoroalkyl) ethyl methacrylate, ZonylTM)。進行自由基共聚合反應添加方式分別為直接添加含氟單體於HDDA中利用紫外光聚合法製備薄膜或添加吸附微胞聚合含氟高分子改質蒙脫土於HDDA中利用紫外光聚合法製備奈米複材。以紅外線光譜進行官能基鑑定、鉛筆硬度測試分析、紫外光可見光光譜之透光度分析與靜態接觸角分析探討含氟高分子以不同含
量、不同單體、不同添加方法對薄膜之物性影響。
改質蒙脫土製備方式為首先將蒙脫土吸附適量陽離子交換當量(cation exchange capacity, CEC)之改質矽烷(modified silane, MS),再加入四乙氧基矽烷(tetraethyl orthosilicate, TEOS)進行水解縮合於蒙脫土表面形成約7 ~8 nm二氧化矽粒子,得到蒙脫土/二氧化矽奈米混成材料(Clay/SiO2 Nanohybrid, CSN)。接著與3-(三甲氧基矽)-1-丙醇甲基丙烯酸(3-(trimethoxy silyl)-1-propanol methacrylate, MPS)反應,水解縮合於二氧化矽表面,使得二氧化矽粒子表面具有C=C雙鍵,形成蒙脫土/二氧化矽奈米混成材料接枝MPS(CSN-M),接著吸附雙層十六烷基三甲基溴化銨(cetyl trimethyl ammonium bromide, CTAB)後,加入三氟乙基丙烯酸酯或全氟烷基乙基甲基丙烯酸進行溶化吸附,以吸附微胞聚合法(admicellar polymerization)聚合於蒙脫土表面形成片狀結構高分子
混成材料。
紫外光聚合法製備HDDA添加10 wt% TFEA之高分子薄膜PHDDA-TFEA-10與HDDA添加5 wt% Zonyl 聚合時間10分鐘之高分子薄膜PHDDA-Zonyl-5 (10 min),透光度為95.64 %與93.02 %、靜態接觸角為50.5 o與76. 02 o;紫外光聚合法製備含氟丙烯酸酯高分子複材PHDDA-CSN-PT-1.0與PHDDA-CSN-M-PZ-1.0透光度為95.40 %
與64.60 %、表面硬度為8 H與7 H、靜態接觸角為83.4 o與76.4 o。

The main object of this study is the incorporation of fluorine-containing monomers 2,2,2-trifluoroethyl acrylate (TFEA) or 2-(perfluoroalkyl) ethyl methacrylate (ZonylTM) into 1,6-hexanediol diacrylate (HDDA) followed by preparing the thin-film by photopolymerization with or without adding fluoropolymer modified montmorillonite prepared by admicellar polymerization. We inspected the physical properties of the thin-film of fluoropolymer prepared by different monomers, contents and methods by infrared spectroscopy for functional groups identification, pencil hardness test, transmittance and static contact
angle analysis.
For the preparation of modified montmorillonite, the montmorillonite was treated with modified silane (MS), and then tetraethyl orthosilicate (TEOS) was added to form the silica on clay surface by hydrolysis-condensation reaction. The silica''s diameter was found to be7~8 nm. Then, we added 3-(trimethoxy silyl)-1-propanol methacrylate (MPS) on the Clay/SiO2 nanohybirds (CSN) surface, it will impart the C=C function group onto silica surface to prepared CSN-M. Afterwards, we use CSN-M adsorbed with cetyl trimethyl ammonium bromide (CTAB) and performed the adsolubilization of 2,2,2-trifluoroethyl acrylate (TFEA) and 2-(perfluoroalkyl) ethyl methacrylate (ZonylTM). Finally montmorillonte surface was coated by fluorine-containing polymer by admicellar
polymerization.
HDDA/fluorine-contaning acrylate polymer film were prepared by photopolymerizationm, PHDDA-TFEA-10 and PHDDA-Zonyl-5 (10 min). The transmittance were found to be 95.64 % and 93.02 % at 550 nm, the static contact angle were measured as 50.5 o and 76.02 o. HDDA/modified montmorillonite nanocomposites were prepared by uvpolymerization and designated as PHDDA-CSN-M-PT-1.0 and PHDDA-CSN-M-PZ-1.0 . The transmittance were found to be 95.40 % and 64.60 % at the wavelength of 550 nm, the surface hardness was measured to be 8 H and 7 H, the static
contact angle were 83.4 o and 76.4 o respectively.
URI: http://hdl.handle.net/11455/3152
其他識別: U0005-2707201215484300
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.