Please use this identifier to cite or link to this item:
DC FieldValueLanguage
dc.contributor.authorXiao, Yu-Chenen_US
dc.identifier.citation[1] H Chen, Y Ding, C Tan: Rheological behavior of nanofluids. New Journal of Physics 9(2007)367-391. [2] S M S Murshed, K C Leong, C Yang: Thermo physical and electrokinetic properties of nano-fluids. A critical review. Applied Thermal Engineering 28(2008)2109-2125. [3] E J Teh, Y K Leong, Y Liu, A B Fourie, M Fahey: Differences in the rheology and surface chemistry of kaolin clay slurries the source of the variations. Chemical Engineering Science 64(2009)3817-3825. [4] P Mikulasek, R J Wakeman, J Q Marchant: The influence of pH and temperature on the rheology and stability of aqueous titanium dioxide dispersions. Chemical Engineering Journal 67(1997)97-102. [5] A I Gomez-Merino, F J Rubio-Hernandez, J F Velazquez-Navarro: The Hamaker constant of anatase aqueous suspensions. Journal of Colloid and Interface Science 316 (2007)451-456. [6] H Chen, Y Ding, A Lapkin, X Fan: Rheological behavior of ethylene glycol-titanate nanotube nano-fluids. Journal of Nano Particle Research 11(2009)1513-1520. [7] J Gustafsson, P Mikkola, M Jokinen, J B Rosenholm: The influence of pH and NaCl on the zeta potential and rheology of anatase dispersions. Physicochemical and Engineering Aspects 175(2000)349-359. [8] M E Meibodi, M Vafaie-Sefti: The role of different parameter on the stability and thermal conductivity of carbon nanotube/water nano-fluids. International Communication in Heat and Mass Transfer 37(2010)319-323. [9] P Garg, J L Alvarado, Ch Marsh, T A Carlson, D A Kessler, K Annamalai: An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nano-fluids. International Journal of Heat and Mass Transfer 52(2009)5090-5101. [10] M N Pantzali, A A Mouza, S V Paras: Investigating the efficacy of nano-fluids as coolants in plate heat exchangers (PHE). Chemical Engineering Science 64 (2009)3290-3300. [11] M Corcione: Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nano-fluids. Energy Convers Manag 52(2011)789-793. [12] X Q Wang, A S Mujumdar: Heat transfer characteristics of nano-fluids, a review. International Journal of Thermal Sciences 46 (2007) 1-19. [13] Y Wenhua, F David, R Jules, C Stephen: Review and comparison of nano-fluid thermal conductivity and heat transfer enhancements. Heat Transfer Engineering 29(2008)432–460. [14] X Zhang, H Gu, F Motoo: Effective thermal conductivity and thermal diffusivity of nano-fluids containing spherical and cylindrical nano particles. Experimental Thermal and Fluid Science 31(2006)593-599. [15] S Jana, A Salehi-Khojin, W H Zhong: Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochimica Acta 462(2007)45-55. [16] M S Liu, M Lin, I Te Huang, C C Wang: Enhancement of thermal conductivity with carbon nanotube for nano-fluids. International Communications in Heat and Mass Transfer 32(2005)1202-1210. [17] 高逢時:奈米科技科學發展.386期(2005)66-71. [18] B Derjaguin: Landau theory of stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochimca U.R.S.S.14(1941)733-762. [19] J A Lewis and J Th G Overbeek(1948):Theory of the stability of lyophobic colloids. Journal of the American Ceramic Society 83(2000)341–2359. [20] J A Lewis: Principles of ceramics processing 2nd edition. Journal of the American Ceramic Society 83(2000)341–2359. [21] 徐志平、林天賜:膠體懸浮液的凝據聚現象.化工期刊第45卷第2期(1998)14-22. [22] H C Hamaker: The London-van der waals attraction between spherical paeticles. Physica vol4 Iss10(1937)1058-1072. [23] R J Pugh, L Bergstrom: Surface and colloid chemistry in advanced ceramics processing. Marcel Dekker (1994). [24] 高濂、孫靜、劉陽橋、徐開鴻:奈米粉體的分散及表面改性.五南圖書出版股份有限公司(2005). [25] 和裕科技:UH超音波破碎機中文操作手冊.技術手冊(2012). [26] 徐國財、張立德:奈米複合材料.五南出版社(2002). [27] T C Patton: Paint flow and pigment dispersion. John Wiley and Sons Inc(1979). [28] Titanium dioxide as photocatalyst. Degussa Technical Information No.1243 [29] 卡博特公司:爐法碳黑的典型性質,技術手冊(2004). [30] V Penkavova, J Tihon, O Wein: Stability and rheology of dilute TiO2-water nanofluids. Nanoscale Research Letters 6(2011)273-279 . [31] BJ Berne, R Pecora: Dynamic light Scattering with application to chemistry. Biology and Physics John Wiley and Sons New York (1976). [32] 陳進銘:超快雷射加工次皮秒即時監測之研究(2010). [33] 蔡毓楨:原子力顯微鏡實作訓練教材,五南出版社(2007). [34] M M Denn: Process fluid mechanics. Prentice-Hall(1980). [35] A G Longo, C Zilio: Experimental measurement of thermophysical properties of oxide–water nano-fluids down to ice-point .Experimental Thermal and Fluid Science 35(2011)1313–1324 [36] M Zaharescu, M Crisan: Atomic force microscopy study of TiO2 films obtained by the sol-gel method. Journal of Sol-Gel Science and Technology 13(1998)769–773 . [37] W T Yeh: Preparation and characterization of free radical photopolymer with carbon black nano-particle. Journal of Photopolyer Science and Technology Volume 19(2006)685-698. [38] Y Wei, H Xie, Y Li, L Chen: Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. Particuology 9(2011)187–191. [39] K Thamaphat1, P Limsuwan1, B Ngotawornchai: Phase Characterization of TiO2 Powder by XRD and TEM. Natural Science 42(2008)357 - 361 .en_US
dc.description.abstract  奈米科技是21世紀最重要的科技之一,隨著尺寸的縮小,奈米流體的各種特性與微米尺度所觀察到的性質差異很大,但奈米流體在使用上卻碰到難題,無數很小顆粒的金屬,會因為顆粒過小而產生聚集的現象,雖然在奈米等級的各種金屬性質都來的比一般金屬來的好,但也同樣面臨穩定性不足,分散性不佳的問題。   本實驗參考各種文獻以及奈米流體分散的方法,探討影響分散的原因,發現二氧化鈦的奈米流體穩定性十分良好,但各種奈米流體的性質沒有明顯增加其性質,故添加第二種碳黑奈米粒子,進而製備出二氧化鈦/碳黑複合奈米流體,希望能夠增加原始的性質,並期望能夠維持其穩定性與分散性。藉由探討超音波製程與研磨製程的不同,可以發現超音波製程分散性均一性比較高,並比較碳黑的分散性,選擇出最佳製備二氧化鈦/碳黑複合奈米流體的方法,利用原子力顯微鏡探討其表面的形貌,可以發現粒徑邊界已經打開,利用粒徑分析儀與穿透式電子顯微鏡驗證分散性;我們製備的0.5w%、2.0w%、5.0w%TiO2加碳黑0.0025g複合奈米流體分別為64.9nm、75.6nm、91.3nm,可以分別放置為8、4、2個小時,均還是100nm以下的流體,而從穿透式電子顯微鏡可以更加證明出我們利用粒徑分析儀得到的結果,我們可以得到0.5w%、2.0w%、5.0w%TiO2加碳黑0.0025g複合奈米流體分別為約30nm、60nm、90nm製備出分散性良好的奈米流體。我們量測其流體的性質,並針對二氧化鈦加碳黑複合奈米流體進行流變的分析,其流體同樣是類似牛頓流體,即增加碳黑對於流體的黏度影響不會產生很大的改變,可以視為原始基液的性質。zh_TW
dc.description.abstractNanotechnology is one of the most important science technologies in the 21st century. With the reduction of size;We discover that the various characteristics exhibited by nano-fluids show huge differences from those of micro-fluids. However, we have encountered problems to put nano-fluids into practice. For instance, many small particles of metal would aggregate because the particles are too small. A variety of metal perform better when they are at the nanometer scale, but we also face such problems as low stability and poor dispersion. This study uses many references and discusses how nano-fluids disperse in order to find out what affects dispersion. The results indicate that the nano-fluids of titanium dioxide are very stable, but the nano-fluids of other metal show no significant changes. Therefore, we add a second generation of nano particles based on carbon black to produce the titanium dioxide/carbon black nano-fluids. In this way, we hope to enhance the characteristics of nano-fluids and to maintain their stability and dispersion. We explore the differences between ultrasonic process and grinding process, to compare the dispersion of carbon black in order to find the best method to prepare and produce titanium dioxide/carbon black composite nano-fluids, and we find that it is uniform on ultrasonic process. When we put the composite nano-fluids under the scope of atomic force microscopy, we find that the boundaries of particle sizes are blurred. Then we use dynamic light scattering particle size analyzer nano and transmission electron microscopy to examine the dispersion of carbon black nano-fluids. We prepare 0.5w%, 2.0w% and 5.0w% of titanium dioxide, each added with 0.0025g of carbon black, to produce 64.9nm, 75.6nm and 91.3nm of titanium dioxide/carbon black composite nano-fluids. The fluids are respectively placed for 8, 4 and 2 hours and can still maintain the sizes below 100nm. Then we examine through transmission electron microscopy, which better supports the results we obtain by using dynamic light scattering particle size analyzer nano. We find that 0.5w%, 2.0w% and 5.0w% of TiO2 added with 0.0025 g of carbon black nano-fluids are approximately 30nm, 60nm, 80nm in sizes. After preparing the nano-fluids with good dispersion, we measure the characteristics of these nano-fluids and do rheological analysis on titanium dioxide/carbon black composite nano-fluids. These nano-fluids have as Newtonian fluids. Increasing the amount of carbon black does not greatly affect the viscosity of nano-fluids, which can be regarded as a feature of the original base fluid.en_US
dc.description.tableofcontents中文摘要 I 英文摘要 II 目 錄 I V 圖目錄 VI 表目錄 IX 第一章 緒論 1 1-1 前言 1 1-2 研究動機與方法 2 1-3 本論文架構 4 第二章 理論基礎 5 2-1奈米顆粒的製備 5 2-2奈米流體的分散作用力 6 2-3奈米流體分散方法 13 第三章 藥品與儀器介紹 15 3-1 藥品介紹 15 3-2 儀器原理 18 第四章 實驗方法 23 4-1 本章摘要 23 4-2 實驗流程 24 4-2-1 比較不同製程對奈米流體的影響 24 4-2-2 比較不同碳黑奈米流體分散性 25 4-2-3 二氧化鈦與碳黑複合奈米流體的製備 25 4-2-4 二氧化鈦與碳黑複合奈米流體的穩定性實驗 26 4-2-5 AFM表面形貌驗證分散性 26 4-2-6 TEM驗證分散性 27 4-2-7 流體性質測試 28 第五章 結果與討論 30 5-1 本章摘要 30 5-2不同製程製備奈米流體 31 5-3不同碳黑分散液的比較 32 5-4 TiO2奈米流體分散 32 5-5奈米流體穩定性測試 34 5-6 AFM表面形貌分析 36 5-7 TEM驗證奈米粒子的分散性 43 5-7 流變分析 50 第六章 綜合結論與未來延續工作 56 6-1 綜合結論 56 6-1 未來延續工作 57 參考文獻 58 附錄1碳黑分散原始數據圖 62 附錄2分散曲線原始數據圖 63 附錄3穩定性實驗原始數據圖 78 圖目錄 圖 1-2-2 研究架構示意圖 3 圖 2-2-1 粒子間距與總能之關係圖 7 圖 2-2-2 靜電作用力示意圖 9 圖 2-2-3 立體障礙示意圖 9 圖 2-2 4 靜電空間障礙示意圖 10 圖 2-2 5 空間穩定作用示意圖 11 圖 2-2 6 水合作用力示意圖 12 圖 2-3 1 超音波分散的原理示意圖 13 圖 2-3 2 紅魔鬼研磨分散的原理示意圖 14 圖 3-1-2 碳黑表面上的官能基 16 圖 3-2 1 TEM原理示意圖 19 圖 3-4 1 AFM成像原理圖 20 圖 3-5 1 旋轉黏度計原理示意圖 21 圖 4-2-1 TEM 銅網撈樣品示意圖 28 圖 5-2 1 使用超音波製程分散的奈米流體 31 圖 5-2 2 使用紅魔鬼研磨製程分散的奈米流體 32 圖 5-4 1 TiO2奈米流體分散曲線圖 33 圖 5-4 2 TiO2+碳黑400複合奈米流體分散曲線圖 34 圖 5-5 1 TiO2穩定性實驗數據圖 35 圖 5-5 2 TiO2+碳黑400穩定性實驗數據圖 35 圖 5-6 1 TiO2 未分散前AFM實驗數據圖 38 圖 5-6 2 TiO2 分散後AFM實驗數據圖 39 圖 5-6 3 碳黑400分散前AFM實驗數據圖 40 圖 5-6 4 碳黑400分散後AFM實驗數據圖 41 圖 5-6 5 TiO2+碳黑400分散前AFM實驗數據圖 42 圖 5-6 6 TiO2+碳黑400分散後AFM實驗數據圖 43 圖 5-7 1 均勻分散0.5w%TiO2 TEM實驗數據圖 45 圖 5-7 2 均勻分散純碳黑400 0.0025g TEM實驗數據圖 45 圖 5-7 3 均勻分散0.5%TiO2+碳黑400 0.0025g TEM實驗數圖 46 圖 5-7 4 均勻分散0.5%TiO2+碳黑400 0.0025g TEM實驗數圖 46 圖 5-7 5 均勻分散2%TiO2 TEM實驗數據圖 47 圖 5-7 6 均勻分散2%TiO2+碳黑400 0.0025g TEM實驗數據圖 47 圖 5-7 7 均勻分散5%TiO2 TEM實驗數據圖 48 圖 5-8 1 均勻攪拌的0.5w%TiO2奈米流體–EG and 0.5w% and TiO2+0.0025g carbon black 400的流變圖 50 圖 5-8 2 均勻攪拌的0.5w%TiO2奈米流體–EG and 0.5w% and TiO2+0.0025g carbon black 400的黏度比較圖 51 圖 5-8 3 均勻攪拌的2w%TiO2奈米流體–EG and 2w% and TiO2+0.0025g carbon black 400的流變圖 51 圖 5-8 4 均勻攪拌的2w%TiO2奈米流體–EG and 2w% and TiO2+0.0025g carbon black 400的黏度比較圖 52 圖 5-8 5 均勻攪拌的5w%TiO2奈米流體–EG and 5w% and TiO2+0.0025g carbon black 400的流變圖 52 圖 5-8 6 均勻攪拌的5w%TiO2奈米流體–EG and 5w% and TiO2+0.0025g carbon black 400的黏度比較圖 53 圖 5-8 7 0.5、2、5w% TiO2 –EG奈米流體的黏度比較圖 53 圖 5-8 8 0.5、2、5w%TiO2奈米流體–EG TiO2+0.0025g carbon black 400的黏度比較圖 54 表目錄 表 1-2-1 影響奈米流體分散性的原因 2 表 3-1-1 碳黑藥品比較圖 16 表 3-3-1 實驗儀器與設備 22 表 5-3-1 碳黑分散液的分散粒徑比較 32 表 5-5-1 奈米流體穩定性實驗比較表 36 表 5-7-1 比較DLS跟TEM分析出來的粒徑大小 49 表 5-8-1 奈米流體濃度對黏度表 55zh_TW
dc.subjectComposite nanofluidsen_US
dc.subjectCarbon blacken_US
dc.subjectTitanium dioxideen_US
dc.subjectStability and dispersionen_US
dc.titleStudy on Preparation and Stability of Titanium Dioxide /Carbon Black Composite Nano-fluidsen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.fulltextno fulltext-
Appears in Collections:化學工程學系所
Show simple item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.