Please use this identifier to cite or link to this item:
標題: 以反應曲面法最適化聚乙烯醇修飾尼龍做為固定化金屬親和吸附基材之研究
Optimization of polyvinyl alcohol-coated Nylon sponges as immobilized metal ion affinity adsorbents using response surface methodology.
作者: 彭羽澤
Peng, Yu-Ze
關鍵字: 聚乙烯醇;Polyvinyl alcohol;尼龍;反應曲面法;Nylon sponges;Response surface methodology
出版社: 化學工程學系所
引用: 1. Stryer, L. ( 1995) Biochemistry New York: W. H. Freeman. 2. Katoch, R. (2011) Protein Purification Techniques, Journal of Analytical Techniques in Biochemistry and Molecular Biology, p. 149-168. 3. Chem, J. B. (1970) Protein Purification by Affinity Chromatography, Journal of BIOLOGIC.UA CHEMISTRY, p. 3059-3065. 4. Urh, M., Simpson, D., and Zhao, K. (2009) Chapter 26 Affinity Chromatography, 463, p.417-438. 5. Joanna Szpunara, P. P., Alexei Makarova, Thierry Docob, Pascale Williamsb, Bernard Medinac and Ryszard Łobin’ski*. (1998) Speciation analysis for biomolecular complexes of lead in wine by size-exclusion high-performance liquid chromatography-inductively coupled plasma mass spectrometry, Journal of Analytical Atomic Spectrometry 13, p.749-754. 6. J.A. Queiroza, C. T. T., J.M.S. Cabralb. (2001) Hydrophobic interaction chromatography of proteins, Journal of Biotechnology 87, p.143-159. 7. Shentu, J., Wu, J., Song, W., and Jia, Z. (2005) Chitosan microspheres as immobilized dye affinity support for catalase adsorption, Journal of International journal of biological macromolecules 37, p.42-46. 8. Chaga*, C. S. (2001) Twenty-five years of immobilized metal ion affinity chromatography: past, present and future., J. Journal of Biochem. Biophys 49, p.313-334. 9. Sheldon, R. A. (2007) Enzyme Immobilization: The Quest for Optimum Performance. , Journal of Advanced Synthesis & Catalysis 349(8-9), p. 1289-1307. 10. Utpal Bora, L. C., Pradip Nahar*. (2002) Covalent immobilization of proteins onto photoactivated polystyrene microtiter plates for enzyme-linked immunosorbent assay procedures, Journal of Immunological Methods p.171-177. 11. Seema S Betigeri, S. H. N. (2002) Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads, Journal of Biomaterials 23, p.3627-3636. 12. Hartmann, M., and Jung, D. (2010) Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends, Journal of Materials Chemistry 20, p. 844-857. 13. Porath, J. C., Jan; Olsson, Ingmar; Belfrage, Greta. (1975) Metal chelate affinity chromatography, a new approach to protein fractionation, Journal of Nature 258, p. 598-599. 14. Michele C. Smith, T. C. F., + and Charles Pidgeont. (1987) Immobilized Iminodiacetic Acid Metal Peptide Complexes. Identification of Chelating Peptide Purification Handles for Recombinant Proteins, Journal of Inorg. Chem. 26, p.1965-1969. 15. Vladka Gaberc-Porekar a, Viktor Menart b. (2001) Perspectives of immobilized-metal affinity chromatography,review, Journal of Biochem. Biophys. Methods 49, p.335-360. 16. Shi, Q. H., Tian, Y., Dong, X. Y., Bai, S., and Sun, Y. (2003) Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption, Journal of Biochemical Engineering 16, p.317-322. 17. 劉哲良(2002)。聚甲基丙烯酸二羥基乙酯固定化金屬親和吸附材於蛋白質純化之應用。碩士論文,化學工程研究所,國立中興大學。 18. Xi, F., Wu, J., and Lin, X. (2006) Novel nylon-supported organic-inorganic hybrid membrane with hierarchical pores as a potential immobilized metal affinity adsorbent, Journal of chromatography. A 1125, p.38-51. 19. Wu, C.-Y., Suen, S.-Y., Chen, S.-C., and Tzeng, J.-H. (2003) Analysis of protein adsorption on regenerated cellulose-based immobilized copper ion affinity membranes, Journal of Chromatography A 996, p.53-70. 20. T.C. Beeskow, W. K., F.B. Anspach*, K.H. Kroner, W.-D. Deckwer. (1995) Surface modification of microporous polyamide membranes with hydroxyethyl cellulose and their application as affinity membranes, Journal of Chromatography A 715, p.49-65. 21. Pilar Armisena, C. M., Estrella Cortesc, Jose L Barredod, Francisco Saltod, Bruno Diezd, Lorenzo Rodese, Jose L Garcı́ac, Roberto Fernandez-Lafuenteb, Jose M Guisanb,. (1999) Selective adsorption of poly-His tagged glutaryl acylase on tailor-made metal chelate supports, Journal of Chromatography A 848, p.61-70. 22. Mehta, A., and Zydney, A. L. (2008) Effect of spacer arm length on the performance of charge-modified ultrafiltration membranes, Journal of Membrane Science 313, 304-314. 23. Liu, Y., Suen, S., Huang, C., and Changchien, C. (2005) Effects of spacer arm on penicillin G acylase purification using immobilized metal affinity membranes, Journal of Membrane Science 251, 201-207. 24. M. Yakup Arıca , H. N. T., Adil Denizli *. (1998) Dye–ligand and metal chelate poly(2-hydroxyethylmethacrylate) membranes for affinity separation of proteins, Journal of Chromatography A 799, p.83-91 25. Adil Denizli a, Serap S ﹐enel a,M. Yakup Arıca b. (1998) Cibacron Blue F3GA and Cu(II ) derived poly(2-hydroxyethylmethacrylate) membranes for lysozyme adsorption, Journal of Colloids and Surfaces B 11, p.113-122. 26. 邱美雪(2010),以聚乙烯醇修飾PET不織布做為固定化金屬螯和親和吸附材之研究,碩士論文,化學工程研究所,國立中興大學。 27. Wei Jianga, B. G., Leone Spicciab, Milton T.W. Hearna, 1. (1998) Protein Selectivity with Immobilized Metal Ion-tacn Sorbents: Chromatographic Studies with Human Serum Proteins and Several Other Globular Proteins, Journal of ANALYTICAL BIOCHEMISTRY 255, p.47-58. 28. Ching-Fa Wua, W.-Y. C., 1, Jiunn-Fwu Leeb. (1996) Microcalorimetric Studies of the Interactions of Imidazole with Immobilized Cu(II): Effects of pH Value and Salt Concentration, Journal of COLLOID AND INTERFACE SCIENCE 183, p.236-242. 29. Joshua A. Bornhorst, J. J. F. (2000) [16] Purification of proteins using polyhistidine affinity tags, Methods in Enzymology 326, p.245-254. 30. V. Gaberc-Porekar1, V. M. (2005) Potential for Using Histidine Tags in Purification of Proteins at Large Scale, Chemical Engineering & Technology 28, p.1307-1314. 31. Wen-Yih Chen, C.-F. W., Chih-Chung Liu. (1996) Interactions of Imidazole and Proteins with Immobilized Cu(II) Ions: Effects of Structure, Salt Concentration, and pH in Affinity and Binding Capacity, Journal of Colloid and Interface Science 180, p.135-143. 32. Sin, H. N., Yusof, S., Sheikh Abdul Hamid, N., and Rahman, R. A. (2006) Optimization of enzymatic clarification of sapodilla juice using response surface methodology, Journal of Food Engineering 73, p.313-319. 33. Liew Abdullah, A. G., Sulaiman, N. M., Aroua, M. K., and Megat Mohd Noor, M. J. (2007) Response surface optimization of conditions for clarification of carambola fruit juice using a commercial enzyme, Journal of Food Engineering 81, p.65-71. 34. Gummadi, S. N., and Kumar, D. S. (2006) Optimization of chemical and physical parameters affecting the activity of pectin lyase and pectate lyase from Debaryomyces nepalensis: A statistical approach, Biochemical Engineering Journal 30, p.130-137. 35. Pais-Chanfrau, J. M., Pestana-Vila, Y., Lopez-Larraburo, I., Masso-Rodriguez, Y., Linares-Dominguez, M., and Marquez-Perera, G. (2008) Statistical optimization of immunoaffinity purification of hepatitis B surface antigen using response surface methodology, Biochemical Engineering Journal 38, p.1-8. 36. Anderson-Cook, C. M., Borror, C. M., and Montgomery, D. C. (2009) Response surface design evaluation and comparison, Journal of Statistical Planning and Inference 139, p.629-641. 37. Kannan, T., and Murugan, N. (2006) Effect of flux cored arc welding process parameters on duplex stainless steel clad quality, Journal of Materials Processing Technology 176, p.230-239 38. Li, X., Ouyang, J., Xu, Y., Chen, M., Song, X., Yong, Q., and Yu, S. (2009) Optimization of culture conditions for production of yeast biomass using bamboo wastewater by response surface methodology, Bioresource technology 100, p.3613-3617. 39. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., and Escaleira, L. A. (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta 76, p.965-977. 40. R. Y. M. Huang, A. M., R. Notarfonzo, Y. F. Xu. (1988) Pervaporation separation of acetic acid-water mixtures using modified membranes. I. Blended polyacrylic acid (PAA)-nylon 6 membranes, Journal of Applied Polymer Science 35, p.1191-1200. 41. H Ochiai, Y. F., Y Tadokoro, I Murakami. (1982) Polyelectrolyte behavior of poly (vinyl alcohol) in aqueous borax solutions., Polymer Journal 14, p.423-426. 42. E.Z. Casassa , A. M. S. a. C. H. V. D. (1986) The gelation of polyvinyl alcohol with borax: A novel class participation experiment involving the preparation and properties of a "slime", Journal of Chemical education 63, p.57-60 43. .Ma, X., Su, Y., Sun, Q., Wang, Y., and Jiang, Z. (2007) Enhancing the antifouling property of polyethersulfone ultrafiltration membranes through surface adsorption-crosslinking of poly(vinyl alcohol), Journal of Membrane Science 300, p.71-78. 44. H.-L. Lin, T. L. Y., C.-H. Cheng. (2000) Reentrant behavior of poly(vinyl alcohol)–borax semidilute aqueous solutions, Journal of Colloid and Polymer Science 278, p.187-194. 45. Piera Piacquadio*, G. D. S., Maria Sammartino, and Sciancalepore, a. V. (1997) Phenols removal from apple juice by laccase immobilized on Cu2+-chelate regenerable carrier, Journal of Biotechnology Techniques, 11, p.515-517. 46. Gaio Paradossi, F. C., Ester Chiessi, Chiara Spagnoli, Mary K. Cowman. (2003) Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications, Journal of Materials Science: Materials in Medicine 14, p. 687-691. 47. Idris, A., Zain, N. A. M., and Suhaimi, M. S. (2008) Immobilization of Baker''s yeast invertase in PVA–alginate matrix using innovative immobilization technique, Process Biochemistry 43, p.331-338. 48. Dave, R. M., Datta. (2006) Esterification in organic solvents by lipase immobilized in polymer of PVA–alginate–boric acid, Process Biochemistry 41, p.951-955. 49. Guntas, G., Mitchell, S. F., and Ostermeier, M. (2004) A molecular switch created by in vitro recombination of nonhomologous genes, Chemistry & biology 11, p.1483-1487 50. Ostermeier, M. (2005) Engineering allosteric protein switches by domain insertion, Protein engineering, design & selection : PEDS 18, p.359-364. 51. Patil, U. M. a. S. (2009) Borax Mediated Layer-by-Layer Self-Assembly of Neutral Poly(vinyl alcohol) and Chitosan, Journal of Physical chemistry B 113, p.9137-9142. 52. Shimada, T., Iizuka, A., Shiojiri, K., Yamasaki, A., and Yanagisawa, Y. (2007) pH-controlled uphill transport of boric acid through a poly(vinyl alcohol) (PVA) membrane, Journal of Applied Polymer Science 104, p.1451-1455. 53. Hsiu-Li Lin, W.-H. L., Yuan-Feng Liu, Chen-Horng Cheng. (2002) Complexation Equilibrium Constants of Poly(vinyl alcohol)-Borax Dilute Aqueous Solutions- Consideration of Electrostatic Charge Repulsion and Free Ions Charge Shielding Effect, Journal of Polymer Research 9, p.233-238. 54. Iwaseya, M., Katsuyama, N., Yamaura, K., and Dai, L. X. (2006) Effect of degree of saponification on properties of films obtained from PVA/NaCl/H2O system, Journal of Materials Science 41, p.1979-1982.
本研究以Nylon sponges做為固定化金屬親和吸附材之固體載體,並利用聚乙烯醇(Polyvinyl alcohol, PVA)與硼砂(Borax)產生交聯反應,將聚乙烯醇覆蓋於基材上,改善基材本身的親水性質,接著利用化學合成的方式接上環氧氯丙烷(Epichlorohydrin, EPI)及1,2-乙二胺(1,2-diamino
-ethane)、亞胺基二乙酸 (Iminodiacetic acid,IDA)作為螯合劑以固定上銅離子(Cu2+),之後即完成固定化金屬親和吸附基材 。此外,本研究將利用反應曲面法(Response Surface Methodology, RSM),以(PVA)聚乙烯醇濃度、交聯時間及交聯溫度做為影響PVA覆蓋量之因子,尋找出最適極值的區域。
當參數條件設為PVA濃度19.27%、交聯時間84.30分鐘及交聯溫度42.00℃時,聚乙烯醇覆蓋量可達4.43 g PVA/g Nylon,此值為反應曲面法回歸模式所得之預測最適值。而為了證實此預測值之可靠性,則將上述的條件做三重覆實驗,所得之聚乙烯醇覆蓋量為4.39、4.39及4.46 g PVA/g Nylon,平均值為4.41g PVA/g Nylon。之後選取PVA覆蓋量為0.62、1.14、2.01、3.29、4.32 g PVA/g Nylon ,透過FE-SEM和含水率,來鑑定實驗改質後基材之特性。
  將上述改質後PVA覆蓋量(0.62~4.32g PVA/g Nylon)五組基材,利用化學合成法,將銅離子固定於上,以進行蛋白質純化實驗。實驗中先行探討緩衝液對純化本身的影響,並經由一連串的測試找出最適緩衝液體所需條件,最後在探討孔洞性質對純化的影響;最後經由實驗結果,可知最適化RG-13開關蛋白粗酵素液純化之改質尼龍基材PVA覆蓋量1.14 gPVA/g Nylon,銅離子鍵結量8892.97±51.08(μmole/gNylon),蛋白吸附量24.98±3.88(mg/g Nylon),脫附量1.02±0.04(mg/g Nylon)。

In this study, polyvinyl alcohol-coated Nylon sponges are prepared by crosslinking PVA with Borax onto substrate of Nylon sponges as immobilized metal ion affinity absorbent. The function of PVA-coated is to improve hydrophilic of Nylon sponges. And then, the PVA-coated Nylon sponges are activated by Epichlorohydrin (EPI) and 1,2-diaminoethane, modified by IDA (Iminodiacetic acid) as the chelating agent for loaded with Cu2+ to attain an immobilized metal affinity (IMA) absorbents. The effects of PVA concentration, crosslinking time, and crosslinking temperature on the amount of PVA-coated are analyzed by RSM (Response Surface Methodology) to decide the optimum value.
The RSM regressed pattern shows that when PVA concentration is 19.27%, crosslinking time is 84.3minutes, and crosslinking temperature is 42.00℃, the amount of PVA-coating can be reached up to 4.43 g PVA/g Nylon. The predicted value can be trusted by repeated experiment average value 4.41 g PVA/g Nylon. The morphological changes of PVA-coated Nylon Sponges (including 0.62, 1.14, 2.01, 3.29, and 4.32 gPVA/gNylon) are characterized by Field Emission Scanning Electron Microscope (FE-SEM) and water content experiment.
The optimal condition of purification buffers can be found after a series of experiments. To purify a target protein from crude of RG-13, the final result shows that the optimum quantity of PVA-coated Nylon sponges is 1.14g PVA/g Nylon. Under that condition, the copper ion capacity is 8892.97±51.08 (μmole/gNylon), quantity of protein adsorption is 24.98±3.88 (mg/g Nylon), and quantity of protein elution is 1.02±0.04 (mg/g Nylon).
其他識別: U0005-1608201316500100
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.