Please use this identifier to cite or link to this item:
標題: 以聚吡咯/石墨烯修飾電極感測乙醯氨酚之研究
Study of sensing capability of polypyrrole/graphene-modified electrodes of acetaminophen
作者: 李啟彰
Lee, Chi-Chang
關鍵字: 聚吡咯;acetaminophen;石墨烯;電化學感測器;Polypyrrole;graphene;electrochemical sensors
出版社: 化學工程學系所
引用: [1]陳繼明. 藥物學. 偉華書局, 2003. [2]ANDERSON B. Paracetamol (Acetaminophen): mechanisms of action. Pediatric Anesthesia 2008; 18(10): 915-921. [3] Nichols G, Frampton C. Physicochemical characterization of the orthorhombic polymorph of paracetamol crystallized from solution.Journal of Pharmaceutical Sciences 1998; 87(6): 684-693. [4]Tintinalli JE, Kelen GD, Stapczynski JS: 6th ed, Emergency Medicine: a comprehensive study guide, North Carolina, Mc Graw Hill, 2004:1088-1094. [5] [6]M.T. Olaleye, B.T.J. Rocha, Exp. Toxicol. Pathol. 59 (2008) 319. J.C. Roberts, H.L. Phaneuf, J.G. Szakacs, R.T. Zera, J.G. Lamb, M.R. [7]Franklin, Chem. Res. Toxicol. 11 (1998) 1274 [8] [9] L.A. Shervington, N. Sakhnini, J. Pharm. Biomed. Anal. 24 (2000) 43. [10] A.B. Moreira, H.P.M. Oliveira, T.D.Z. Atvars, I.L.T. Dias, G.O. Neto, E.A.G. Zagatto, L.T. Kubota, Anal. Chim. Acta 539 (2005) 257. [11] T. Perez-Ruiz, C. Martinez-Lozano, V. Tomas, R. Galera, J. Pharm. Biomed. Anal. 38 (2005) 87. [12] J. T. Afshari, T.Z. Liu, Anal. Chim. Acta 443 ( 2001 ) 165. [13] X. Kang, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Talanta 81 (2010) 754. [14] N. Havens, P. Trihn, D. Kim, M. Luna, A.K. Wanekaya, A. Mugweru, Electrochim. Acta 55 (2010) 2186. [15] [16] A. K. Geim et al., Nature Materials, 6, 2007, 183-191 [17] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102 (30): 10451-10453. [18] K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669. [19] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339-1339. [20]M. Fernandez-Merino, L. Guardia, J. Paredes, S. Villar-Rodil, P. Solis-Fernandez, A. Martinez-Alonso, J. Tascon, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions, The Journal of Physical Chemistry C, 114 (2010) 6426-6432. [21] J. Gao, F. Liu, Y. Liu, N. Ma, Z. Wang, X. Zhang, Environment-friendly method to produce graphene that employs vitamin C and amino acid, Chem. Mater., 22 (2010) 2213-2218. [22]J. Zhang, H. Yang, G. Shen, P. Cheng, S. Guo, Reduction of graphene oxide vial-ascorbic acid, Chem. Commun., 46 (2010) 1112-1114. [23] H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud''homme, R. Car, D.A. Saville, I.A. Aksay, Functionalized single graphene sheets derived from splitting graphite oxide, The Journal of Physical Chemistry B, 110 (2006) 8535-8539. [24] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 9 (2008) 30-35. [25] M.W.K. Nomani, R. Shishir, M. Qazi, D. Diwan, V. Shields, M. Spencer, G.S. Tompa, N.M. Sbrockey, G. Koley, Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC, Sensors and Actuators B: Chemical, 150 (2010) 301-307. [26] L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, R.B. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets, J. Mater. Chem., 15 (2005) 974-978. [27] W.S. Hummers Jr, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc., 80 (1958) 1339-1339. [28] G.K. Ramesha, S. Sampath, Electrochemical reduction of oriented graphene oxide films: an in situ Raman spectroelectrochemical study, The Journal of Physical Chemistry C, 113 (2009) 7985-7989. [29] D. Schmeiber, A. Bar,l, L. D, nsch, H. Naarmann, W.Gopel, ”Elec,ronic and Magne,icn Proper,ies of Polypyrrole Film Depending on Their One-Dimensional and Two-Dimensional Micros,r, c, , res” Syn,he,ic Me,als, 1998. [30] S. H. Nalwa, “Handbook of Organic Cond,c,ive Molec,les and Polymers” New York, Joho Wiley, 2-429 ,1997. [31] 蔡本慧,曹雷,王肇君,導電聚合物聚吡咯的製備、性質及其應用,化工科技市場,第33卷第5期,2010年。 [32] 31. M. G. Kana, zidls, “Cond, c, ive Polymer” Chem. Eng. News,1990. [33] A. F. Diaz, K. K. Kanazawa., Chem. Scr., 1981. [34] G. B. S,ree,, R. H. Geiss, S. E. Lindsey, A. Nazzal, P. Pfl, ger, “Proceedings of ,he Conference on Elec,ronic Exci,a,ion and In,erac,ion Processes in Organic Molac, lar Aggrega,es.”Springer New York , 1983. [35] X. Kang, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Talanta 81 (2010) 754. [36] W.Y. Su, S.H. Cheng, Electroanalysis 22 (2010) 707. [37] N. Havens, P. Trihn, D. Kim, M. Luna, A.K. Wanekaya, A. Mugweru, Electrochim. Acta 55 (2010) 2186. [38] A. J. Bard, I. R. Faulkner, Electrochemical Methods: Fundaments and Applications, Wily, New York, 2000 [39] D. R. Crow, Principle and Applications of Electrochemistry,高立,1998 [40] M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Carbon., 42, 2929, 2004. [41] S. Shahrokhian, E. Asadian, Electrochim. Acta 55 (2010) 666. [42]P. Fanjul-Bolado, P.J. Lamas-Ardisana, D. Hernandez-Santos, A. Costa-Garcia, Anal. Chim. Acta 638 (2009) 133.
本研究成功的利用石墨烯-聚吡咯(rGO-PPy)奈米複合薄膜修飾氧化銦錫(ITO)玻璃電極製備出電化學感測器偵測乙醯氨酚。此rGO-PPy奈米複合薄膜之分散均勻與否在本研究中以場發射電子顯微鏡觀察。可看出石墨烯均勻的分散在rGO-PPy奈米複合薄膜。利用循環伏安法與安培安法探討乙醯氨酚的電化學行為於rGO-PPy奈米複合薄膜修飾電極。在循環伏安法中,與未修飾電極及石墨烯所修飾之電極相較,石墨烯具有較小的氧化電位與較大的電流訊號。顯示石墨烯具有良好的電催化行為。利用安培法偵測乙醯氨酚,有不錯的電化學效能參數:23 nA‧mM-1‧cm-2,偵測極限 13μM。rGO-PPy複合薄膜修飾電極於市售真實樣品之偵測亦有不錯的效果。

A high sensitive electrochemical sensor based on a graphene oxide -polypyrrole nanocomposite modified ITO glassy electrode was applied to the determination of acetaminophen. The morphology of the rGO-PPy nanocomposite was characterized by field emission scanning electron microscopy. rGO were well dispersed in the rGO-PPy nanocomposite. The introduction of electrochemical behavior of acetaminophen by using rGO-PPy nanocomposite modified ITO glassy electrode with cyclic voltammetry and amperometry. In cyclic voltammetric responses, the enhanced current response and the lower oxidation potential were obvious evidences for the electrocatalytic ability of rGO toward APAP oxidation. which suggested a diffusion-controlled process for the electrochemical reaction. The determination of APAP at the rGO-PPy nanocomposite modified ITO glassy electrode with amperometry displayed a high sensitivity of 23 nA‧mM-1‧cm-2 and a low detection limit of 13μM μM. The proposed methodology was successfully applied to the detection of APAP in pharmaceutical drugs with satisfactory results.
其他識別: U0005-1107201309452100
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.