Please use this identifier to cite or link to this item:
標題: 以飛秒雷射技術製備奈米結構作為化學感測應用
Producing nanostructured materials by femtosecond laser technology for chemical sensor application
作者: 張漢威
Chang, Han-Wei
關鍵字: 飛秒雷射;femtosecond laser;表面增強拉曼散射;電催化;surface-enhanced Raman scattering;electrocatalytic
出版社: 化學工程學系所
引用: [1] D. Strickland, G. Mourou, Compression of amplified chirped optical pulses, Optics Communications, 55 (1985) 447-449. [2] D.E. Spence, P.N. Kean, W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Opt. Lett., 16 (1991) 42-44. [3] B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann, Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A, 63 (1996) 109-115. [4] D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Laser-induced breakdown by impact ionization in SiO[sub 2] with pulse widths from 7 ns to 150 fs, Appl. Phys. Lett., 64 (1994) 3071-3073. [5] S. Preuss, A. Demchuk, M. Stuke, Sub-picosecond UV laser ablation of metals, Appl. Phys. A, 61 (1995) 33-37. [6] S. Link, C. Burda, B. Nikoobakht, M.A. El-Sayed, Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses, J. Phys. Chem. B, 104 (2000) 6152-6163. [7] P. Rudolph, J. Bonse, J. Kruger, W. Kautek, Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass, Appl. Phys. A, 69 (1999) S763-S766. [8] Y. Dai, M. He, H. Bian, B. Lu, X. Yan, G. Ma, Femtosecond laser nanostructuring of silver film, Appl. Phys. A, 106 (2012) 567-574. [9] M. Weikert, F. Dausinger, Surface Structuring Femtosecond Technology for Technical and Medical Applications, in: F. Dausinger, H. Lubatschowski, F. Lichtner (Eds.), vol. 96, Springer Berlin / Heidelberg, 2004, pp. 117-130. [10] J. Reif, O. Varlamova, F. Costache, Femtosecond laser induced nanostructure formation: self-organization control parameters, Appl. Phys. A, 92 (2008) 1019-1024. [11] V. Oliveira, N.I. Polushkin, O. Conde, R. Vilar, Laser surface patterning using a Michelson interferometer and femtosecond laser radiation, Optics & Laser Technology, 44 (2012) 2072-2075. [12] G. Torchia, L. Scaffardi, C. Mendez, P. Moreno, J. Tocho, L. Roso, Optical extinction for determining the size distribution of gold nanoparticles fabricated by ultra-short pulsed laser ablation, Appl. Phys. A, 93 (2008) 967-971. [13] S. Besner, A.V. Kabashin, M. Meunier, Two-step femtosecond laser ablation-based method for the synthesis of stable and ultra-pure gold nanoparticles in water, Appl. Phys. A, 88 (2007) 269-272. [14] W. Huang, W. Qian, M.A. El-Sayed, Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses, J. Appl. Phys., 98 (2005) 114301-114308. [15] S. Besner, A. Kabashin, F. Winnik, M. Meunier, Ultrafast laser based “green” synthesis of non-toxic nanoparticles in aqueous solutions, Appl. Phys. A, 93 (2008) 955-959. [16] N.H. Ma, H.L. Ma, M.J. Zhong, J.Y. Yang, Y. Dai, G. Ye, Z.Y. Yue, G.H. Ma, J.R. Qiu, Direct precipitation of silver nanoparticles induced by a high repetition femtosecond laser, Mater. Lett., 63 (2009) 151-153. [17] C. Li, X. Shi, J. Si, T. Chen, F. Chen, S. Liang, Z. Wu, X. Hou, Alcohol-assisted photoetching of silicon carbide with a femtosecond laser, Optics Communications, 282 (2009) 78-80. [18] T. Sakai, T. Miyanishi, N. Nedyalkov, Y. Nishizawa, M. Obara, Nano-dimple processing of silicon surfaces by femtosecond laser irradiation with dielectric particle templates in the Mie scattering domain, J. Phys. D: Appl. Phys., 42 (2009) 025502. [19] A.Y. Vorobyev, C. Guo, Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals, Appl. Phys. A, 86 (2007) 321-324. [20] N. Yasumaru, K. Miyazaki, J. Kiuchi, Femtosecond-laser-induced nanostructure formed on hard thin films of TiN and DLC, Appl. Phys. A, 76 (2003) 983-985. [21] A.Y. Vorobyev, C. Guo, Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals, J. Appl. Phys., 103 (2008) 043513-043513. [22] E.D. Diebold, N.H. Mack, S.K. Doorn, E. Mazur, Femtosecond Laser-Nanostructured Substrates for Surface-Enhanced Raman Scattering, Langmuir, 25 (2009) 1790-1794. [23] M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, Large area uniform nanostructures fabricated by direct femtosecond laser ablation, Opt. Express, 16 (2008) 19354-19365. [24] A.V. Kabashin, M. Meunier, Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water, J. Appl. Phys., 94 (2003) 7941-7943. [25] C.K. Raman, K.S., A New Type of Secondary Radiation, Nature, 121 (1928) 501-502. [26] J.R. Ferraro, K. Nakamoto, C.W. Brown, Chapter 1 - Basic Theory, in: Introductory Raman Spectroscopy (Second Edition), Academic Press, San Diego, 2003, pp. 1-94. [27] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering and biophysics, J. Phys.: Condens. Matter, 14 (2002) R597. [28] M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett., 26 (1974) 163-166. [29] D.L. Jeanmaire, R.P. Van Duyne, Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode, J. Electroanal. Chem. Interfacial Electrochem., 84 (1977) 1-20. [30] M.G. Albrecht, J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode, J. Am. Chem. Soc., 99 (1977) 5215-5217. [31] R.Z. Tan, A. Agarwal, N. Balasubramanian, D.L. Kwong, Y. Jiang, E. Widjaja, M. Garland, 3D arrays of SERS substrate for ultrasensitive molecular detection, Sens. Actuators A, 139 (2007) 36-41. [32] M. Kerker, D.S. Wang, H. Chew, Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata, Appl. Opt., 19 (1980) 4159-4174. [33] M. Moskovits, Surface-enhanced spectroscopy, Reviews of Modern Physics, 57 (1985) 783-826. [34] Y.C. Liu, C.C. Yu, T.C. Hsu, Trace molecules detectable by surface-enhanced Raman scattering based on newly developed Ag and Au nanoparticles-containing substrates, Electrochem. Commun., 9 (2007) 639-644. [35] E.C. Le Ru, P.G. Etchegoin, Chapter 1 - A quick overview of surface-enhanced Raman spectroscopy, in: Principles of Surface-Enhanced Raman Spectroscopy, Elsevier, Amsterdam, 2009, pp. 1-27. [36] T.L. Williamson, X. Guo, A. Zukoski, A. Sood, D.J. Diaz, P.W. Bohn, Porous GaN as a Template to Produce Surface-Enhanced Raman Scattering-Active Surfaces, The J. Phys. Chem. B, 109 (2005) 20186-20191. [37] Y.C. Liu, S.J. Yang, Improved surface-enhanced Raman scattering based on Ag–Au bimetals prepared by galvanic replacement reactions, Electrochim. Acta, 52 (2007) 1925-1931. [38] H.S. Shin, H.J. Yang, Y.M. Jung, S.B. Kim, Direct patterning of silver colloids by microcontact printing: possibility as SERS substrate array, Vib. Spectrosc, 29 (2002) 79-82. [39] A. Kudelski, Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: Do dye molecules adsorb preferentially on highly SERS-active sites?, Chem. Phys. Lett., 414 (2005) 271-275. [40] H. Tabata, M. Fujii, S. Hayashi, Surface-enhanced Raman scattering from polyyne solutions, Chem. Phys. Lett., 420 (2006) 166-170. [41] E.C. Le Ru, P.G. Etchegoin, Chapter 3 - Introduction to plasmons and plasmonics, in: Principles of Surface-Enhanced Raman Spectroscopy, Elsevier, Amsterdam, 2009, pp. 121-183. [42] M. Kerker, O. Siiman, L.A. Bumm, D.S. Wang, Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver, Appl. Opt., 19 (1980) 3253-3255. [43] D.S. Wang, M. Kerker, Enhanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids, Phys. Rev. B, 24 (1981) 1777-1790. [44] E.J. Zeman, G.C. Schatz, An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium, indium, zinc, and cadmium, J. Phys. Chem., 91 (1987) 634-643. [45] I. Delfino, A.R. Bizzarri, S. Cannistraro, Time-dependent study of single-molecule SERS signal from yeast cytochrome c, Chem. Phys., 326 (2006) 356-362. [46] H. Xu, J. Aizpurua, M. Kall, P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E, 62 (2000) 4318-4324. [47] C.G. Artur, R. Miller, M. Meyer, E.C.L. Ru, P.G. Etchegoin, Single-molecule SERS detection of C60, PCCP, 14 (2012) 3219-3225. [48] K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Population Pumping of Excited Vibrational States by Spontaneous Surface-Enhanced Raman Scattering, Phys. Rev. Lett., 76 (1996) 2444-2447. [49] H.H. Wang, C.Y. Liu, S.B. Wu, N.W. Liu, C.Y. Peng, T.H. Chan, C.F. Hsu, J.K. Wang, Y.L. Wang, Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10 nm Gaps, Adv. Mater., 18 (2006) 491-495. [50] J.M. Sequaris, E. Koglin, B. Malfoy, Inner and outer complexes of Pt-coordination compounds with DNA probed by SERS spectroscopy, FEBS Lett., 173 (1984) 95-98. [51] P. Cao, R. Gu, L. Qiu, R. Sun, B. Ren, Z. Tian, SERS investigation of interfacial water at a silver electrode in acetonitrile solutions, Surf. Sci., 531 (2003) 217-225. [52] C. Viets, W. Hill, Fibre-optic SERS sensors with angled tips, J. Mol. Struct., 565–566 (2001) 515-518. [53] M.C. Alvarez-Ros, S. Sanchez-Cortes, O. Francioso, J.V. Garcia-Ramos, Catalytic modification of gallic acid on a silver surface studied by surface-enhanced Raman spectroscopy, J. Raman Spectrosc., 32 (2001) 143-145. [54] W.R. Premasiri, R.H. Clarke, S. Londhe, M.E. Womble, Determination of cyanide in waste water by low-resolution surface enhanced Raman spectroscopy on sol-gel substrates, J. Raman Spectrosc., 32 (2001) 919-922. [55] L. Gunnarsson, E.J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, M. Kall, Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering, Appl. Phys. Lett., 78 (2001) 802-804. [56] M. Sharma, D. Mohan, R.D. Singh, N. Singh, Study of emission characteristics in laser dye mixtures encapsulated in silica gel matrices, Opt. Mater., 30 (2008) 1273-1283. [57] A.J. Williams, M. Murrell, S. Brammah, J. Minchenko, J. Christodoulou, A Novel System for Assigning the Mode of Inheritance in Mitochondrial Disorders Using Cybrids and Rhodamine 6G, Hum. Mol. Genet., 8 (1999) 1691-1697. [58] H. Chen, Y. Wang, S. Dong, E. Wang, An approach for fabricating self-assembled monolayer of Ag nanoparticles on gold as the SERS-active substrate, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 64 (2006) 343-348. [59] L. Lu, A. Eychmuller, A. Kobayashi, Y. Hirano, K. Yoshida, Y. Kikkawa, K. Tawa, Y. Ozaki, Designed Fabrication of Ordered Porous Au/Ag Nanostructured Films for Surface-Enhanced Raman Scattering Substrates, Langmuir, 22 (2006) 2605-2609. [60] A. Campion, P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev., 27 (1998) 241-250. [61] D.J. Maxwell, S.R. Emory, S. Nie, Nanostructured Thin-Film Materials with Surface-Enhanced Optical Properties, Chem. Mater., 13 (2001) 1082-1088. [62] S. Kidambi, J. Dai, J. Li, M.L. Bruening, Selective Hydrogenation by Pd Nanoparticles Embedded in Polyelectrolyte Multilayers, J. Am. Chem. Soc., 126 (2004) 2658-2659. [63] K. Mukhopadhyay, S. Phadtare, V.P. Vinod, A. Kumar, M. Rao, R.V. Chaudhari, M. Sastry, Gold Nanoparticles Assembled on Amine-Functionalized Na−Y Zeolite:  A Biocompatible Surface for Enzyme Immobilization, Langmuir, 19 (2003) 3858-3863. [64] J.P. Sylvestre, A.V. Kabashin, E. Sacher, M. Meunier, Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution, Appl. Phys. A, 80 (2005) 753-758. [65] Y.W. Alsmeyer, R.L. McCreery, Surface-enhanced Raman spectroscopy of carbon electrode surfaces following silver electrodeposition, Anal. Chem., 63 (1991) 1289-1295. [66] Y. Song, D. Luo, S. Ye, H. Hou, L. Wang, Facile fabrication of SERS-active substrates based on discarded silver compact disks, Appl. Surf. Sci., 258 (2012) 2584-2590. [67] P. He, H. Liu, Z. Li, Y. Liu, X. Xu, J. Li, Electrochemical Deposition of Silver in Room-Temperature Ionic Liquids and Its Surface-Enhanced Raman Scattering Effect, Langmuir, 20 (2004) 10260-10267. [68] N. Leopold, B. Lendl, A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride, The J. Phys. Chem. B, 107 (2003) 5723-5727. [69] L. Rivas, S. Sanchez-Cortes, J.V. Garcia-Ramos, G. Morcillo, Growth of Silver Colloidal Particles Obtained by Citrate Reduction To Increase the Raman Enhancement Factor, Langmuir, 17 (2001) 574-577. [70] M.V. Canamares, J.V. Garcia-Ramos, J.D. Gomez-Varga, C. Domingo, S. Sanchez-Cortes, Comparative Study of the Morphology, Aggregation, Adherence to Glass, and Surface-Enhanced Raman Scattering Activity of Silver Nanoparticles Prepared by Chemical Reduction of Ag+ Using Citrate and Hydroxylamine, Langmuir, 21 (2005) 8546-8553. [71] S.B. Chaney, S. Shanmukh, R.A. Dluhy, Y.P. Zhao, Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates, Appl. Phys. Lett., 87 (2005) 031908. [72] W.B. Lacy, J.M. Williams, L.A. Wenzler, T.P. Beebe, J.M. Harris, Characterization of SiO2-Overcoated Silver-Island Films as Substrates for Surface-Enhanced Raman Scattering, Anal. Chem., 68 (1996) 1003-1011. [73] Y. Hirai, H. Yabu, Y. Matsuo, K. Ijiro, M. Shimomura, Arrays of triangular shaped pincushions for SERS substrates prepared by using self-organization and vapor deposition, Chem. Commun., 46 (2010) 2298-2300. [74] E. Vogel, W. Kiefer, V. Deckert, D. Zeisel, Laser-deposited silver island films: an investigation of their structure, optical properties and SERS activity, J. Raman Spectrosc., 29 (1998) 693-702. [75] C.H. Bae, S.H. Nam, S.M. Park, Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution, Appl. Surf. Sci., 197–198 (2002) 628-634. [76] M.V. Canamares, J.V. Garcia-Ramos, J.D. Gomez-Varga, C. Domingo, S. Sanchez-Cortes, Ag Nanoparticles Prepared by Laser Photoreduction as Substrates for in Situ Surface-Enhanced Raman Scattering Analysis of Dyes, Langmuir, 23 (2007) 5210-5215. [77] 電化學原理與方法, 五南, 2002. [78] P.T. Kissinger, W.R. Heineman, Cyclic voltammetry, J. Chem. Educ., 60 (1983) 702. [79] J. Heinze, Cyclic Voltammetry—“Electrochemical Spectroscopy”. New Analytical Methods (25), Angew. Chem. Int. Ed. Engl., 23 (1984) 831-847. [80] D. Chung, Review Graphite, J. Mater. Sci., 37 (2002) 1475-1489. [81] A. Qureshi, W.P. Kang, J.L. Davidson, Y. Gurbuz, Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications, Diamond Relat. Mater., 18 (2009) 1401-1420. [82] C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath, Nanotubes, ChemPhysChem, 2 (2001) 78-105. [83] R.N. Goyal, V.K. Gupta, N. Bachheti, R.A. Sharma, Electrochemical Sensor for the Determination of Dopamine in Presence of High Concentration of Ascorbic Acid Using a Fullerene-C60 Coated Gold Electrode, Electroanalysis, 20 (2008) 757-764. [84] T. Kuwahara, H. Ohta, M. Kondo, M. Shimomura, Immobilization of glucose oxidase on carbon paper electrodes modified with conducting polymer and its application to a glucose fuel cell, Bioelectrochemistry, 74 (2008) 66-72. [85] H. Dai, H. Xu, Y. Lin, X. Wu, G. Chen, A highly performing electrochemical sensor for NADH based on graphite/poly(methylmethacrylate) composite electrode, Electrochem. Commun., 11 (2009) 343-346. [86] L. Tang, C. Tsai, W.W. Gerberich, L. Kruckeberg, D.R. Kania, Biocompatibility of chemical-vapour-deposited diamond, Biomaterials, 16 (1995) 483-488. [87] R. Maalouf, A. Soldatkin, O. Vittori, M. Sigaud, Y. Saikali, H. Chebib, A.S. Loir, F. Garrelie, C. Donnet, N. Jaffrezic-Renault, Study of different carbon materials for amperometric enzyme biosensor development, Mater. Sci. Eng. C, 26 (2006) 564-567. [88] B. Šljukić, R. Baron, R.G. Compton, Electrochemical Determination of Oxalate at Pyrolytic Graphite Electrodes, Electroanalysis, 19 (2007) 918-922. [89] R.R. Moore, C.E. Banks, R.G. Compton, Basal Plane Pyrolytic Graphite Modified Electrodes:  Comparison of Carbon Nanotubes and Graphite Powder as Electrocatalysts, Anal. Chem., 76 (2004) 2677-2682. [90] C.E. Banks, R.R. Moore, T.J. Davies, R.G. Compton, Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes, Chem. Commun., (2004) 1804-1805. [91] D.R.S. Jeykumari, S.S. Narayanan, Covalent modification of multiwalled carbon nanotubes with neutral red for the fabrication of an amperometric hydrogen peroxide sensor, Nanotechnology, 18 (2007) 125501. [92] L. Nikzad, S. Alibeigi, M.R. Vaezi, B. Yazdani, M.R. Rahimipour, Synthesis of a Graphite-Polyaniline Nanocomposite and Evaluation of Its Electrochemical Properties, Chem. Eng. Technol., 32 (2009) 861-866. [93] H.L. Guo, X.F. Wang, Q.Y. Qian, F.B. Wang, X.H. Xia, A Green Approach to the Synthesis of Graphene Nanosheets, ACS Nano, 3 (2009) 2653-2659. [94] W.J. Lin, C.S. Liao, J.H. Jhang, Y.C. Tsai, Graphene modified basal and edge plane pyrolytic graphite electrodes for electrocatalytic oxidation of hydrogen peroxide and β-nicotinamide adenine dinucleotide, Electrochem. Commun., 11 (2009) 2153-2156. [95] Y.C. Tsai, S.C. Li, J.M. Chen, Cast Thin Film Biosensor Design Based on a Nafion Backbone, a Multiwalled Carbon Nanotube Conduit, and a Glucose Oxidase Function, Langmuir, 21 (2005) 3653-3658. [96] Y.C. Tsai, Y.H. Hong, Electrochemical deposition of platinum nanoparticles in multiwalled carbon nanotube–Nafion composite for methanol electrooxidation, J. Solid State Electrochem., 12 (2008) 1293-1299. [97] Y.C. Tsai, J.D. Huang, C.C. Chiu, Amperometric ethanol biosensor based on poly(vinyl alcohol)–multiwalled carbon nanotube–alcohol dehydrogenase biocomposite, Biosens. Bioelectron., 22 (2007) 3051-3056. [98] S.J. Wang, H.W. Liaw, Y.C. Tsai, Low potential detection of nicotine at multiwalled carbon nanotube–alumina-coated silica nanocomposite, Electrochem. Commun., 11 (2009) 733-735. [99] L. Su, F. Gao, L. Mao, Electrochemical Properties of Carbon Nanotube (CNT) Film Electrodes Prepared by Controllable Adsorption of CNTs onto an Alkanethiol Monolayer Self-Assembled on Gold Electrodes, Anal. Chem., 78 (2006) 2651-2657. [100] C. Gouveia-Caridade, R. Pauliukaite, C.M.A. Brett, Development of electrochemical oxidase biosensors based on carbon nanotube-modified carbon film electrodes for glucose and ethanol, Electrochim. Acta, 53 (2008) 6732-6739. [101] D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode, ACS Nano, 3 (2009) 1745-1752. [102] X. Zhang, J. Zhang, Z. Liu, Conducting polymer/carbon nanotube composite films made by in situ electropolymerization using an ionic surfactant as the supporting electrolyte, Carbon, 43 (2005) 2186-2191. [103] J. Shen, Y. Hu, C. Li, C. Qin, M. Shi, M. Ye, Layer-by-Layer Self-Assembly of Graphene Nanoplatelets, Langmuir, 25 (2009) 6122-6128. [104] H. Paloniemi, M. Lukkarinen, T. Aaritalo, S. Areva, J. Leiro, M. Heinonen, K. Haapakka, J. Lukkari, Layer-by-Layer Electrostatic Self-Assembly of Single-Wall Carbon Nanotube Polyelectrolytes, Langmuir, 22 (2005) 74-83. [105] C. Cugnet, O. Zaouak, A. Rene, C. Pecheyran, M. Potin-Gautier, L. Authier, A novel microelectrode array combining screen-printing and femtosecond laser ablation technologies: Development, characterization and application to cadmium detection, Sens. Actuators B: Chem., 143 (2009) 158-163. [106] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666-669. [107] C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing Sugar: New Functional Molecules for the Green Synthesis of Graphene Nanosheets, ACS Nano, 4 (2010) 2429-2437. [108] L. Cao, Y. Liu, B. Zhang, L. Lu, In situ Controllable Growth of Prussian Blue Nanocubes on Reduced Graphene Oxide: Facile Synthesis and Their Application as Enhanced Nanoelectrocatalyst for H2O2 Reduction, ACS Appl. Mat. Interface., 2 (2010) 2339-2346. [109] C. Chen, M. Long, M. Xia, C. Zhang, W. Cai, Reduction of graphene oxide by an in-situ photoelectrochemical method in a dye-sensitized solar cell assembly, Nanoscale Res. Lett., 7 (2012) 101. [110] D.W. Zhang, X.D. Li, H.B. Li, S. Chen, Z. Sun, X.J. Yin, S.M. Huang, Graphene-based counter electrode for dye-sensitized solar cells, Carbon, 49 (2011) 5382-5388. [111] L. Kavan, J.H. Yum, M. Gratzel, Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets, ACS Nano, 5 (2011) 165-172. [112] X.Y. Peng, X.X. Liu, D. Diamond, K.T. Lau, Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in supercapacitor, Carbon, 49 (2011) 3488-3496. [113] W. Lv, D.M. Tang, Y.B. He, C.H. You, Z.Q. Shi, X.C. Chen, C.M. Chen, P.X. Hou, C. Liu, Q.H. Yang, Low-Temperature Exfoliated Graphenes: Vacuum-Promoted Exfoliation and Electrochemical Energy Storage, ACS Nano, 3 (2009) 3730-3736. [114] Y. Zhu, M.D. Stoller, W. Cai, A. Velamakanni, R.D. Piner, D. Chen, R.S. Ruoff, Exfoliation of Graphite Oxide in Propylene Carbonate and Thermal Reduction of the Resulting Graphene Oxide Platelets, ACS Nano, 4 (2010) 1227-1233. [115] D. Han, T. Han, C. Shan, A. Ivaska, L. Niu, Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid with Chitosan-Graphene Modified Electrode, Electroanalysis, 22 (2010) 2001-2008. [116] M. Zhou, Y. Zhai, S. Dong, Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide, Anal. Chem., 81 (2009) 5603-5613. [117] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39 (2010) 228. [118] M. Zhou, Y. Wang, Y. Zhai, J. Zhai, W. Ren, F. Wang, S. Dong, Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films, Chem. - Eur. J., 15 (2009) 6116-6120. [119] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide vial-ascorbic acid, Chem. Commun., 46 (2010) 1112-1114. [120] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature, 442 (2006) 282-286. [121] X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang, F. Zhang, Deoxygenation of Exfoliated Graphite Oxide under Alkaline Conditions: A Green Route to Graphene Preparation, Adv. Mater., 20 (2008) 4490-4493. [122] S. Mao, H. Pu, J. Chen, Graphene oxide and its reduction: modeling and experimental progress, RSC Advances, 2 (2012) 2643-2662. [123] Z.L. Wang, D. Xu, Y. Huang, Z. Wu, L.M. Wang, X.B. Zhang, Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries, Chem. Commun., 48 (2012) 976-978. [124] D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr, R.S. Ruoff, Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy, Carbon, 47 (2009) 145-152. [125] S. Dubin, S. Gilje, K. Wang, V.C. Tung, K. Cha, A.S. Hall, J. Farrar, R. Varshneya, Y. Yang, R.B. Kaner, A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents, ACS Nano, 4 (2010) 3845-3852. [126] A. Kaniyoor, T.T. Baby, S. Ramaprabhu, Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide, J. Mater. Chem., 20 (2010) 8467-8469. [127] H. Zhang, Y. Miyamoto, Graphene production by laser shot on graphene oxide: An ab initio prediction, Phys. Rev. B, 85 (2012) 033402. [128] B. Zhang, L. Li, Z. Wang, S. Xie, Y. Zhang, Y. Shen, M. Yu, B. Deng, Q. Huang, C. Fan, J. Li, Radiation induced reduction: an effective and clean route to synthesize functionalized graphene, J. Mater. Chem., 22 (2012) 7775-7781. [129] Y. Matsumoto, M. Koinuma, S.Y. Kim, Y. Watanabe, T. Taniguchi, K. Hatakeyama, H. Tateishi, S. Ida, Simple Photoreduction of Graphene Oxide Nanosheet under Mild Conditions, ACS Appl. Mat. Interface., 2 (2010) 3461-3466. [130] G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue Photoluminescence from Chemically Derived Graphene Oxide, Adv. Mater., 22 (2010) 505-509. [131] V. Abdelsayed, S. Moussa, H.M. Hassan, H.S. Aluri, M.M. Collinson, M.S. El-Shall, Photothermal Deoxygenation of Graphite Oxide with Laser Excitation in Solution and Graphene-Aided Increase in Water Temperature, The Journal of Physical Chemistry Letters, 1 (2010) 2804-2809. [132] Y. Zhang, L. Guo, S. Wei, Y. He, H. Xia, Q. Chen, H.B. Sun, F.S. Xiao, Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction, Nano Today, 5 (2010) 15-20. [133] F. Li, Z. Wang, C. Shan, J. Song, D. Han, L. Niu, Preparation of gold nanoparticles/functionalized multiwalled carbon nanotube nanocomposites and its glucose biosensing application, Biosens. Bioelectron., 24 (2009) 1765-1770. [134] R. Zhang, X. Wang, Selective enhanced electrochemical response of DNA bases on carbon nanotube–gold nanocomposites modified gold electrode, phys. status solidi (a), 207 (2010) 2263-2268. [135] Y. Zhao, L. Fan, H. Zhong, Y. Li, S. Yang, Platinum Nanoparticle Clusters Immobilized on Multiwalled Carbon Nanotubes: Electrodeposition and Enhanced Electrocatalytic Activity for Methanol Oxidation, Adv. Funct. Mater., 17 (2007) 1537-1541. [136] S. Sharma, A. Ganguly, P. Papakonstantinou, X. Miao, M. Li, J.L. Hutchison, M. Delichatsios, S. Ukleja, Rapid microwave synthesis of CO tolerant reduced graphene oxide-supported platinum electrocatalysts for oxidation of methanol, J. Phys. Chem. C, 114 (2010) 19459-19466. [137] Y. Xin, J.G. Liu, Y. Zhou, W. Liu, J. Gao, Y. Xie, Y. Yin, Z. Zou, Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell, J. Power Sources, 196 (2011) 1012-1018. [138] P. Yang, W. Wei, C. Tao, B. Xie, X. Chen, Nano-silver/multi-walled carbon nanotube composite films for hydrogen peroxide electroanalysis, Microchimica Acta, 162 (2008) 51-56. [139] Y.C. Tsai, P.C. Hsu, Y.W. Lin, T.M. Wu, Electrochemical deposition of silver nanoparticles in multiwalled carbon nanotube-alumina-coated silica for surface-enhanced Raman scattering-active substrates, Electrochem. Commun., 11 (2009) 542-545. [140] S. Liu, J. Tian, L. Wang, H. Li, Y. Zhang, X. Sun, Stable Aqueous Dispersion of Graphene Nanosheets: Noncovalent Functionalization by a Polymeric Reducing Agent and Their Subsequent Decoration with Ag Nanoparticles for Enzymeless Hydrogen Peroxide Detection, Macromolecules, 43 (2010) 10078-10083. [141] G. Wee, W.F. Mak, N. Phonthammachai, A. Kiebele, M.V. Reddy, B.V.R. Chowdari, G. Gruner, M. Srinivasan, S.G. Mhaisalkar, Particle Size Effect of Silver Nanoparticles Decorated Single Walled Carbon Nanotube Electrode for Supercapacitors, J. Electrochem. Soc., 157 (2010) A179-A184. [142] X. Che, R. Yuan, Y. Chai, J. Li, Z. Song, J. Wang, Amperometric immunosensor for the determination of α-1-fetoprotein based on multiwalled carbon nanotube–silver nanoparticle composite, J. Colloid Interface Sci., 345 (2010) 174-180. [143] Y. Wang, S. Zhang, H. Chen, H. Li, P. Zhang, Z. Zhang, G. Liang, J. Kong, One-pot facile decoration of graphene nanosheets with Ag nanoparticles for electrochemical oxidation of methanol in alkaline solution, Electrochem. Commun., 17 (2012) 63-66. [144] M. Quintana, X. Ke, G. Van Tendeloo, M. Meneghetti, C. Bittencourt, M. Prato, Light-Induced Selective Deposition of Au Nanoparticles on Single-Wall Carbon Nanotubes, ACS Nano, 4 (2010) 6105-6113. [145] K. Chen, G. Lu, J. Chang, S. Mao, K. Yu, S. Cui, J. Chen, Hg(II) Ion Detection Using Thermally Reduced Graphene Oxide Decorated with Functionalized Gold Nanoparticles, Anal. Chem., 84 (2012) 4057-4062. [146] K.J. Huang, D.J. Niu, X. Liu, Z.W. Wu, Y. Fan, Y.F. Chang, Y.Y. Wu, Direct electrochemistry of catalase at amine-functionalized graphene/gold nanoparticles composite film for hydrogen peroxide sensor, Electrochim. Acta, 56 (2011) 2947-2953. [147] Y. Hu, J. Jin, P. Wu, H. Zhang, C. Cai, Graphene–gold nanostructure composites fabricated by electrodeposition and their electrocatalytic activity toward the oxygen reduction and glucose oxidation, Electrochim. Acta, 56 (2010) 491-500. [148] Y. Li, W. Gao, L. Ci, C. Wang, P.M. Ajayan, Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation, Carbon, 48 (2010) 1124-1130. [149] S. Chakraborty, C.R. Raj, Carbon nanotube supported platinum nanoparticles for the voltammetric sensing of hydrazine, Sens. Actuators B: Chem., 147 (2010) 222-227. [150] J. Fei, X. Wen, L. Yi, F. Ge, Y. Zhang, M. Huang, X. Chen, Electrochemical determination diethylstilbestrol by a single-walled carbon nanotube/platinum nanoparticle composite film electrode, J. Appl. Electrochem., 38 (2008) 1527-1533. [151] D. Rathod, C. Dickinson, D. Egan, E. Dempsey, Platinum nanoparticle decoration of carbon materials with applications in non-enzymatic glucose sensing, Sens. Actuators B: Chem., 143 (2010) 547-554. [152] S. Park, H. Boo, T.D. Chung, Electrochemical non-enzymatic glucose sensors, Anal. Chim. Acta, 556 (2006) 46-57. [153] S. Guo, D. Wen, Y. Zhai, S. Dong, E. Wang, Platinum Nanoparticle Ensemble-on-Graphene Hybrid Nanosheet: One-Pot, Rapid Synthesis, and Used as New Electrode Material for Electrochemical Sensing, ACS Nano, 4 (2010) 3959-3968. [154] R.S. Dey, C.R. Raj, Development of an Amperometric Cholesterol Biosensor Based on Graphene−Pt Nanoparticle Hybrid Material, J. Phys. Chem. C, 114 (2010) 21427-21433. [155] F. Li, J. Chai, H. Yang, D. Han, L. Niu, Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine, Talanta, 81 (2010) 1063-1068. [156] Y.S. Jeon, J.Y. Byun, T.S. Oh, Electrodeposition and mechanical properties of Ni–carbon nanotube nanocomposite coatings, J. Phys. Chem. Solids, 69 (2008) 1391-1394. [157] Y.G. Zhou, J.J. Chen, F.B. Wang, Z.H. Sheng, X.H. Xia, A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells, Chem. Commun., 46 (2010) 5951-5953. [158] Y. Xin, J.G. Liu, X. Jie, W. Liu, F. Liu, Y. Yin, J. Gu, Z. Zou, Preparation and electrochemical characterization of nitrogen doped graphene by microwave as supporting materials for fuel cell catalysts, Electrochim. Acta, 60 (2012) 354-358. [159] Z. Luo, L. Yuwen, B. Bao, J. Tian, X. Zhu, L. Weng, L. Wang, One-pot, low-temperature synthesis of branched platinum nanowires/reduced graphene oxide (BPtNW/RGO) hybrids for fuel cells, J. Mater. Chem., 22 (2012) 7791-7796. [160] S. Mayavan, J.B. Sim, S.M. Choi, Simultaneous reduction, exfoliation and functionalization of graphite oxide into a graphene-platinum nanoparticle hybrid for methanol oxidation, J. Mater. Chem., 22 (2012) 6953-6958. [161] S. Vadahanambi, J.H. Jung, I.K. Oh, Microwave syntheses of graphene and graphene decorated with metal nanoparticles, Carbon, 49 (2011) 4449-4457. [162] X. Feng, R. Li, C. Hu, W. Hou, Direct electron transfer and electrocatalysis of hemoglobin immobilized on graphene–Pt nanocomposite, J. Electroanal. Chem., 657 (2011) 28-33. [163] L. Guardia, S. Villar-Rodil, J.I. Paredes, R. Rozada, A. Martinez-Alonso, J.M.D. Tascon, UV light exposure of aqueous graphene oxide suspensions to promote their direct reduction, formation of graphene–metal nanoparticle hybrids and dye degradation, Carbon, 50 (2012) 1014-1024. [164] S. Moussa, G. Atkinson, M. SamyEl-Shall, A. Shehata, K.M. AbouZeid, M.B. Mohamed, Laser assisted photocatalytic reduction of metal ions by graphene oxide, J. Mater. Chem., 21 (2011) 9608-9619. [165] J.H. Kim, T. Kang, S.M. Yoo, S.Y. Lee, B. Kim, Y.K. Choi, A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering, Nanotechnology, 20 (2009) 235302. [166] J. Onuegbu, A. Fu, O. Glembocki, S. Pokes, D. Alexson, C.M. Hosten, Investigation of chemically modified barium titanate beads as surface-enhanced Raman scattering (SERS) active substrates for the detection of benzene thiol, 1,2-benzene dithiol, and rhodamine 6G, Spectrochim. Acta Part A, 79 (2011) 456-461. [167] P. Mayer, R. Holze, Pyridine as a probe molecule for surface enhanced Raman spectroscopy of the silver-modified glassy carbon/solution interface, Surf. Sci., 522 (
本論文探討以飛秒雷射(femtosecond laser)加工技術於不同材料誘發產生奈米結構的製備與應用,透過飛秒雷射技術改變不同參數可以在不同材料上製備奈米結構,將具有奈米結構的材料應用於不同領域,包括表面增強拉曼散射(surface-enhanced Raman scattering, SERS)和電化學領域上,本實驗成功利用飛秒雷射加工製備出5種具有奈米結構的材料,包含:飛秒雷射誘發銀奈米結構SERS活性基板、飛秒雷射誘發奈米結構玻璃碳電極(femtosecond laser-induced nanostructured glassy carbon electrodes, FLINGCE)、飛秒雷射於液相中還原氧化石墨烯(graphene oxide, GO)形成還原態石墨烯(reduced graphene oxide, RGO)奈米複合材料、飛秒雷射於液相中還原鉑離子Pt4+/GO形成鉑Pt/RGO和飛秒雷射於液相中還原Pt4+/多層壁奈米碳管(MWCNT)形成Pt/MWCNT奈米複合材料。
將製備完成的5種具有奈米結構的材料分別以場發射式掃描式電子顯微鏡(field emission scanning electron microscope, FESEM)、原子力顯微鏡(atomic force microscopy, AFM)或穿透式電子顯微鏡(transmission electron microscopy, TEM)觀察奈米結構材料的表面與內部結構形貌,接著利用紫外光可見光分光光譜儀 (UV/vis spectrophotometer, UV/vis)、顯微拉曼光譜儀(micro-Raman spectrometer)、X-光繞射分析儀(X-ray diffractometry, XRD)和X光光電子能譜 (X-ray photoelectron spectroscopy, XPS)來探討經飛秒雷射加工後奈米結構材料的結構組成與元素分析。最後將5種奈米結構分成5個部份應用於不同領域上進行研究,分別為飛秒雷射誘發銀奈米結構SERS活性基板應用於表面增強拉曼散射,FLINGCE、RGO、Pt/RGO和Pt/MWCNT奈米複合材料應用於電化學領域。
第一部分,將飛秒雷射誘發銀奈米結構SERS活性基板應用於表面增強拉曼散射,以Rhodamine 6G (R6G)做為探測分子,探討R6G吸附在銀奈米結構SERS活性基板上的表面增強拉曼散射效應。銀奈米結構SERS活性基板表面產生週期性奈米結構的週期為560 nm,因而導致粗糙度提高,能吸附較多的R6G分子,由拉曼訊號發現利用飛秒雷射製備的銀奈米結構基板的SERS訊號高於未經飛秒雷射加工的銀基板,證實飛秒雷射製備的銀奈米結構基板將來可應用在感測器領域上作為光學感測器應用。
第二部分,將FLINGCE應用於電化學領域,分別對多巴胺(dopamine, DA)、尿酸(uric acid, UA)、抗壞血酸(ascorbic acid, AA)和乙醯氨酚(acetaminophen, APAP)4種生物分子進行電化學分析,探討電催化效應。由SEM和AFM證實在玻璃碳電極(glassy carbon electrodes, GCE)產生週期性結構,並且提升GCE粗糙度,增加活性面積。利用電化學循環伏安法(cyclic voltammetry, CV)檢測DA、UA、AA和APAP,實驗結果顯示經飛秒雷射加工後的奈米結構玻璃碳能有效降低偵測物質的氧化還原電位,證實FLINGCE可以達到電催化效應,在未來可應用在化學感測器領域上。
第四部分,以飛秒雷射於水溶液中直接一步驟還原Pt4+/GO形成Pt/RGO奈米材料,再將Pt/RGO奈米材料應用於直接甲醇燃料電池(direct methanol fuel cells, DMFCs)領域上,由UV/vis、XRD、XPS和TEM發現Pt4+在RGO表面還原成Pt金屬粒子,其顆粒大小約5 nm。最後使用CV進行電化學分析比較檢測硫酸(H2SO4)和甲醇(CH3OH),由於Pt的形成,成功催化CH3OH,達到電催化效應。
第五部分,以飛秒雷射於水溶液中直接一步驟還原Pt4+/MWCNT形成Pt/MWCNT奈米材料,再將Pt/RGO奈米材料應用於無酵素葡萄糖的電化學偵測領域,由UV/vis、XRD、XPS和TEM證實Pt4+成功在MWCNT表面還原產生Pt金屬粒子,其顆粒大小約5 nm。最後使用CV和安培法(ampermetry)進行電化學分析,由於在MWCNT表面產生5 nm的Pt金屬粒子,成功電催化glucose,提高偵測靈敏度和偵測範圍。

Femtosecond laser was employed to fabricate periodic nanostructured Ag substrate, femtosecond laser-induced nanostructured glassy carbon electrodes (FLINGCE), reduced graphene oxide (RGO), Pt/RGO, and Pt/MWCNT. The prepared periodic nanostructured Ag substrate, FLINGCE, RGO, Pt/RGO, and Pt/MWCNT were characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), UV/vis spectrophotometer (UV/vis), micro-Raman spectrometer, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).
The first Part: The application of the femtosecond laser-induced nanostructured Ag substrate in surface-enhanced Raman scattering (SERS) was investigated by using rhodamine 6G (R6G) as probe molecule. The SERS intensities of R6G at the femtosecond laser-induced nanostructured Ag substrates are greater than those at the untreated Ag substrates. The present methodology demonstrates that the femtosecond laser-induced nanostructured Ag substrate is potential for optical chemical sensor applications.
The second Part: The FESEM and AFM images demonstrated the formation of periodic nanostructured on femtosecond laser treated glassy carbon surface, and the surface roughness of the femtosecond laser treated glassy carbon was largely compared to non-irradiated glassy carbon. The electrocatalytic activities of dopamine (DA), uric acid (UA), ascorbic acid (AA) and acetaminophen (APAP) were studied by means of cyclic voltammetry. The results exhibited that FLINGCE displayed high electrocatalytic activity. The present methodology demonstrated that FLINGCE made it suitable for chemical sensor applications.
The third part: The UV/vis, XRD, and XPS datas demonstrated the reduction of graphene oxide (GO) in aqueous solution by femtosecond laser. The electrocatalytic activities of ferricyanide and H2O2 were studied by means of cyclic voltammetry. The results exhibited that the RGO nanocomposites displayed high electrocatalytic activity. The RGO prepared in aqueous solution by femtosecond laser will provide even further benefits for electrocatalyst in electroanalytical applications.
The forth part: The UV/vis, XRD, XPS, and TEM datas demonstrated the formation of Pt nanoparticles on RGO surface by femtosecond laser and the size of Pt is 5 nm. The electrocatalytic activities of H2SO4 and CH3OH were studied by means of cyclic voltammetry. The results exhibited that the Pt/RGO nanocomposites displayed high electrocatalytic activity.
The fifth part: The UV/vis, XRD, XPS, and TEM datas demonstrated the formation of Pt nanoparticles on MWCNT surface by femtosecond laser and the size of Pt is 5 nm. The electrocatalytic activities of glucose were studied by means of cyclic voltammetry and ampermetry. The results exhibited that the MWCNT/Pt nanocomposites displayed high electrocatalytic activity. The present methodology demonstrated that the Pt/MWCNT nanocomposites made it suitable for chemical sensor applications.
其他識別: U0005-0102201312261500
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.