Please use this identifier to cite or link to this item:
標題: 側鏈含2,2’-亞甲基雙苯並噻唑之共軛高分子合成及其在太陽能電池應用研究
Polythiophene-Based Conjugated Copolymers Comprising Dibenzo[d]thiazol-2-ylmethane Pendant for Photovoltaic Applications
作者: 李佳娜
Lee, Chia-Na
關鍵字: 太陽能;solar cell;共軛高分子;conjugated copolymers
出版社: 化學工程學系所
引用: 1. Smalley, P.R.E. Energy & Nano Technology Conference. P.R.E. Energy & Nano Technology Conference,Rice University May 3,2003. 2. 世界一次能源消費量. 2010. 3. 楊金煥, 太陽能光伏發電應用技術. 太陽能光伏發電應用技術,電子工業出版社 2011. 4. 張正華, 有機與塑膠太陽能電池. 有機與塑膠太陽能電池,五南圖書出版 2008(初版二刷). 5. Goetzberger, A.; Luther, J.; Willeke, G., Solar cells: past, present, future. Solar Energy Materials and Solar Cells 2002, 74, (1–4), 1-11. 6. Williams, R., Becquerel Photovoltaic Effect in Binary Compounds. Journal of Chemical Physics 1960, 32, (5), 1505-1514. 7. Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25, (5), 676-677. 8. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C., Plastic Solar Cells. Advanced Functional Materials 2001, 11, (1), 15-26. 9. Gunes, S.; Neugebauer, H.; Sariciftci, N. S., Conjugated Polymer-Based Organic Solar Cells. Chemical Reviews 2007, 107, (4), 1324-1338. 10. Mayer, A. C.; Scully, S. R.; Hardin, B. E.; Rowell, M. W.; McGehee, M. D., Polymer-based solar cells. Materials Today 2007, 10, (11), 28-33. 11. Bundgaard, E.; Hagemann, O.; Manceau, M.; Jorgensen, M.; Krebs, F. C., Low Band Gap Polymers for Roll-to-Roll Coated Polymer Solar Cells. Macromolecules 2010, 43, (19), 8115-8120. 12. Hurd, F.; Livingston, R., The Quantum Yields of Some Dye-sensitized Photooxidations. The Journal of Physical Chemistry 1940, 44, (7), 865-873. 13. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S., Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews 2009, 109, (11), 5868-5923. 14. O''Regan, B.; Gratzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, (6346), 737-740. 15. Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M., Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society 2001, 123, (8), 1613-1624. 16. Lloyd, M. T.; Anthony, J. E.; Malliaras, G. G., Photovoltaics from soluble small molecules. Materials Today 2007, 10, (11), 34-41. 17. Steinberger, S.; Mishra, A.; Reinold, E.; Levichkov, J.; Uhrich, C.; Pfeiffer, M.; Bauerle, P., Vacuum-processed small molecule solar cells based on terminal acceptor-substituted low-band gap oligothiophenes. Chemical Communications 2011, 47, (7), 1982-1984. 18. Lin, L.-Y.; Chen, Y.-H.; Huang, Z.-Y.; Lin, H.-W.; Chou, S.-H.; Lin, F.; Chen, C.-W.; Liu, Y.-H.; Wong, K.-T., A Low-Energy-Gap Organic Dye for High-Performance Small-Molecule Organic Solar Cells. Journal of the American Chemical Society 2011, 133, (40), 15822-15825. 19. Beek, W. J. E.; Wienk, M. M.; Kemerink, M.; Yang, X.; Janssen, R. A. J., Hybrid Zinc Oxide Conjugated Polymer Bulk Heterojunction Solar Cells. The Journal of Physical Chemistry B 2005, 109, (19), 9505-9516. 20. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P., Hybrid Nanorod-Polymer Solar Cells. Science 2002, 295, (5564), 2425-2427. 21. Advincula, R. C., Hybrid organic-inorganic nanomaterials based on polythiophene dendronized nanoparticles. Dalton Transactions 2006, (23), 2778-2784. 22. Sang, G.; Zhou, E.; Huang, Y.; Zou, Y.; Zhao, G.; Li, Y., Incorporation of Thienylenevinylene and Triphenylamine Moieties into Polythiophene Side Chains for All-Polymer Photovoltaic Applications. The Journal of Physical Chemistry C 2009, 113, (14), 5879-5885. 23. Sang, G.; Zou, Y.; Huang, Y.; Zhao, G.; Yang, Y., All-polymer solar cells based on a blend of poly[3-(10-n-octyl-3-phenothiazine-vinylene)thiophene-co-2,5-thiophene] and poly[1,4-dioctyloxyl-p-2,5-dicyanophenylenevinylene]. Applied physics letters 2009, 94, (19), 193302. 24. Mandoc, M. M.; Veurman, W.; Koster, L. J. A.; Koetse, M. M.; Sweelssen, J., Charge transport in MDMO-PPV:PCNEPV all-polymer solar cells. Journal of Applied Physics 2007, 101, (10), 104512. 25. Nelson, J., Polymer:fullerene bulk heterojunction solar cells. Materials Today 2011, 14, (10), 462-470. 26. Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P., Polymer–Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials 2010, 22, (34), 3839-3856. 27. Ross, R. B.; Cardona, C. M.; Guldi, D. M.; Sankaranarayanan, S. G.; Reese, M. O.; Kopidakis, N.; Peet, J.; Walker, B.; Bazan, G. C.; Van Keuren, E.; Holloway, B. C.; Drees, M., Endohedral fullerenes for organic photovoltaic devices. Nat Mater 2009, 8, (3), 208-212. 28. Chen, L.-M.; Hong, Z.; Li, G.; Yang, Y., Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells. Advanced Materials 2009, 21, (14-15), 1434-1449. 29. Hallermann, M.; Kriegel, I.; Da Como, E.; Berger, J. M.; von Hauff, E.; Feldmann, J., Charge Transfer Excitons in Polymer/Fullerene Blends: The Role of Morphology and Polymer Chain Conformation. Advanced Functional Materials 2009, 19, (22), 3662-3668. 30. Dennler, G.; Scharber, M. C.; Brabec, C. J., Polymer-Fullerene Bulk-Heterojunction Solar Cells. Advanced Materials 2009, 21, (13), 1323-1338. 31. Xin, H.; Ren, G.; Kim, F. S.; Jenekhe, S. A., Bulk Heterojunction Solar Cells from Poly(3-butylthiophene)/Fullerene Blends: In Situ Self-Assembly of Nanowires, Morphology, Charge Transport, and Photovoltaic Properties. Chemistry of Materials 2008, 20, (19), 6199-6207. 32. Woo, C. H.; Thompson, B. C.; Kim, B. J.; Toney, M. F.; Frechet, J. M. J., The Influence of Poly(3-hexylthiophene) Regioregularity on Fullerene-Composite Solar Cell Performance. Journal of the American Chemical Society 2008, 130, (48), 16324-16329. 33. Thompson, B. C.; Frechet, J. M. J., Polymer–Fullerene Composite Solar Cells. Angewandte Chemie International Edition 2008, 47, (1), 58-77. 34. Yamamoto, S.; Guo, J.; Ohkita, H.; Ito, S., Formation of Methanofullerene Cation in Bulk Heterojunction Polymer Solar Cells Studied by Transient Absorption Spectroscopy. Advanced Functional Materials 2008, 18, (17), 2555-2562. 35. Moule, A. J.; Meerholz, K., Controlling Morphology in Polymer–Fullerene Mixtures. Advanced Materials 2008, 20, (2), 240-245. 36. Matsuo, Y.; Kanaizuka, K.; Matsuo, K.; Zhong, Y.-W.; Nakae, T.; Nakamura, E., Photocurrent-Generating Properties of Organometallic Fullerene Molecules on an Electrode. Journal of the American Chemical Society 2008, 130, (15), 5016-5017. 37. Dante, M.; Peet, J.; Nguyen, T.-Q., Nanoscale Charge Transport and Internal Structure of Bulk Heterojunction Conjugated Polymer/Fullerene Solar Cells by Scanning Probe Microscopy. The Journal of Physical Chemistry C 2008, 112, (18), 7241-7249. 38. Baumann, A.; Lorrmann, J.; Deibel, C.; Dyakonov, V., Bipolar charge transport in poly(3-hexyl thiophene)/methanofullerene blends: A ratio dependent study. Applied physics letters 2008, 93, (25), 252104. 39. Coffey, D. C.; Reid, O. G.; Rodovsky, D. B.; Bartholomew, G. P.; Ginger, D. S., Mapping Local Photocurrents in Polymer/Fullerene Solar Cells with Photoconductive Atomic Force Microscopy. Nano Letters 2007, 7, (3), 738-744. 40. 各類型太陽能電池光電轉換效率. 2012. 41. Dou, L.; You, J.; Yang, J.; Chen, C.-C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y., Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat Photon 2012, 6, (3), 180-185. 42. 美國能源部國家可再生能源實驗室. 2012. 43. G173-03, A., AM0和AM1.5太陽頻譜照度分布. 2012. 44. Hoppe, H.; Sariciftci, N. S., Morphology of polymer/fullerene bulk heterojunction solar cells. Journal of Materials Chemistry 2006, 16, (1), 45-61. 45. Brabec, C. J.; Zerza, G.; Cerullo, G.; De Silvestri, S.; Luzzati, S.; Hummelen, J. C.; Sariciftci, S., Tracing photoinduced electron transfer process in conjugated polymer/fullerene bulk heterojunctions in real time. Chemical Physics Letters 2001, 340, (3–4), 232-236. 46. Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Muller-Meskamp, L.; Leo, K., Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Advanced Functional Materials 2011, 21, (6), 1076-1081. 47. Ahlswede, E.; Hanisch, J.; Powalla, M., Comparative study of the influence of LiF, NaF, and KF on the performance of polymer bulk heterojunction solar cells. Applied physics letters 2007, 90, (16), 163504. 48. Ghosh, A. K.; Feng, T., Merocyanine organic solar cells. Journal of Applied Physics 1978, 49, (12), 5982-5989. 49. Yu, G.; Zhang, C.; Heeger, A. J., Dualfunction semiconducting polymer devices: Lightemitting and photodetecting diodes. Applied physics letters 1994, 64, (12), 1540-1542. 50. Tang, C. W., Two-layer organic photovoltaic cell. Applied Physics Letters 1986, 48, (2), 183-185. 51. Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., Exciton diffusion and dissociation in a poly(pphenylenevinylene)/C60 heterojunction photovoltaic cell. Applied physics letters 1996, 68, (22), 3120-3122. 52. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, (5243), 1789-1791. 53. Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J., Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Advanced Functional Materials 2005, 15, (10), 1617-1622. 54. Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J., New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Advanced Materials 2006, 18, (5), 572-576. 55. Irwin, M. D.; Buchholz, D. B.; Hains, A. W.; Chang, R. P. H.; Marks, T. J., p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proceedings of the National Academy of Sciences 2008, 105, (8), 2783-2787. 56. Coakley, K. M.; McGehee, M. D., Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania. Applied physics letters 2003, 83, (16), 3380-3382. 57. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P., Nanowire dye-sensitized solar cells. Nat Mater 2005, 4, (6), 455-459. 58. Ravirajan, P.; Peiro, A. M.; Nazeeruddin, M. K.; Graetzel, M.; Bradley, D. D. C.; Durrant, J. R.; Nelson, J., Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer. The Journal of Physical Chemistry B 2006, 110, (15), 7635-7639. 59. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials 2005, 4, (11), 864-868. 60. Riedel, I.; von Hauff, E.; Parisi, J.; Martin, N.; Giacalone, F.; Dyakonov, V., Diphenylmethanofullerenes: New and Efficient Acceptors in Bulk-Heterojunction Solar Cells. Advanced Functional Materials 2005, 15, (12), 1979-1987. 61. Shuttle, C. G.; O’Regan, B.; Ballantyne, A. M.; Nelson, J.; Bradley, D. D. C.; Durrant, J. R., Bimolecular recombination losses in polythiophene: Fullerene solar cells. Physical Review B 2008, 78, (11), 113201. 62. Hoppea, H.; Sariciftci, N. S., Organic solar cells: An overview. Journal of Materials Research 2004, 19, (7), 1924-1945. 63. Roncali, J., Molecular Engineering of the Band Gap of π-Conjugated Systems: Facing Technological Applications. Macromolecular Rapid Communications 2007, 28, (17), 1761-1775. 64. Wienk, M. M.; Struijk, M. P.; Janssen, R. A. J., Low band gap polymer bulk heterojunction solar cells. Chemical Physics Letters 2006, 422, (4–6), 488-491. 65. Colladet, K.; Fourier, S.; Cleij, T. J.; Lutsen, L.; Gelan, J.; Vanderzande, D.; Huong Nguyen, L.; Neugebauer, H.; Sariciftci, S.; Aguirre, A.; Janssen, G.; Goovaerts, E., Low Band Gap Donor−Acceptor Conjugated Polymers toward Organic Solar Cells Applications. Macromolecules 2006, 40, (1), 65-72. 66. Hou, J.; Chen, H.-Y.; Zhang, S.; Li, G.; Yang, Y., Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole. Journal of the American Chemical Society 2008, 130, (48), 16144-16145. 67. Zhou, E.; Nakamura, M.; Nishizawa, T.; Zhang, Y.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto, K., Synthesis and Photovoltaic Properties of a Novel Low Band Gap Polymer Based on N-Substituted Dithieno[3,2-b:2′,3′-d]pyrrole. Macromolecules 2008, 41, (22), 8302-8305. 68. Hou, J.; Chen, H.-Y.; Zhang, S.; Chen, R. I.; Yang, Y.; Wu, Y.; Li, G., Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells. Journal of the American Chemical Society 2009, 131, (43), 15586-15587. 69. Choi, S. H.; Frisbie, C. D., Enhanced Hopping Conductivity in Low Band Gap Donor−Acceptor Molecular Wires Up to 20 nm in Length. Journal of the American Chemical Society 2010, 132, (45), 16191-16201. 70. Tsai, J.-H.; Chueh, C.-C.; Chen, W.-C.; Yu, C.-Y.; Hwang, G.-W.; Ting, C.; Chen, E.-C.; Meng, H.-F., New thiophene-phenylene-thiophene acceptor random conjugated copolymers for optoelectronic applications. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, (11), 2351-2360. 71. Tsai, J.-H.; Chueh, C.-C.; Lai, M.-H.; Wang, C.-F.; Chen, W.-C.; Ko, B.-T.; Ting, C., Synthesis of New Indolocarbazole-Acceptor Alternating Conjugated Copolymers and Their Applications to Thin Film Transistors and Photovoltaic Cells. Macromolecules 2009, 42, (6), 1897-1905. 72. Lee, W.-Y.; Cheng, K.-F.; Wang, T.-F.; Chen, W.-C.; Tsai, F.-Y., Photovoltaic properties of low-band-gap fluorene-based donor–acceptor copolymers. Thin Solid Films 2010, 518, (8), 2119-2123. 73. Li, Y.; Zou, Y., Conjugated Polymer Photovoltaic Materials with Broad Absorption Band and High Charge Carrier Mobility. Advanced Materials 2008, 20, (15), 2952-2958. 74. Hou, J.; Tan, Z. a.; Yan, Y.; He, Y.; Yang, C.; Li, Y., Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains. Journal of the American Chemical Society 2006, 128, (14), 4911-4916. 75. Zhou, E.; Tan, Z. a.; Huo, L.; He, Y.; Yang, C.; Li, Y., Effect of Branched Conjugation Structure on the Optical, Electrochemical, Hole Mobility, and Photovoltaic Properties of Polythiophenes. The Journal of Physical Chemistry B 2006, 110, (51), 26062-26067. 76. Tan, Z. a.; Zhou, E.; Yang, Y.; He, Y.; Yang, C.; Li, Y., Synthesis, characterization and photovoltaic properties of thiophene copolymers containing conjugated side-chain. European Polymer Journal 2007, 43, (3), 855-861. 77. Sang, G.; Zou, Y.; Li, Y., Two Polythiophene Derivatives Containing Phenothiazine Units: Synthesis and Photovoltaic Properties. The Journal of Physical Chemistry C 2008, 112, (31), 12058-12064. 78. Hou, J.; Huo, L.; He, C.; Yang, C.; Li, Y., Synthesis and Absorption Spectra of Poly(3-(phenylenevinyl)thiophene)s with Conjugated Side Chains. Macromolecules 2005, 39, (2), 594-603. 79. Hou, J.; Tan, Z. a.; He, Y.; Yang, C.; Li, Y., Branched Poly(thienylene vinylene)s with Absorption Spectra Covering the Whole Visible Region. Macromolecules 2006, 39, (14), 4657-4662. 80. Tan, Z. a.; Hou, J.; He, Y.; Zhou, E.; Yang, C.; Li, Y., Synthesis and Photovoltaic Properties of a Donor−Acceptor Double-Cable Polythiophene with High Content of C60 Pendant. Macromolecules 2007, 40, (6), 1868-1873. 81. Zou, Y.; Wu, W.; Sang, G.; Yang, Y.; Liu, Y.; Li, Y., Polythiophene Derivative with Phenothiazine−Vinylene Conjugated Side Chain:  Synthesis and Its Application in Field-Effect Transistors. Macromolecules 2007, 40, (20), 7231-7237. 82. Li, H.; Parameswaran, M.; Nurmawati, M. H.; Xu, Q.; Valiyaveettil, S., Synthesis and Structure−Property Investigation of Polyarenes with Conjugated Side Chains. Macromolecules 2008, 41, (22), 8473-8482. 83. Huo, L.; Chen, T. L.; Zhou, Y.; Hou, J.; Chen, H.-Y.; Yang, Y.; Li, Y., Improvement of Photoluminescent and Photovoltaic Properties of Poly(thienylene vinylene) by Carboxylate Substitution. Macromolecules 2009, 42, (13), 4377-4380. 84. Huo, L.; Tan, Z. a.; Wang, X.; Zhou, Y.; Han, M.; Li, Y., Novel two-dimensional donor–acceptor conjugated polymers containing quinoxaline units: Synthesis, characterization, and photovoltaic properties. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, (12), 4038-4049. 85. Hou, J.; Yang, C.; Li, Y., Synthesis of regioregular side-chain conjugated polythiophene and its application in photovoltaic solar cells. Synthetic Metals 2005, 153, (1–3), 93-96. 86. Zhou, E.; He, C.; Tan, Z. A.; Yang, C.; Li, Y., Effect of side-chain end groups on the optical, electrochemical, and photovoltaic properties of side-chain conjugated polythiophenes. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44, (16), 4916-4922. 87. Zou, Y.; Sang, G.; Wu, W.; Liu, Y.; Li, Y., A polythiophene derivative with octyloxyl triphenylamine-vinylene conjugated side chain: Synthesis and its applications in field-effect transistor and polymer solar cell. Synthetic Metals 2009, 159, (3–4), 182-187. 88. Tan, Z. a.; Tang, R.; Zhou, E.; He, Y.; Yang, C.; Xi, F.; Li, Y., Electroluminescence and photovoltaic properties of poly(p-phenylene vinylene) derivatives with dendritic pendants. Journal of Applied Polymer Science 2008, 107, (1), 514-521. 89. Huo, L.; Tan, Z. a.; Zhou, Y.; Zhou, E.; Han, M.; Li, Y., Poly(quinoxaline vinylene) With Conjugated Phenylenevinylene Side Chain: A Potential Polymer Acceptor With Broad Absorption Band. Macromolecular Chemistry and Physics 2007, 208, (12), 1294-1300. 90. Shen, P.; Sang, G.; Lu, J.; Zhao, B.; Wan, M.; Zou, Y.; Li, Y.; Tan, S., Effect of 3D π−π Stacking on Photovoltaic and Electroluminescent Properties in Triphenylamine-containing Poly(p-phenylenevinylene) Derivatives. Macromolecules 2008, 41, (15), 5716-5722. 91. Huo, L.; Zhou, Y.; Li, Y., Alkylthio-Substituted Polythiophene: Absorption and Photovoltaic Properties. Macromolecular Rapid Communications 2009, 30, (11), 925-931. 92. Chang, Y. T.; Hsu, S. L.; Su, M. H.; Wei, K. H., Soluble Phenanthrenyl-Imidazole-Presenting Regioregular Poly(3-octylthiophene) Copolymers Having Tunable Bandgaps for Solar Cell Applications. Advanced Functional Materials 2007, 17, (16), 3326-3331. 93. Chang, Y.-T.; Hsu, S.-L.; Chen, G.-Y.; Su, M.-H.; Singh, T. A.; Diau, E. W.-G.; Wei, K.-H., Intramolecular Donor–Acceptor Regioregular Poly(3-hexylthiophene)s Presenting Octylphenanthrenyl-Imidazole Moieties Exhibit Enhanced Charge Transfer for Heterojunction Solar Cell Applications. Advanced Functional Materials 2008, 18, (16), 2356-2365. 94. Chang, Y.-T.; Hsu, S.-L.; Su, M.-H.; Wei, K.-H., Intramolecular Donor–Acceptor Regioregular Poly(hexylphenanthrenyl-imidazole thiophene) Exhibits Enhanced Hole Mobility for Heterojunction Solar Cell Applications. Advanced Materials 2009, 21, (20), 2093-2097. 95. Peeters, H.; Verbiest, T.; Koeckelberghs, G., Incorporation of a conjugated side-chain in regioregular polythiophenes: Chiroptical properties and selective oxidation. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, (7), 1891-1900. 96. Yu, C.-Y.; Ko, B.-T.; Ting, C.; Chen, C.-P., Two-dimensional regioregular polythiophenes with conjugated side chains for use in organic solar cells. Solar Energy Materials and Solar Cells 2009, 93, (5), 613-620. 97. Huang, F.; Chen, K.-S.; Yip, H.-L.; Hau, S. K.; Acton, O.; Zhang, Y.; Luo, J.; Jen, A. K. Y., Development of New Conjugated Polymers with Donor−π-Bridge−Acceptor Side Chains for High Performance Solar Cells. Journal of the American Chemical Society 2009, 131, (39), 13886-13887. 98. Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J., Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency. Advanced Materials 2006, 18, (6), 789-794. 99. Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.; Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M., Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells. Journal of the American Chemical Society 2008, 130, (2), 732-742. 100. Cardona, C. M.; Li, W.; Kaifer, A. E.; Stockdale, D.; Bazan, G. C., Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications. Advanced Materials 2011, 23, (20), 2367-2371. 101. Hou, J.; Chen, T. L.; Zhang, S.; Huo, L.; Sista, S.; Yang, Y., An Easy and Effective Method To Modulate Molecular Energy Level of Poly(3-alkylthiophene) for High-Voc Polymer Solar Cells. Macromolecules 2009, 42, (23), 9217-9219. 102. Zhang, F.; Perzon, E.; Wang, X.; Mammo, W.; Andersson, M. R.; Inganas, O., Polymer Solar Cells Based on a Low-Bandgap Fluorene Copolymer and a Fullerene Derivative with Photocurrent Extended to 850 nm. Advanced Functional Materials 2005, 15, (5), 745-750. 103. Park, J. Y.; Koenen, N.; Forster, M.; Ponnapati, R.; Scherf, U.; Advincula, R., Interplay of Vesicle and Lamellae Formation in an Amphiphilic Polyfluorene-b-polythiophene All-Conjugated Diblock Copolymer at the Air−Water Interface. Macromolecules 2008, 41, (16), 6169-6175. 104. Chen, M.-H.; Hou, J.; Hong, Z.; Yang, G.; Sista, S.; Chen, L.-M.; Yang, Y., Efficient Polymer Solar Cells with Thin Active Layers Based on Alternating Polyfluorene Copolymer/Fullerene Bulk Heterojunctions. Advanced Materials 2009, 21, (42), 4238-4242. 105. Skabara, P. J.; Berridge, R.; Serebryakov, I. M.; Kanibolotsky, A. L.; Kanibolotskaya, L.; Gordeyev, S.; Perepichka, I. F.; Sariciftci, N. S.; Winder, C., Fluorene functionalised sexithiophenes-utilising intramolecular charge transfer to extend the photocurrent spectrum in organic solar cells. Journal of Materials Chemistry 2007, 17, (11), 1055-1062. 106. Mondal, R.; Becerril, H. A.; Verploegen, E.; Kim, D.; Norton, J. E.; Ko, S.; Miyaki, N.; Lee, S.; Toney, M. F.; Bredas, J.-L.; McGehee, M. D.; Bao, Z., Thiophene-rich fused-aromatic thienopyrazine acceptor for donor-acceptor low band-gap polymers for OTFT and polymer solar cell applications. Journal of Materials Chemistry 2010, 20, (28), 5823-5834. 107. Schulz, G. L.; Chen, X.; Holdcroft, S., High band gap poly(9,9-dihexylfluorene-alt-bithiophene) blended with [6,6]- phenyl C61 butyric acid methyl ester for use in efficient photovoltaic devices. Applied physics letters 2009, 94, (2), 023302. 108. Wakim, S.; Beaupre, S.; Blouin, N.; Aich, B.-R.; Rodman, S.; Gaudiana, R.; Tao, Y.; Leclerc, M., Highly efficient organic solar cells based on a poly(2,7-carbazole) derivative. Journal of Materials Chemistry 2009, 19, (30), 5351-5358. 109. Beaupre, S.; Boudreault, P.-L. T.; Leclerc, M., Solar-Energy Production and Energy-Efficient Lighting: Photovoltaic Devices and White-Light-Emitting Diodes Using Poly(2,7-fluorene), Poly(2,7-carbazole), and Poly(2,7-dibenzosilole) Derivatives. Advanced Materials 2010, 22, (8), E6-E27. 110. Xia, Y.; Su, X.; He, Z.; Ren, X.; Wu, H.; Cao, Y.; Fan, D., An Alternating Copolymer Derived from Indolo[3,2-b]carbazole and 4,7-Di(thieno[3,2-b]thien-2-yl)-2,1,3-benzothiadiazole for Photovoltaic Cells. Macromolecular Rapid Communications 2010, 31, (14), 1287-1292. 111. Zhou, E.; Yamakawa, S.; Zhang, Y.; Tajima, K.; Yang, C.; Hashimoto, K., Indolo[3,2-b]carbazole-based alternating donor-acceptor copolymers: synthesis, properties and photovoltaic application. Journal of Materials Chemistry 2009, 19, (41), 7730-7737. 112. Leclerc, N.; Michaud, A.; Sirois, K.; Morin, J. F.; Leclerc, M., Synthesis of 2,7-Carbazolenevinylene-Based Copolymers and Characterization of Their Photovoltaic Properties. Advanced Functional Materials 2006, 16, (13), 1694-1704. 113. Chul Kim, S.; Vijaya Kumar Naidu, B.; Lee, S.-K.; Shin, W.-S.; Jin, S.-H.; Jung, S.-J.; Cho, Y.-R.; Shim, J.-M.; Kook Lee, J.; Wook Lee, J.; Hyeon Kim, J.; Gal, Y.-S., Synthesis and photovoltaic properties of novel PPV-derivatives tethered with spiro-bifluorene unit for polymer solar cells. Solar Energy Materials and Solar Cells 2007, 91, (6), 460-466. 114. Yu, C.-Y.; Chen, C.-P.; Chan, S.-H.; Hwang, G.-W.; Ting, C., Thiophene/Phenylene/Thiophene-Based Low-Bandgap Conjugated Polymers for Efficient Near-Infrared Photovoltaic Applications. Chemistry of Materials 2009, 21, (14), 3262-3269. 115. Chan, S.-H.; Chen, C.-P.; Chao, T.-C.; Ting, C.; Lin, C.-S.; Ko, B.-T., Synthesis, Characterization, and Photovoltaic Properties of Novel Semiconducting Polymers with Thiophene−Phenylene−Thiophene (TPT) as Coplanar Units. Macromolecules 2008, 41, (15), 5519-5526. 116. Zhao, N.; Botton, G. A.; Zhu, S.; Duft, A.; Ong, B. S.; Wu, Y.; Liu, P., Microscopic Studies on Liquid Crystal Poly(3,3‘ ‘‘-dialkylquaterthiophene) Semiconductor. Macromolecules 2004, 37, (22), 8307-8312. 117. McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; McGehee, M. D.; Toney, M. F., Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat Mater 2006, 5, (4), 328-333. 118. Lim, B.; Baeg, K.-J.; Jeong, H.-G.; Jo, J.; Kim, H.; Park, J.-W.; Noh, Y.-Y.; Vak, D.; Park, J.-H.; Park, J.-W.; Kim, D.-Y., A New Poly(thienylenevinylene) Derivative with High Mobility and Oxidative Stability for Organic Thin-Film Transistors and Solar Cells. Advanced Materials 2009, 21, (27), 2808-2814. 119. Saeki, A.; Fukumatsu, T.; Seki, S., Intramolecular Charge Carrier Mobility in Fluorene-Thiophene Copolymer Films Studied by Microwave Conductivity. Macromolecules 2011, 44, (9), 3416-3424. 120. Fong, H. H.; Papadimitratos, A.; Malliaras, G. G., Nondispersive hole transport in a polyfluorene copolymer with a mobility of 0.01cm2V−1s−1. Applied physics letters 2006, 89, (17), 172116. 121. Mayer, A. C.; Toney, M. F.; Scully, S. R.; Rivnay, J.; Brabec, C. J.; Scharber, M.; Koppe, M.; Heeney, M.; McCulloch, I.; McGehee, M. D., Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells. Advanced Functional Materials 2009, 19, (8), 1173-1179. 122. Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L., Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties. Journal of the American Chemical Society 2009, 131, (22), 7792-7799. 123. Liang, Y.; Xu, Z.; Xia, J.; Tsai, S.-T.; Wu, Y.; Li, G.; Ray, C.; Yu, L., For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Advanced Materials 2010, 22, (20), E135-E138. 124. Mayerhoffer, U.; Deing, K.; Grus, K.; Braunschweig, H.; Meerholz, K.; Wurthner, F., Outstanding Short-Circuit Currents in BHJ Solar Cells Based on NIR-Absorbing Acceptor-Substituted Squaraines. Angewandte Chemie International Edition 2009, 48, (46), 8776-8779.
本研究主鏈分別選用烷基取代的共軛噻吩(Thiophene, T)與芴(Fluorene, F),側鏈導入拉電子基團2,2’-亞甲基雙苯並噻唑(Dibenzo[d]thiazol-2-ylmethane, DBT)經Stille coupling反應聚合一系列低能隙之P型共軛高分子。探討並比較噻吩與芴之間共軛穩定性不同的差異。此系列之共軛高分子皆可溶於一般有機溶劑,且具備良好熱穩定性。
由紫外光-可見光光譜發現,三噻吩系列材料之光譜吸收範圍較芴系列高分子為寬,並有效調整HOMO能階在理想範圍內(-5.2~ -5.8 eV)。
進一步將共軛噻吩系列之高分子製備成順式(Conventional)與反式(Inverted)元件結構之太陽能電池,高分子在光伏性質表現上,開路電壓介於0.41~ 0.76 V,短路電流密度介於2.86 ~ 7.67 mA/cm2,填充因子介於0.29 ~ 0.35之間。其中以順式元件共軛高分子PTDBT/PC71BM(w/w = 1/2.5)經100 ℃熱處理製備之太陽能電池具有最高光電轉換效率為1.55 %,其開路電壓為0.67 V,短路電流為7.67 mA/cm2,填充因子為0.30。

A series of low-band gap of P-type conjugated polymers via Stille coupling reactions. The main chain is selected containing alkyl-substituted conjugated thiophene and fluorene, and side chain import electron- withdrawing group Dibenzo[d]thiazol 2-ylmethane(DBT). Comparative conjugated different stability differences between the thiophene and fluorene. All polymers exhibited good solubility in common organic solvents, and have good thermal stability.
A red-shift of UV-vis absorption band was observed for the polythiophene, and successfully control the HOMO energy levels within the ideal range(-5.2 ~ -5.8 eV).
Further conjugated thiophene series of polymer prepared cis and trans device structure of solar cells. In the photovoltaic properties of the open-circuit voltage(Voc)is between 0.41 ~ 0.76 V, short-circuit current (Jsc)is between 2.86 ~ 7.67 mA/cm2, fill factor(FF)is between 0.29 ~ 0.35. Wherein the conjugated polymer PTDBT/PC71BM(w/w = 1/2.5)via 100℃ annealing, the prepared solar cells having the best performance was achieved in the following: a photoelectric conversion efficiency (PCE) of 1.55%, a Voc of 0.67 V, Jsc of 7.67 mA/cm2, and a FF of 0.3 under illumination of AM 1.5, 100 mW/cm2.
其他識別: U0005-1806201310392600
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.